4 Martingales in Discrete-Time

Size: px
Start display at page:

Download "4 Martingales in Discrete-Time"

Transcription

1 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1 for n = 0, 1, 2,.... In other words, a filtration is an increasing sequence of sub-σ-algebras of F. For notational convenience, we define ( F = σ F n and note that F F. Definition 4.2. If F = {F n, n = 0, 1,...} is a filtration, and X = {X n, n = 0, 1,...} is a discrete-time stochastic process, then X is said to be adapted to F if X n is F n -measurable for each n. Note that by definition every process {X n, n = 0, 1,...} is adapted to its natural filtration {F n, n = 0, 1,...} where F n = σ(x 0,..., X n. The intuition behind the idea of a filtration is as follows. At time n, all of the information about ω Ω that is known to us at time n is contained in F n. As n increases, our knowledge of ω also increases (or, if you prefer, does not decrease and this is captured in the fact that the filtration consists of an increasing sequence of sub-σ-algebras. Definition 4.3. A discrete-time stochastic process X = {X n, n = 0, 1,...} is called a martingale (with respect to the filtration F = {F n, n = 0, 1,...} if for each n = 0, 1, 2,..., n=1 (a X is adapted to F; that is, X n is F n -measurable, (b X n is in L 1 ; that is, E X n <, and (c E(X n+1 F n = X n a.s. From this definition, we can immediately conclude the following useful facts. Theorem 4.4. Suppose that X = {X n, n = 0, 1,...} is a martingale with respect to F. (i E(X n = E(X 0 for each n = 0, 1, 2,.... (ii E(X n F m = X m for every non-negative integer m n. Proof. We begin first with the proof of (ii. Suppose that for a given n and m, we write n = m + k. Since F = {F n, n = 0, 1,...} is a filtration, repeated use of the tower property of conditional expectation gives E(X n F m = E(E(X n F n 1 F m = E(X n 1 F m = E(E(X n 1 F n 2 F m = E(X n 2 F m. = E(E(X n (k 2 F n (k 1 F m = E(X n (k 1 F m = E(X m+1 F m = X m. 1

2 As for (i, we see that taking m = 0 in (ii gives E(X n F 0 = X 0. Thus taking expectations we find E(X n = E(E(X n F 0 = E(X 0 completing the proof. Remark. Some authors use part (ii of the previous theorem in the definition of martingale in place of our (c. For those authors, part (c then follows as an easy corollary of (ii in the definition, just as for us (ii followed as an easy corollary to our part (c. 4.1 Examples of martingales Example 4.5. Suppose that X 1, X 2,... is a sequence of independent random variables with E X i < and E(X i = 0 for each i. Let F 0 = {, Ω}, and for n 1 set F n = σ(x 1,..., X n so that F = {F n, n = 0, 1,...} is a filtration. Define the stochastic process S by setting S 0 = 0, and n S n = X i, n 1. To show that S = {S n, n = 0, 1,...} is a martingale with respect to F we need to verify the three parts of the definition. Clearly S n is F n -measurable, and by assumption E S n n E X i <. Furthermore, since S n is F n -measurable, and since X n+1 is independent of F n, we conclude E(S n+1 F n = E(X n+1 + S n F n = E(X n+1 F n + E(S n F n = E(X n+1 + S n = S n. Taken together these show that S is a martingale with respect to F. Note that in this case E(S n = E(S 0 = 0 for each n. Example 4.6. As a slight generalization of the previous example, suppose that Z is a random variable in L 1 which is independent of X 1, X 2,.... Set X 0 = Z, and for n = 0, 1, 2,..., take F n = σ(x 0,..., X n and set n S n = X i. i=0 It follows as in the previous example that S is a martingale with respect to F = {F n, n = 0, 1,...}, except this time E(S n = E(S 0 = E(Z which need not equal 0. Example 4.7. Suppose that S is as in Example 4.5, except assume further that E(X 2 i < for each i. We show that Y = {S 2 n, n = 0, 1, 2,...} is not a martingale with respect to F. Although Y n = S 2 n is F n -measurable, and for each n 1, E Y n = E(S 2 n = n E(Xi 2 <, 2

3 we claim that E(Y n+1 F n Y n. Since X n+1 is independent of F n, and since S n is F n - measurable, it follows that E(Y n+1 F n = E(S 2 n+1 F n = E((S n+1 S n + S n 2 F n = E((S n+1 S n 2 F n 2E(S n (S n+1 S n F n + E(S 2 n F n = E(X 2 n+1 F n 2E(X n+1 S n F n + E(S 2 n F n = E(X 2 n+1 2S n E(X n+1 + S 2 n = S 2 n = 1 + Y n Although Y n is not a martingale, we see that Z n = S 2 n n is a martingale since E(Z n+1 F n = E(S 2 n+1 F n (n + 1 = 1 + S 2 n (n + 1 = S 2 n n = Z n. Example 4.8. Suppose that X 1, X 2,... is a sequence of independent, non-negative random variables with E(X i = 1 for each i. Let F 0 = {, Ω}, and for n 1 set F n = σ(x 1,..., X n so that F = {F n, n = 0, 1,...} is a filtration. Define the stochastic process M by setting M 0 = 1, and M n = X i, n 1. To show that M = {M n, n = 0, 1,...} is a martingale with respect to F we need to verify the three parts of the definition. Clearly M n is F n -measurable, and by assumption E M n = E X i = E(X i = 1 <. Furthermore, since M n is F n -measurable, and since M n+1 is independent of F n, we conclude E(M n+1 F n = E(X n+1 M n F n = M n E(X n+1 F n = M n E(X n+1 = M n 1 = M n. Taken together these show that M is a martingale with respect to F. Note that in this case E(M n = E(M 0 = 1 for each n. Example 4.9. Suppose that (Ω, F, P is a probability space, F = {F n, n = 0, 1,...} is a filtration, and Y : Ω R is a random variable in L 1. Define the stochastic process X = {X n, n = 0, 1,...} by setting X n = E(Y F n for each n = 0, 1, 2,.... The definition of conditional expectation allows us to immediately conclude that X n is F n -measurable, and from the conditional version of Jensen s inequality we have E X n = E E(Y F n E(E( Y F n = E Y < so that X n L 1 for each n. Furthermore, the tower property of conditional expectation gives E(X n+1 F n = E((E(Y F n+1 F n = E(Y F n = X n which shows that X is a martingale with respect to F. 3

4 4.2 Stopping Times Definition A random variable T : Ω N {+ } is called a stopping time if {T n} F n for every n = 0, 1, 2,.... Notice that the filtration F = {F n, n = 0, 1,...} is an integrable part of the definition. It is useful to think of a stopping time as the first time that a given random event happens with the convention that T = + if it never happens. If T is a stopping time, and X = {X n, n = 0, 1,...} is a stochastic process, then define the random variable X T as X T (ω (ω. Example Suppose that S is a simple random walk on Z, and let T be the first time that S n = 4. That is, { min{n 0 : S n = 4}, if S n = 4 for some n N, T = +, otherwise, for in other words, T (ω = inf{n 0 : S n (ω = 4}. (By writing inf, we stress that we follow the convention that the infimum of the empty set is +. In particular, {T n} = {S k = 4} F n where {S k = 4} F k F n for k n because {F n, n = 0, 1,...} is a filtration. Hence, it follows that T is a stopping time. Definition A stopping time T is said to be bounded if there exists a constant C < such that P(T C = 1, and is said to be finite a.s. if P(T < = 1. Note that a bounded stopping time is necessarily finite a.s., although the converse need not be true. For example, consider repeatedly flipping a fair coin, and let T denote the first time a head is observed. Then T is finite a.s. but there is no C such that P(T C = 1. Indeed, P(T C P(T C = 1 2 C < 1 for any constant C <. Definition If T is a stopping time, then the stopping time σ-algebra F T is defined as F T = {A F : A {T n} F n Exercise Show that F T is, in fact, a σ-algebra. n}. Theorem A random variable T : Ω N {+ } is a stopping time if and only if {T = n} F n for each n = 0, 1, 2,.... Proof. Suppose that T is a stopping time so that {T n} F n for each n. In particular, {T n 1} F n 1 F n since F = {F n, n = 0, 1,...} is a filtration so that {T = n} = {T n} {T n 1} c F n. On the other hand, if {T = n} F n for each n, then {T = j} F j F n for each j n since F is a filtration. Therefore, {T n} = {T = j} F n so that T is a stopping time. j=0 4

5 Theorem If X = {X n, n = 0, 1,...} is a discrete-time stochastic process, and T is a stopping time, then the random variable X T is F T -measurable. Proof. In order to prove that X T is F T -measurable we must show that {X T B} F T for every Borel set B B(R. In other words, we must show that {X T B} {T n} F n for every n. Since {X T B} {T n} = ({X T B} {T = k} = ({X k B} {T = k} and since {X k B} {T = k} F k F n for every k n, we conclude that X T is F T -measurable as required. Exercise If T is a stopping time, show that T is F T -measurable. Recall from Theorem 4.4 that if X = {X n, n = 0, 1,...} is a martingale, then for fixed times n = 0, 1, 2,... it follows that E(X n = E(X 0. However, our goal is to determine when E(X T = E(X 0 for random times T. Even when the random time T is a stopping time, this conclusion is not immediate as the following simple example shows. Example If S is a simple random walk on Z, and T = inf{n 0 : S n = 4} as in Example 4.11, then clearly S T = 4 so that E(S T = 4. Since E(S 0 = 0, we conclude that E(S T E(S 0. Theorem If T is a bounded stopping time, and X = {X n, n = 0, 1,...} is a martingale, then E(X T = E(X 0. Proof. Since T is a bounded stopping time, we may assume without loss of generality that T is bounded by N for some positive integer N. To begin, note that X T can be written as X T (ω (ω = X n (ω1 {T (ω=n}. Since X is a martingale, we conclude that ( ( N E(X T = E X n 1 {T =n} = E X n 1 {T =n} = = N E(E(X N F n 1 {T =n} = ( N ( = E X N 1 {T =n} = E N E(X n 1 {T =n} N E(E(X N 1 {T =n} F n = X N N where the last equality followed from Theorem 4.4. N E(X N 1 {T =n} 1 {T =n} = E(X N = E(X 0 5

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

The Infinite Actuary s. Detailed Study Manual for the. QFI Core Exam. Zak Fischer, FSA CERA

The Infinite Actuary s. Detailed Study Manual for the. QFI Core Exam. Zak Fischer, FSA CERA The Infinite Actuary s Detailed Study Manual for the QFI Core Exam Zak Fischer, FSA CERA Spring 2018 & Fall 2018 QFI Core Sample Detailed Study Manual You have downloaded a sample of our QFI Core detailed

More information

Mathematical Finance in discrete time

Mathematical Finance in discrete time Lecture Notes for Mathematical Finance in discrete time University of Vienna, Faculty of Mathematics, Fall 2015/16 Christa Cuchiero University of Vienna christa.cuchiero@univie.ac.at Draft Version June

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration Lecture 14: Examples of Martingales and Azuma s Inequality A Short Summary of Bounds I Chernoff (First Bound). Let X be a random variable over {0, 1} such that P [X = 1] = p and P [X = 0] = 1 p. n P X

More information

5.7 Probability Distributions and Variance

5.7 Probability Distributions and Variance 160 CHAPTER 5. PROBABILITY 5.7 Probability Distributions and Variance 5.7.1 Distributions of random variables We have given meaning to the phrase expected value. For example, if we flip a coin 100 times,

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

MTH The theory of martingales in discrete time Summary

MTH The theory of martingales in discrete time Summary MTH 5220 - The theory of martingales in discrete time Summary This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second giving a number of

More information

In Discrete Time a Local Martingale is a Martingale under an Equivalent Probability Measure

In Discrete Time a Local Martingale is a Martingale under an Equivalent Probability Measure In Discrete Time a Local Martingale is a Martingale under an Equivalent Probability Measure Yuri Kabanov 1,2 1 Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 253 Besançon,

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

Derivatives Pricing and Stochastic Calculus

Derivatives Pricing and Stochastic Calculus Derivatives Pricing and Stochastic Calculus Romuald Elie LAMA, CNRS UMR 85 Université Paris-Est Marne-La-Vallée elie @ ensae.fr Idris Kharroubi CEREMADE, CNRS UMR 7534, Université Paris Dauphine kharroubi

More information

Discrete time interest rate models

Discrete time interest rate models slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part II József Gáll University of Debrecen, Faculty of Economics Nov. 2012 Jan. 2013, Ljubljana Introduction to discrete

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

3 Arbitrage pricing theory in discrete time.

3 Arbitrage pricing theory in discrete time. 3 Arbitrage pricing theory in discrete time. Orientation. In the examples studied in Chapter 1, we worked with a single period model and Gaussian returns; in this Chapter, we shall drop these assumptions

More information

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Akimichi Takemura, Univ. of Tokyo March 31, 2008 1 Outline: A.Takemura 0. Background and our contributions

More information

1 Math 797 FM. Homework I. Due Oct. 1, 2013

1 Math 797 FM. Homework I. Due Oct. 1, 2013 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Math 797 FM. Homework I.

More information

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio Arbitrage of the first kind and filtration enlargements in semimartingale financial models Beatrice Acciaio the London School of Economics and Political Science (based on a joint work with C. Fontana and

More information

6: MULTI-PERIOD MARKET MODELS

6: MULTI-PERIOD MARKET MODELS 6: MULTI-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) 6: Multi-Period Market Models 1 / 55 Outline We will examine

More information

3.2 No-arbitrage theory and risk neutral probability measure

3.2 No-arbitrage theory and risk neutral probability measure Mathematical Models in Economics and Finance Topic 3 Fundamental theorem of asset pricing 3.1 Law of one price and Arrow securities 3.2 No-arbitrage theory and risk neutral probability measure 3.3 Valuation

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest Plan Martingales 1. Basic Definitions 2. Examles 3. Overview of Results Reading: G&S Section 12.1-12.4 Next Time: More Martingales Midterm Exam: Tuesday 28 March in class Samle exam roblems ( Homework

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Maximum Contiguous Subsequences

Maximum Contiguous Subsequences Chapter 8 Maximum Contiguous Subsequences In this chapter, we consider a well-know problem and apply the algorithm-design techniques that we have learned thus far to this problem. While applying these

More information

Theoretical Statistics. Lecture 4. Peter Bartlett

Theoretical Statistics. Lecture 4. Peter Bartlett 1. Concentration inequalities. Theoretical Statistics. Lecture 4. Peter Bartlett 1 Outline of today s lecture We have been looking at deviation inequalities, i.e., bounds on tail probabilities likep(x

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Consistency of option prices under bid-ask spreads

Consistency of option prices under bid-ask spreads Consistency of option prices under bid-ask spreads Stefan Gerhold TU Wien Joint work with I. Cetin Gülüm MFO, Feb 2017 (TU Wien) MFO, Feb 2017 1 / 32 Introduction The consistency problem Overview Consistency

More information

Notes on the symmetric group

Notes on the symmetric group Notes on the symmetric group 1 Computations in the symmetric group Recall that, given a set X, the set S X of all bijections from X to itself (or, more briefly, permutations of X) is group under function

More information

1 Consumption and saving under uncertainty

1 Consumption and saving under uncertainty 1 Consumption and saving under uncertainty 1.1 Modelling uncertainty As in the deterministic case, we keep assuming that agents live for two periods. The novelty here is that their earnings in the second

More information

Keeping Your Options Open: An Introduction to Pricing Options

Keeping Your Options Open: An Introduction to Pricing Options The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 Keeping Your Options Open: An Introduction to Pricing Options Ryan F. Snyder The College of Wooster, rsnyder14@wooster.edu

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Steve Dunbar Due Mon, October 5, 2009 1. (a) For T 0 = 10 and a = 20, draw a graph of the probability of ruin as a function

More information

Stochastic Calculus for Finance Brief Lecture Notes. Gautam Iyer

Stochastic Calculus for Finance Brief Lecture Notes. Gautam Iyer Stochastic Calculus for Finance Brief Lecture Notes Gautam Iyer Gautam Iyer, 17. c 17 by Gautam Iyer. This work is licensed under the Creative Commons Attribution - Non Commercial - Share Alike 4. International

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

3 The Model Existence Theorem

3 The Model Existence Theorem 3 The Model Existence Theorem Although we don t have compactness or a useful Completeness Theorem, Henkinstyle arguments can still be used in some contexts to build models. In this section we describe

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Optimal Stopping Rules of Discrete-Time Callable Financial Commodities with Two Stopping Boundaries

Optimal Stopping Rules of Discrete-Time Callable Financial Commodities with Two Stopping Boundaries The Ninth International Symposium on Operations Research Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 215 224 Optimal Stopping Rules of Discrete-Time

More information

Strong normalisation and the typed lambda calculus

Strong normalisation and the typed lambda calculus CHAPTER 9 Strong normalisation and the typed lambda calculus In the previous chapter we looked at some reduction rules for intuitionistic natural deduction proofs and we have seen that by applying these

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

- Introduction to Mathematical Finance -

- Introduction to Mathematical Finance - - Introduction to Mathematical Finance - Lecture Notes by Ulrich Horst The objective of this course is to give an introduction to the probabilistic techniques required to understand the most widely used

More information

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models

MATH 5510 Mathematical Models of Financial Derivatives. Topic 1 Risk neutral pricing principles under single-period securities models MATH 5510 Mathematical Models of Financial Derivatives Topic 1 Risk neutral pricing principles under single-period securities models 1.1 Law of one price and Arrow securities 1.2 No-arbitrage theory and

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

CONDITIONAL EXPECTATION AND MARTINGALES

CONDITIONAL EXPECTATION AND MARTINGALES Chapter 7 CONDITIONAL EXPECTATION AND MARTINGALES 7.1 Conditional Expectation. Throughout this section we will assume that random variables X are defined on a probability space (Ω, F,P) and have finite

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

An Application of Ramsey Theorem to Stopping Games

An Application of Ramsey Theorem to Stopping Games An Application of Ramsey Theorem to Stopping Games Eran Shmaya, Eilon Solan and Nicolas Vieille July 24, 2001 Abstract We prove that every two-player non zero-sum deterministic stopping game with uniformly

More information

Remarks on Probability

Remarks on Probability omp2011/2711 S1 2006 Random Variables 1 Remarks on Probability In order to better understand theorems on average performance analyses, it is helpful to know a little about probability and random variables.

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Mixed Strategies. In the previous chapters we restricted players to using pure strategies and we

Mixed Strategies. In the previous chapters we restricted players to using pure strategies and we 6 Mixed Strategies In the previous chapters we restricted players to using pure strategies and we postponed discussing the option that a player may choose to randomize between several of his pure strategies.

More information

Constructive martingale representation using Functional Itô Calculus: a local martingale extension

Constructive martingale representation using Functional Itô Calculus: a local martingale extension Mathematical Statistics Stockholm University Constructive martingale representation using Functional Itô Calculus: a local martingale extension Kristoffer Lindensjö Research Report 216:21 ISSN 165-377

More information

A utility maximization proof of Strassen s theorem

A utility maximization proof of Strassen s theorem Introduction CMAP, Ecole Polytechnique Paris Advances in Financial Mathematics, Paris January, 2014 Outline Introduction Notations Strassen s theorem 1 Introduction Notations Strassen s theorem 2 General

More information

Why Bankers Should Learn Convex Analysis

Why Bankers Should Learn Convex Analysis Jim Zhu Western Michigan University Kalamazoo, Michigan, USA March 3, 2011 A tale of two financial economists Edward O. Thorp and Myron Scholes Influential works: Beat the Dealer(1962) and Beat the Market(1967)

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Rational Behaviour and Strategy Construction in Infinite Multiplayer Games

Rational Behaviour and Strategy Construction in Infinite Multiplayer Games Rational Behaviour and Strategy Construction in Infinite Multiplayer Games Michael Ummels ummels@logic.rwth-aachen.de FSTTCS 2006 Michael Ummels Rational Behaviour and Strategy Construction 1 / 15 Infinite

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +...

( 0) ,...,S N ,S 2 ( 0)... S N S 2. N and a portfolio is created that way, the value of the portfolio at time 0 is: (0) N S N ( 1, ) +... No-Arbitrage Pricing Theory Single-Period odel There are N securities denoted ( S,S,...,S N ), they can be stocks, bonds, or any securities, we assume they are all traded, and have prices available. Ω

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Statistics 441 Stochastic Calculus with Applications to Finance Lecture Notes Winter 9 Michael Kozdron kozdron@stat.math.uregina.ca http://stat.math.uregina.ca/ kozdron List of Lectures

More information

Expected Value and Variance

Expected Value and Variance Expected Value and Variance MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the definition of expected value, how to calculate the expected value of a random

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero Introduction to Stochastic Calculus and Financial Derivatives Simone Calogero December 7, 215 Preface Financial derivatives, such as stock options for instance, are indispensable instruments in modern

More information

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES

INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES INTRODUCTION TO ARBITRAGE PRICING OF FINANCIAL DERIVATIVES Marek Rutkowski Faculty of Mathematics and Information Science Warsaw University of Technology 00-661 Warszawa, Poland 1 Call and Put Spot Options

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives

Forward Risk Adjusted Probability Measures and Fixed-income Derivatives Lecture 9 Forward Risk Adjusted Probability Measures and Fixed-income Derivatives 9.1 Forward risk adjusted probability measures This section is a preparation for valuation of fixed-income derivatives.

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing

No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing No-arbitrage Pricing Approach and Fundamental Theorem of Asset Pricing presented by Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology 1 Parable of the bookmaker Taking

More information

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition. The Real Numbers Here we show one way to explicitly construct the real numbers R. First we need a definition. Definitions/Notation: A sequence of rational numbers is a funtion f : N Q. Rather than write

More information

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures

Fundamental Theorems of Asset Pricing. 3.1 Arbitrage and risk neutral probability measures Lecture 3 Fundamental Theorems of Asset Pricing 3.1 Arbitrage and risk neutral probability measures Several important concepts were illustrated in the example in Lecture 2: arbitrage; risk neutral probability

More information

INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH

INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH INSURANCE VALUATION: A COMPUTABLE MULTI-PERIOD COST-OF-CAPITAL APPROACH HAMPUS ENGSNER, MATHIAS LINDHOLM, AND FILIP LINDSKOG Abstract. We present an approach to market-consistent multi-period valuation

More information