Modes of Convergence

Size: px
Start display at page:

Download "Modes of Convergence"

Transcription

1 Moes of Convergence Electrical Engineering 126 (UC Berkeley Spring 2018 There is only one sense in which a sequence of real numbers (a n n N is sai to converge to a limit. Namely, a n a if for every ε > 0 there exists a positive integer N such that the sequence after N is always within ε of the suppose limit a. In contrast, the notion of convergence becomes somewhat more subtle when iscussing convergence of functions. In this note we briefly escribe a few moes of convergence an explain their relationship. Since the subject quickly becomes very technical, we will state many of the funamental results without proof. Throughout this iscussion, fix a probability space Ω an a sequence of ranom variables (X n n N. Also, let X be another ranom variable. 1 Almost Sure Convergence The sequence (X n n N is sai to converge almost surely or converge with probability one to the limit X, if the set of outcomes ω Ω for which X n (ω X(ω forms an event of probability one. In other wors, all observe realizations of the sequence (X n n N converge to the limit. We abbreviate almost surely by an we enote this moe of convergence by X n X. Of course, one coul efine an even stronger notion of convergence in which we require X n (ω X(ω for every outcome (rather than for a set of outcomes with probability one, but the philosophy of probabilists is to isregar events of probability zero, as they are never observe. Thus, we regar convergence as the strongest form of convergence. One of the most celebrate results in probability theory is the statement that the sample average of ientically istribute ranom variables, uner very weak assumptions, converges to the expecte value of their common istribution. This is known as the Strong Law of Large Numbers (SLLN. Theorem 1 (Strong Law of Large Numbers. If (X n n N are pairwise inepenent an ientically istribute with E[ X 1 ] <, then n 1 n i=1 X i E[X 1]. An example we will see later in the course is in the context of iscrete-time Markov chains: oes the fraction of time spent in a state converge to a value, an if so, to what value? Another example of convergence that we will stuy is the asymptotic equipartition property from information theory, an its relevance to coing. Finally, another question of interest comes from machine learning: if we use the stochastic graient escent algorithm to minimize a function, o the iterates converge to the true minimizer of the function? 1

2 2 Convergence in robability X, if for every 0. In other wors, for any fixe ε > 0, the probability that the Next, (X n n N is sai to converge in probability to X, enote X n ε > 0, ( X n X > ε sequence eviates from the suppose limit X by more than ε becomes vanishingly small. We now seek to prove that convergence implies convergence in probability. Theorem 2. If X n X, then X n X. roof. Fix ε > 0. Define A n := m=n { X m X > ε} to be the event that at least one of X n, X n+1,... eviates from X by more than ε. Observe that A 1 A 2 ecreases to an event A which has probability zero, since the convergence of the sequence (X n n N implies that for all outcomes ω (outsie of an event of probability zero, the sequence of real numbers ( X n (ω X(ω n N is eventually boune by ε. Thus, However, the converse is not true. ( X n X > ε (A n (A = 0. Example 1. The stanar example of a sequence of ranom variables which converges in probability but not is the following. First, set X n = 0 for all n N. Then, for each j N, pick an inex N j uniformly at ranom from {2 j,..., 2 j+1 1} an set X Nj = 1. Observe that (X n 0 = (N log2 n = n = 2 log 2 n 0, so X n 0. However, for any ω Ω, the sequence of real numbers (X n (ω n N takes on both values 0 an 1 infinitely often, so (X n (ω n N oes not converge an hence (X n n N oes not converge to X. As a consequence of the SLLN (Theorem 1 an Theorem 2, then if (X n n N are pairwise inepenent an ientically istribute with E[ X 1 ] <, then n 1 n i=1 X i E[X 1]. This is known as the Weak Law of Large Numbers (WLLN. The istinction between convergence an convergence in probability manifests itself in applications in the following way. If you have convergence in probability, then you know that the probability of a eviation of any particular size goes to zero, but you may inee observe such eviations forever; if you ha to pay a ollar for each ε-evation, you might en up paying up infinite ollars. In contrast, with convergence you are assure that for any observe realization, there will come a time in the sequence after which there will never be any such eviations, an thus you will only lose a finite amount of money. 3 Convergence in Distribution Finally, the last moe of convergence that we will iscuss is convergence in istribution or convergence in law. Here, X n X if for each x R such that (X = x = 0, we (X x. Notice that unlike the previous two forms of convergence, have (X n x convergence in istribution oes not require all of the ranom variables to be efine on the same probability space. 2

3 First we explain why we require (X n x (X x only at points x for which (X = x = 0. Example 2. Consier the sequence of constant ranom variables (X n n N, where we efine X n := 2 n. We woul like to assert that X n X, where X := 0. However, (X n 0 = 0 for all n N, whereas (X 0 = 1, so in particular (X n 0 oes not converge to (X 0. Notice that in this example, (X = 0 = 1, so we can fix this issue by only looking at points x for which (X = x = 0, i.e., points at which the CDF of X is continuous. In the following important special cases, convergence in istribution is easier to escribe: Theorem If (X n n N an X take values in Z, an if (X n = x (X = x for all x Z, then X n X. 2. If (X n n N an X are continuous ranom variables, an if f Xn (x f X(x for all x R, then X n X. Next we show that convergence in probability implies convergence in istribution. Theorem 4. If X n X, then X n X. roof. Let x be a point such that (X = x = 0. Fix ε > 0. We can write Similarly, we write (X n x = (X n x, X n X < ε + (X n x, X n X ε (X x + ε + ( X n X ε. (X x ε = (X x ε, X n X < ε + (X x ε, X n X ε Combining the two bouns, we have (X n x + ( X n X ε. (X x ε ( X n X ε (X n x (X x + ε + ( X n X ε. Since X n X, then ( X n X ε 0, so the boun above tells us that eventually the sequence ((X n x n N is trappe between (X x ε an (X x + ε. This is true for all ε > 0 an the CDF of X is continuous at x by assumption, so by taking ε 0, we conclue that (X n x (X x. The converse is not true: convergence in istribution oes not imply convergence in probability. In fact, a sequence of ranom variables (X n n N can converge in istribution even if they are not jointly efine on the same sample space! (This is because convergence in istribution is a property only of their marginal istributions. In contrast, convergence in probability requires the ranom variables (X n n N to be jointly efine on the same sample space, an etermining whether or not convergence in probability hols requires some knowlege about the joint istribution of (X n n N. Even when the ranom variables (X n n N are jointly efine, it is possible to construct counterexamples: 3

4 Example 3. Let X 0 Uniform[ 1, 1], an for each positive integer n, let X n := ( 1 n X 0. Then, X n = Uniform[ 1, 1] for all n N because the Uniform[ 1, 1] istribution is symmetric aroun the origin, so convergence in istribution hols (for a silly reason: all of the marginal istributions are the same. However, (X n n N oes not converge in probability (think about why this is true. Thus we have built a small hierarchy ( X n X T heorem 2 ====== ( X n ( X T heorem 4 ====== X n X. We now precisely state the Central Limit Theorem (CLT, which is an assertion about convergence in istribution. Theorem 5 (Central Limit Theorem. If (X n n N is a sequence of i.i.. ranom variables with common mean µ an finite variance σ 2, then n i=1 X i nµ σ n Z, where Z is a stanar Gaussian ranom variable. Explicitly, for all x R, ( n i=1 X i nµ σ n x x 1 2π exp ( z2 2 z. The CLT plays a huge role in statistics, where it is use to provie asymptotic confience intervals. Similarly, statisticians work towars proving convergence in istribution to other common istributions in statistics, such as the chi-square istribution or the t istribution. Another example of convergence in istribution is the oisson Law of Rare Events, which is use as a justification for the use of the oisson istribution in moels of rare events. Theorem 6 (oisson Law of Rare Events. If X n Binomial(n, p n where p n 0 such that np n λ > 0, then X n X, where X oisson(λ. In fact, many other situations (especially concerning balls an bins have oisson limits, an oisson limits are use in popular ranom graph moels. 4 Miscellaneous Results 4.1 Continuous Mapping One of the most useful results is presente below: Theorem 7 (Continuous Mapping. Let f be a continuous function. 1. If X n X, then f(x n f(x. 2. If X n X, then f(x n f(x. 4

5 3. If X n X, then f(x n f(x. A typical application is to analyze a sequence of ranom variables (X n n N by applying a log or exp transformation, which is useful when showing the convergence of (log X n n N or (exp X n n N is easier than showing that the original sequence (X n n N converges. 4.2 Convergence of Expectation In general, none of the above moes of convergence imply that E[X n ] an example, let U Uniform[0, 1] an let X n := n1{u n 1 }. Then, X n E[X]. As 0, but E[X n ] = 1 for all n. In more avance treatments of probability theory, convergence of expecte values is quite important, an there are a number of technical tools calle convergence theorems use to justify convergence of expectations. Although we will not nee them, we will state them here. Theorem 8 (Convergence Theorems. Suppose X n X. 1. (Monotone Convergence If 0 X 1 X 2 X 3, then E[X n ] E[X]. 2. (Dominate Convergence If there exists a ranom variable Y 0 with E[Y ] < an X n, X Y for all n, then E[X n ] E[X]. 5

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016 Asymtotics Author: Anrés Hincaié an Linyi Cao This Version: August 9, 2016 Asymtotics 3 In arametric moels, we usually assume that the oulation follows some istribution F (x θ) with unknown θ. Knowing

More information

A GENERALIZED COUPON COLLECTOR PROBLEM

A GENERALIZED COUPON COLLECTOR PROBLEM J. Appl. Prob. 48, 08 094 (20) Printe in Englan Applie Probability Trust 20 A GENERALIZED COUPON COLLECTOR PROBLEM WEIYU XU an A. KEVIN TANG, Cornell University Abstract This paper presents an analysis

More information

An investment strategy with optimal sharpe ratio

An investment strategy with optimal sharpe ratio The 22 n Annual Meeting in Mathematics (AMM 2017) Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai, Thailan An investment strategy with optimal sharpe ratio S. Jansai a,

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) =

1. An insurance company models claim sizes as having the following survival function. 25(x + 1) (x 2 + 2x + 5) 2 x 0. S(x) = ACSC/STAT 373, Actuarial Moels I Further Probability with Applications to Actuarial Science WINTER 5 Toby Kenney Sample Final Eamination Moel Solutions This Sample eamination has more questions than the

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 126 Spring 2006 Final Exam Wednesday, May 17, 8am 11am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 180 minutes to complete the final. The final consists of

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Appendix. Confidence Banking and Strategic Default. Guillermo Ordoñez. University of Pennsylvania and NBER

Appendix. Confidence Banking and Strategic Default. Guillermo Ordoñez. University of Pennsylvania and NBER Appenix Confience Banking an Strategic Default Guillermo Oroñez University of Pennsylvania an NBER 1 Proofs 1.1 Proof of Proposition 1 Since s ( ) is the signal that makes a goo firm with a given reputation

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p

Abstract Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk We consier the eman for state contingent claims in the p Stanar Risk Aversion an the Deman for Risky Assets in the Presence of Backgroun Risk Günter Franke 1, Richar C. Stapleton 2, an Marti G. Subrahmanyam. 3 November 2000 1 Fakultät für Wirtschaftswissenschaften

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2013 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2013 1 / 31

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Lesson 3: Basic theory of stochastic processes

Lesson 3: Basic theory of stochastic processes Lesson 3: Basic theory of stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Probability space We start with some

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Data Center Demand Response in Deregulated Electricity Markets

Data Center Demand Response in Deregulated Electricity Markets Data Center Deman Response in Deregulate Electricity Markets Shahab Bahrami, Stuent Member, IEEE, Vincent W.S. Wong, Fellow, IEEE, an Jianwei Huang, Fellow, IEEE Abstract With the evelopment of eregulate

More information

Numerical solution of conservation laws applied to the Shallow Water Wave Equations

Numerical solution of conservation laws applied to the Shallow Water Wave Equations Numerical solution of conservation laws applie to the Shallow Water Wave Equations Stephen G Roberts Mathematical Sciences Institute, Australian National University Upate January 17, 2013 (base on notes

More information

Data Center Demand Response in Deregulated Electricity Markets

Data Center Demand Response in Deregulated Electricity Markets This article has been accepte for publication in a future issue of this journal, but has not been fully eite. Content may change prior to final publication. Citation information: DOI 0.09/TSG.208.280830,

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Introduction to Options Pricing Theory

Introduction to Options Pricing Theory Introuction to Options Pricing Theory Simone Calogero Chalmers University of Technology Preface This text presents a self-containe introuction to the binomial moel an the Black-Scholes moel in options

More information

Repos, Fire Sales, and Bankruptcy Policy

Repos, Fire Sales, and Bankruptcy Policy Repos, Fire Sales, an Bankruptcy Policy Gaetano Antinolfi Francesca Carapella Charles Kahn Antoine Martin Davi Mills E Nosal Preliminary an Incomplete May 25, 2012 Abstract The events from the 2007-2009

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007 Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Math 489/Math 889 Stochastic

More information

University of Windsor Faculty of Business Administration Winter 2001 Mid Term Examination: units.

University of Windsor Faculty of Business Administration Winter 2001 Mid Term Examination: units. Time: 1 hour 20 minutes University of Winsor Faculty of Business Aministration Winter 2001 Mi Term Examination: 73-320 Instructors: Dr. Y. Aneja NAME: LAST (PLEASE PRINT) FIRST Stuent ID Number: Signature:

More information

SPLITTING FIELDS KEITH CONRAD

SPLITTING FIELDS KEITH CONRAD SPLITTING FIELDS EITH CONRAD 1. Introuction When is a fiel an f(t ) [T ] is nonconstant, there is a fiel extension / in which f(t ) picks up a root, say α. Then f(t ) = (T α)g(t ) where g(t ) [T ] an eg

More information

Dynamic Pricing through Customer Discounts for Optimizing Multi-Class Customers Demand Fulfillment

Dynamic Pricing through Customer Discounts for Optimizing Multi-Class Customers Demand Fulfillment Dynamic Pricing through Customer Discounts for Optimizing ulti-class Customers Deman Fulfillment Qing Ding Panos Kouvelis an Joseph ilner# John. Olin School of Business Washington University St. Louis,

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract

CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE LHP. Abstract CDO TRANCHE PRICING BASED ON THE STABLE LAW VOLUME II: R ELAXING THE ASSUMPTION German Bernhart XAIA Investment GmbH Sonnenstraße 9, 833 München, Germany german.bernhart@xaia.com First Version: July 26,

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY

REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY REAL OPTION MODELING FOR VALUING WORKER FLEXIBILITY Harriet Black Nembhar Davi A. Nembhar Ayse P. Gurses Department of Inustrial Engineering University of Wisconsin-Maison 53 University Avenue Maison,

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December n, 3 he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY. abstract

A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY. abstract A NOTE ON THE DYNAMIC ROLE OF MONOPOLISTIC COMPETITION IN THE MONETARY ECONOMY abstract In the new Keynesian economics, monopolistic competition plays an important role. Much static research is base on

More information

5.7 Probability Distributions and Variance

5.7 Probability Distributions and Variance 160 CHAPTER 5. PROBABILITY 5.7 Probability Distributions and Variance 5.7.1 Distributions of random variables We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

P. Manju Priya 1, M.Phil Scholar. G. Michael Rosario 2, Associate Professor , Tamil Nadu, INDIA)

P. Manju Priya 1, M.Phil Scholar. G. Michael Rosario 2, Associate Professor , Tamil Nadu, INDIA) International Journal of Computational an Applie Mathematics. ISSN 89-4966 Volume, Number (07 Research Inia Publications http://www.ripublication.com AN ORDERING POLICY UNDER WO-LEVEL RADE CREDI POLICY

More information

Dynamic Accumulation Model for the Second Pillar of the Slovak Pension System

Dynamic Accumulation Model for the Second Pillar of the Slovak Pension System UDC: 368.914(437.6) JEL classification: C1, E27, G11, G23 Keywors: ynamic stochastic programming; fune pillar; utility function; Bellman equation; Slovak pension system; risk aversion; pension portfolio

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introuction to Financial Derivatives Week of December 3 r, he Greeks an Wrap-Up Where we are Previously Moeling the Stochastic Process for Derivative Analysis (Chapter 3, OFOD) Black-Scholes-Merton

More information

A d-step Approach for Distinct Squares in Strings

A d-step Approach for Distinct Squares in Strings A -step Approach for Distinct Squares in Strings Mei Jiang Joint work with Antoine Deza an Frantisek Franek Department of Computing an Software McMaster University LSD & LAW, Feb 2011 Outline 1 Introuction

More information

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation.

2. Lattice Methods. Outline. A Simple Binomial Model. 1. No-Arbitrage Evaluation 2. Its relationship to risk-neutral valuation. . Lattice Methos. One-step binomial tree moel (Hull, Chap., page 4) Math69 S8, HM Zhu Outline. No-Arbitrage Evaluation. Its relationship to risk-neutral valuation. A Simple Binomial Moel A stock price

More information

An efficient method for computing the Expected Value of Sample Information. A non-parametric regression approach

An efficient method for computing the Expected Value of Sample Information. A non-parametric regression approach ScHARR Working Paper An efficient metho for computing the Expecte Value of Sample Information. A non-parametric regression approach Mark Strong,, eremy E. Oakley 2, Alan Brennan. School of Health an Relate

More information

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies

The Joint Dynamics of Electricity Spot and Forward Markets: Implications on Formulating Dynamic Hedging Strategies Energy Laboratory MI EL 00-005 Massachusetts Institute of echnology he Joint Dynamics of Electricity Spot an Forwar Markets: Implications on Formulating Dynamic Heging Strategies ovember 2000 he Joint

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

5.3 Statistics and Their Distributions

5.3 Statistics and Their Distributions Chapter 5 Joint Probability Distributions and Random Samples Instructor: Lingsong Zhang 1 Statistics and Their Distributions 5.3 Statistics and Their Distributions Statistics and Their Distributions Consider

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Linking the Negative Binomial and Logarithmic Series Distributions via their Associated Series

Linking the Negative Binomial and Logarithmic Series Distributions via their Associated Series Revista Colombiana e Estaística Diciembre 2008, volumen 31, no. 2, pp. 311 a 319 Linking the Negative Binomial an Logarithmic Series Distributions via their Associate Series Relacionano las istribuciones

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

GAINS FROM TRADE UNDER MONOPOLISTIC COMPETITION

GAINS FROM TRADE UNDER MONOPOLISTIC COMPETITION bs_bs_banner Pacific Economic Review, 2: (206) pp. 35 44 oi: 0./468-006.250 GAINS FROM TRADE UNDER MONOPOLISTIC COMPETITION ROBERT C. FEENSTRA* University of California, Davis an National Bureau of Economic

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

A class of coherent risk measures based on one-sided moments

A class of coherent risk measures based on one-sided moments A class of coherent risk measures based on one-sided moments T. Fischer Darmstadt University of Technology November 11, 2003 Abstract This brief paper explains how to obtain upper boundaries of shortfall

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Exchange Rate Risk Sharing Contract with Risk-averse Firms

Exchange Rate Risk Sharing Contract with Risk-averse Firms 03 International Conference on Avances in Social Science, Humanities, an anagement ASSH 03 Exchange ate isk Sharing Contract with isk-averse Firms LIU Yang, A Yong-kai, FU Hong School of anagement an Economics,

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Partial State-Owned Bank Interest Margin, Default Risk, and Structural Breaks: A Model of Financial Engineering

Partial State-Owned Bank Interest Margin, Default Risk, and Structural Breaks: A Model of Financial Engineering Partial State-Owne Bank Interest Margin, Default Risk, an Structural Breaks: A Moel of Financial Engineering JYH-HORNG IN,CHING-HUI CHANG * AND ROSEMARY JOU Grauate Institute of International Business

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Computational Independence

Computational Independence Computational Independence Björn Fay mail@bfay.de December 20, 2014 Abstract We will introduce different notions of independence, especially computational independence (or more precise independence by

More information

Hyperbolic Discounting and Uniform Savings Floors

Hyperbolic Discounting and Uniform Savings Floors This work is istribute as a Discussion Paper by the STANFORD INSTITUTE FOR ECONOMIC POLICY RESEARCH SIEPR Discussion Paper No. 04-34 Hyperbolic Discounting an Uniform Savings Floors By Benjamin A. Malin

More information

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016

Probability Theory. Probability and Statistics for Data Science CSE594 - Spring 2016 Probability Theory Probability and Statistics for Data Science CSE594 - Spring 2016 What is Probability? 2 What is Probability? Examples outcome of flipping a coin (seminal example) amount of snowfall

More information

Forthcoming in The Journal of Banking and Finance

Forthcoming in The Journal of Banking and Finance Forthcoming in The Journal of Banking an Finance June, 000 Strategic Choices of Quality, Differentiation an Pricing in Financial Services *, ** Saneep Mahajan The Worl Bank (O) 0-458-087 Fax 0-5-530 email:

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 3 Tuesday, January 30, 2018 1 Inductive sets Induction is an important concept in the theory of programming language.

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

An Evaluation of Shareholder Activism

An Evaluation of Shareholder Activism An Evaluation of Shareholer Activism Barbara G. Katz Stern School of Business, New York University 44 W. 4th St., New York, NY 10012 bkatz@stern.nyu.eu; tel: 212 998 0865; fax: 212 995 4218 corresponing

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

Development Economics and Public Policy WORKING PAPER SERIES

Development Economics and Public Policy WORKING PAPER SERIES Development Economics an Public Policy WORKING PAPER SERIES Paper No. 5 DO TECHNOLOGY SHOCKS SHIFT OUTPUT? AN EMPIRICAL ANALYSIS OF A TWO FACTOR MODEL Hulya Ulku University of Manchester May 005 ISBN:

More information

Premium-Discount Patterns in Exchange-Traded Funds (ETFs): Evidence from the Tracker Fund of Hong Kong (TraHK)

Premium-Discount Patterns in Exchange-Traded Funds (ETFs): Evidence from the Tracker Fund of Hong Kong (TraHK) Premium-Discount Patterns in Exchange-Trae Funs (ETFs): Evience from the Tracker Fun of Hong Kong (TraHK) Karen, H.Y. Wong Department of Accounting, Finance an Law, The Open University of Hong Kong, Hong

More information

A Costless Way to Increase Equity

A Costless Way to Increase Equity A Costless Way to Increase Equity Raphael Flore October 27, 2016 Abstract This paper complements stanar theories of optimal capital structure by allowing firms to invest in the financial markets in which

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Integer Exponents. Examples: 5 3 = = 125, Powers You Should Know

Integer Exponents. Examples: 5 3 = = 125, Powers You Should Know Algebra of Exponents Mastery of the laws of exponents is essential to succee in Calculus. We begin with the simplest case: 200 Doug MacLean Integer Exponents Suppose n is a positive integer. Then a n is

More information