Lesson 3: Basic theory of stochastic processes

Size: px
Start display at page:

Download "Lesson 3: Basic theory of stochastic processes"

Transcription

1 Lesson 3: Basic theory of stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it

2 Probability space We start with some definitions A probability space is a triple (Ω, A, P), where (i) Ω is a nonempty set, we call it the sample space. (ii) A is a σ-algebra of subsets of Ω, i.e. a family of subsets closed with respect to countable union and complement with respect to Ω. (iii) P is a probability measure defined for all members of A. That is a function P : A [0,1] such that P(A) 0 for all A A, P(Ω) = 1, P( i=1 A i) = i=1 P(A i), for all sequences A i A such that A k A j = for k j.

3 Random Variable A real random variable or real stochastic variable on (Ω, A, P) is a function x : Ω R, such that the inverse image of any interval (, a] belongs to A, i.e. x 1 ((, a]) = {ω Ω : x(ω) a} A for all a R. We also say that the function x is measurable A.

4 Stochastic process What is a stochastic process? Let T be a subset of R. A real stochastic process is a family of random variables {x t (ω); t T }, all defined on the same probability space (Ω, A, P)

5 The set T is called index set of the process. If T Z, then the process {x t (ω); t T } is called a discrete stochastic process. If T is an interval of R, then {x t (ω); t T } is called a continuous stochastic process. In the sequel we will consider only discrete stochastic processes. Any single real random variable is a (trivial) stochastic process. In this case we have {x t (ω); t T } with T ={t 1 }

6 When T = Z the stochastic process {x t (ω); t Z} becomes a sequence of random variables. It is important to keep in mind that the sequence {x t (ω); t Z} has to be understood as the function associating the random variable x t with the integer t. Therefore the processes x = {x t (ω); t Z}, y = {x t (ω); t Z} z = {x t 3 (ω); t Z} are different. Although they share the same range, i.e. the same set of random variables, the functions associating a random variable with each integer t are different.

7 : examples Let A(ω) be a random variable defined on (Ω, A, P). Consider the discrete stochastic process {x t (ω); t Z} where x t (ω) = A(ω) t Z. A slightly modified example is x t (ω) = ( 1) t A(ω).

8 : examples Other processes are: {y t (ω); t Z}, with y t (ω) = a + bt + u t (ω); {z t (ω); t Z}, with z t (ω) = tu t (ω). where the random variables u t (ω) are IID.

9 Let {x t (ω); t Z} be a stochastic process defined on the probability space (Ω, A, P). For a fixed ω Ω, {x t (ω ); t Z} is a sequence of real number called realization or sample function of the stochastic process.

10 Consider the discrete stochastic process {x t (ω); t N} where x t (ω) N (0, 1) for t = 1, 2... and x t (ω) x s (ω) for t s. The plot of a realization of this process is presented in Figure 1. Figure : Figure 1

11 We note that for each choice of ω Ω a realization of the stochastic process is determined. For example, if ω 1, ω 2 Ω we have that {x t (ω 1 ); t Z} and {x t (ω 2 ); t Z} are two possible realizations of our stochastic process.

12 Consider the discrete stochastic process where {x t (ω); t N} x t = log(t) + cos (A(ω)) A(ω) N(0, 1). Figure 2 shows the plot of two possible realizations of this process.

13 In the following figure we present the plot of five possible realization of a random walk stochastic process Figure :

14 Just as a random variable assigns a number to each outcome in a sample space, a stochastic process assigns a sample function (realization) to each outcome ω Ω. Each realization is a unique function of time different from the others.

15 The set of all possible realizations of a stochastic process is called ensemble. {{x t (ω); t Z}; ω Ω}

16 Consider a stochastic process {x t (ω); t Z}. It is important to point out that all the random variables x t (ω) are defined on the same probability space (Ω, A, P): x t : Ω R t Z. Therefore, for all s Z + and t 1 t 2 t s, the probability P(a 1 x t1 (ω) b 1, a 2 x t2 (ω) b 2,..., a s x ts (ω) b s ) is well defined and so we can give the following definition.

17 Definition. Let {t 1, t 2,, t s } be a finite set of integers, with s Z +.The joint distribution function of (x t1 (ω), x t2 (ω),..., x ts (ω)) is defined by F t1,t 2,,t s (b 1, b 2,, b s ) = P(x t1 (ω) b 1, x t2 (ω) b 2,..., x ts (ω) b s ) The family { Ft1,t 2,,t s (b 1, b 2,, b s ); s Z +, {t 1, t 2,, t s } Z } is called the finite dimensional distribution of the process.

18 Definition. Let {t 1, t 2,, t s } be a finite set of integers, with s Z +. The stochastic process {x t (ω); t Z} is said Gaussian if the joint distribution function of the random vector (x t1 (ω), x t2 (ω),..., x ts (ω)) is normal for any subset of Z, {t 1, t 2,, t s } with s 1. Thus a stochastic process is a Gaussian process if and only if all distribution functions belonging to the finite dimensional distribution of the process are normal. Many real world phenomena are well modeled as Gaussian processes.

19 If we know the finite dimensional distribution of the process, we are able to answer the questions such as: 1 Which is the probability that the process {x t (ω); t Z} passes through [a, b] at time t 1? 2 Which is the probability that the process {x t (ω); t Z} passes through [a, b] at time t 1 and through [c, d] at time t 2?

20 The answers: 1 P({a x t1 (ω) b}) = F t1 (b) F t1 (a) 2 P({a x t1 (ω) b, c x t2 (ω) d}) = F t1,t 2 (b, d) F t1,t 2 (a, d) F t1,t 2 (b, c) + F t1,t 2 (a, c).

21 An important point: Is the knowledge of the finite dimensional distribution of the process sufficient to answer all question about the stochastic process are of interest? Can the probabilistic structure of a stochastic process to be fully described by the finite dimensional distribution of the process?

22 Theorem. For any positive integer s, let {t 1, t 2,, t s } be any admissible set of values of t. Then under general conditions the probabilistic structure of the stochastic process {x t (ω); t Z} is completely specified if we are given the joint probability distribution of (x t1 (ω), x t2 (ω),, x tn (ω)) for all values of s and for all choices of {t 1, t 2,, t s } (Priestly 1981, p.104).

23 We can conclude that a stochastic process is defined completely in a probabilistic sense if one knows the joint distribution function of (x t1 (ω), x t2 (ω),..., x ts (ω)) F t1,t 2,,t s (b 1, b 2,, b s ) for any positive integer s and for all choices of finite set of random variables (x t1 (ω), x t2 (ω),..., x ts (ω)).

24 The stochastic process as model. If we take the point of view that the observed time series is a finite part of one realization of a stochastic process {x t (ω); t Z}, then the stochastic process can serve as model of the DGP that has produced the time series.

25 DGP SP x 1,..., x T

26 In particular, since a complete knowledge of a stochastic process requires the knowledge of the finite dimensional distribution of the process, the time series model is given by the family {F t1,t 2,,t s (b 1, b 2,, b s ); s 1, {t 1, t 2,, t s } Z} where the form of the joint distribution functions F t1,t 2,,t s (b 1, b 2,, b s ) is supposed known. It is clear that, in general, this model contains too unknown parameters to be estimated from observed data.

27 If, for example, we assume that our model is the stochastic process {x t (ω); t Z}, where x t N(µ t, σt 2 ) we have that { b ( ) } 1 v 2 µt F t (b) = exp dv for t = 0 ± 1,... 2πσ 2 t Thus considering only the univariate distributions, we have to estimate a infinite number of parameters {µ t, σ t ; t Z}. σ t

28 This task is impossible

29 Consequently, some restrictions have to be made concerning the stochastic process that is adopted as model. In particular, we will consider 1 restrictions on the time-heterogeneity of the process; 2 restrictions on the memory of the process.

30 The first kind of restrictions enables us to reduce the number of unknown parameters. The second allows us to obtain a consistent estimate of unknown parameters.

Lesson 1: What is a time series

Lesson 1: What is a time series Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it What is a time series? A time series is a set of observations on a given variable x

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Università degli Studi di Pavia Dipartimento di Ingegneria Industriale e dell Informazione Corso di Identificazione dei Modelli e Analisi dei Dati Central Limit Theorem and Law of Large Numbers Prof. Giuseppe

More information

Confidence Intervals: Review

Confidence Intervals: Review University of Utah February 28, 2018 1 2 Law of Large Numbers Draw your samples from any population with finite mean µ. Then LLN says Law of Large Numbers Draw your samples from any population with finite

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Derivatives Pricing and Stochastic Calculus

Derivatives Pricing and Stochastic Calculus Derivatives Pricing and Stochastic Calculus Romuald Elie LAMA, CNRS UMR 85 Université Paris-Est Marne-La-Vallée elie @ ensae.fr Idris Kharroubi CEREMADE, CNRS UMR 7534, Université Paris Dauphine kharroubi

More information

I. Time Series and Stochastic Processes

I. Time Series and Stochastic Processes I. Time Series and Stochastic Processes Purpose of this Module Introduce time series analysis as a method for understanding real-world dynamic phenomena Define different types of time series Explain the

More information

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero Introduction to Stochastic Calculus and Financial Derivatives Simone Calogero December 7, 215 Preface Financial derivatives, such as stock options for instance, are indispensable instruments in modern

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

On Complexity of Multistage Stochastic Programs

On Complexity of Multistage Stochastic Programs On Complexity of Multistage Stochastic Programs Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA e-mail: ashapiro@isye.gatech.edu

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

Chapter 6. Importance sampling. 6.1 The basics

Chapter 6. Importance sampling. 6.1 The basics Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ E[X]. There is an event E such that P(E) is small but

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics and Statistics Washington State University Lisbon, May 218 Haijun Li An Introduction to Stochastic Calculus Lisbon,

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Building Infinite Processes from Regular Conditional Probability Distributions

Building Infinite Processes from Regular Conditional Probability Distributions Chapter 3 Building Infinite Processes from Regular Conditional Probability Distributions Section 3.1 introduces the notion of a probability kernel, which is a useful way of systematizing and extending

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Introduction to Statistical Data Analysis II

Introduction to Statistical Data Analysis II Introduction to Statistical Data Analysis II JULY 2011 Afsaneh Yazdani Preface Major branches of Statistics: - Descriptive Statistics - Inferential Statistics Preface What is Inferential Statistics? Preface

More information

Modes of Convergence

Modes of Convergence Moes of Convergence Electrical Engineering 126 (UC Berkeley Spring 2018 There is only one sense in which a sequence of real numbers (a n n N is sai to converge to a limit. Namely, a n a if for every ε

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Optimal Dam Management

Optimal Dam Management Optimal Dam Management Michel De Lara et Vincent Leclère July 3, 2012 Contents 1 Problem statement 1 1.1 Dam dynamics.................................. 2 1.2 Intertemporal payoff criterion..........................

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Slides for Risk Management

Slides for Risk Management Slides for Risk Management Introduction to the modeling of assets Groll Seminar für Finanzökonometrie Prof. Mittnik, PhD Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik,

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Arbitrage Theory without a Reference Probability: challenges of the model independent approach

Arbitrage Theory without a Reference Probability: challenges of the model independent approach Arbitrage Theory without a Reference Probability: challenges of the model independent approach Matteo Burzoni Marco Frittelli Marco Maggis June 30, 2015 Abstract In a model independent discrete time financial

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Econ 8602, Fall 2017 Homework 2

Econ 8602, Fall 2017 Homework 2 Econ 8602, Fall 2017 Homework 2 Due Tues Oct 3. Question 1 Consider the following model of entry. There are two firms. There are two entry scenarios in each period. With probability only one firm is able

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016 Probability Theory Probability and Statistics for Data Science CSE594 - Spring 2016 What is Probability? 2 What is Probability? Examples outcome of flipping a coin (seminal example) amount of snowfall

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Normal Distribution and Brownian Process Page 1 Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Searching for a Continuous-time

More information

(5) Multi-parameter models - Summarizing the posterior

(5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Spring, 2017 Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example,

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Discrete time interest rate models

Discrete time interest rate models slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part II József Gáll University of Debrecen, Faculty of Economics Nov. 2012 Jan. 2013, Ljubljana Introduction to discrete

More information

Brownian Motion. 1.1 Axioms of Probability. Chapter 1

Brownian Motion. 1.1 Axioms of Probability. Chapter 1 Contents 1 Brownian Motion 3 1.1 Axioms of Probability............................... 3 1.2 Random Variables................................. 11 1.3 Random Vectors.................................. 2 1.3.1

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

A class of coherent risk measures based on one-sided moments

A class of coherent risk measures based on one-sided moments A class of coherent risk measures based on one-sided moments T. Fischer Darmstadt University of Technology November 11, 2003 Abstract This brief paper explains how to obtain upper boundaries of shortfall

More information

BETA DISTRIBUTION ON ARITHMETICAL SEMIGROUPS

BETA DISTRIBUTION ON ARITHMETICAL SEMIGROUPS Annales Univ Sci Budapest Sect Comp 47 (2018) 147 154 BETA DISTRIBUTION ON ARITHMETICAL SEMIGROUPS Gintautas Bareikis and Algirdas Mačiulis (Vilnius Lithuania) Communicated by Imre Kátai (Received February

More information

Chapter ! Bell Shaped

Chapter ! Bell Shaped Chapter 6 6-1 Business Statistics: A First Course 5 th Edition Chapter 7 Continuous Probability Distributions Learning Objectives In this chapter, you learn:! To compute probabilities from the normal distribution!

More information

On Existence of Equilibria. Bayesian Allocation-Mechanisms

On Existence of Equilibria. Bayesian Allocation-Mechanisms On Existence of Equilibria in Bayesian Allocation Mechanisms Northwestern University April 23, 2014 Bayesian Allocation Mechanisms In allocation mechanisms, agents choose messages. The messages determine

More information

Modelling financial data with stochastic processes

Modelling financial data with stochastic processes Modelling financial data with stochastic processes Vlad Ardelean, Fabian Tinkl 01.08.2012 Chair of statistics and econometrics FAU Erlangen-Nuremberg Outline Introduction Stochastic processes Volatility

More information

The (λ, κ)-fn and the order theory of bases in boolean algebras

The (λ, κ)-fn and the order theory of bases in boolean algebras The (λ, κ)-fn and the order theory of bases in boolean algebras David Milovich Texas A&M International University david.milovich@tamiu.edu http://www.tamiu.edu/ dmilovich/ June 2, 2010 BLAST 1 / 22 The

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Machine Learning in Computer Vision Markov Random Fields Part II

Machine Learning in Computer Vision Markov Random Fields Part II Machine Learning in Computer Vision Markov Random Fields Part II Oren Freifeld Computer Science, Ben-Gurion University March 22, 2018 Mar 22, 2018 1 / 40 1 Some MRF Computations 2 Mar 22, 2018 2 / 40 Few

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Scenario Generation and Sampling Methods

Scenario Generation and Sampling Methods Scenario Generation and Sampling Methods Güzin Bayraksan Tito Homem-de-Mello SVAN 2016 IMPA May 9th, 2016 Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 1 / 30

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

A Note on the POUM Effect with Heterogeneous Social Mobility

A Note on the POUM Effect with Heterogeneous Social Mobility Working Paper Series, N. 3, 2011 A Note on the POUM Effect with Heterogeneous Social Mobility FRANCESCO FERI Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche Università di Trieste

More information

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Conjugate s: Beta and normal Class 15, 18.05 Jeremy Orloff and Jonathan Bloom 1. Understand the benefits of conjugate s.. Be able to update a beta given a Bernoulli, binomial, or geometric

More information

Keeping Your Options Open: An Introduction to Pricing Options

Keeping Your Options Open: An Introduction to Pricing Options The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 Keeping Your Options Open: An Introduction to Pricing Options Ryan F. Snyder The College of Wooster, rsnyder14@wooster.edu

More information

Statistical Methods for NLP LT 2202

Statistical Methods for NLP LT 2202 LT 2202 Lecture 3 Random variables January 26, 2012 Recap of lecture 2 Basic laws of probability: 0 P(A) 1 for every event A. P(Ω) = 1 P(A B) = P(A) + P(B) if A and B disjoint Conditional probability:

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information