Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Size: px
Start display at page:

Download "Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence"

Transcription

1 Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n Y almost surely as n. Y has a finite mean if E Y 0 < Y n Y in mean if the sequence {Y n : n 0} is uniformly integrable. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <.

2 Consequences If (Y, F) is either a non-negative supermartingale or a non-positive submartingale then Y = lim n Y n exists almost surely Submartingale and Supermartingale E Y n < E(Y n+1 F n ) Y n submartingale E(Y n+1 F n ) Y n supermartingale

3 De Moivre s martingale convergence (Ferrary Example) Convergence of Y n = (q/p) Sn (martingale) X 1,..., X n with X i {1, 1} with P(X i = 1) = p P(X i = 1) = q. S n = n i+1 X i fortune at time n.

4 De Moivre s martingale convergency Y n = (q/p) Sn is a non-negative martingale = Y = lim n Y n exists almost surely. If p = q Y n = 1 for all n. If p q????

5 Upcrossings Given a sequence of real numbers y = {y n : n 0} and [a, b] a real interval. Upcrossing: a crossing by y of [a, b] in the upwards direction.

6 Upcrossings definition Let Y = {y n : n 0} be a real sequence and [a, b] a real interval. Upcrossing of [a,b]: Is an up crossing by y of [a, b] T 1 = min{n : y n a} First time that y hits (, a]. T 2 = min{n > T 1 : y n b} next time that y hits [b, ). [T 1, T 2 ] is an upcrossing of [a,b] Upcrossing for k 2 T 2k 1 = min{n > T 2k 2 : y n a} T 2k = min{n > T 2k 1 : y n b} In general [T 2k 1, T 2k ] is an upcrossing of [a,b] for k 1

7 Number of upcrossings U n (a, b; y) is the number of upcrossings of [a, b] by the sequence y 0, y 1,..., y n. Total number of upcrossings of [a, b] by y U(a, b; y) = lim n U n (a, b; y)

8 Upper bound for number of upcrossings Upccrossings inequality If a < b then EU n (a, b; Y ) E((Yn a)+ ) b a Bound for the number of upcrossings for a martingale sequence key point to proof the convergence martingale theorem.

9 Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n Y almost surely as n. Y has a finite mean if E Y 0 < Y n Y in mean if the sequence {Y n : n 0} is uniformly integrable.

10 Doob s martingale convergency Doob s martingale Y n = E(Z F n ) Let Z be a random variable on (Ω, F, P) such that E Z <. Let F, = {F 0, F 1,...} be a filtration with F = lim n F n F to be the smallest σ-algebra containing every F n.

11 Doob s martingale convergence Doob s martingale Y n = E(Z F n ) The pair (Y, F) is a martingale and since E Y n < then, by the Martingale convergence theorem, there exist Y such that almost surely as n. Y n Y

12 Doob s martingale convergence In addition, if {Y n } is a uniformly integrable sequence. Y n Y in mean as n by the Convergence Martingale Theorem. sup n E( Y n I { Yn a}}) 0 as a

13 Doob s martingale convergence Martingale convergence Theorem Y n Y a.s and in mean. What is the limit Y? Y = E(Z F ) Let N positive integer and A F N. {Y n : n 0} uniformly integrable. {Y n I A : n N}uniformly integrable. E(Y n IA) E(Y IA) for all A F N (Th 3 page 351). E(Y n I A ) = E(Y N I A ) = E(ZI A ) for all n N and A F N E(ZI A ) = E(Y I A ) E((Z Y )I A ) = 0 as N for all A F Y = E(Z F ).

14 Theorem Theorem Let (Y, F) be a martingale then Y n converges in mean if and only if there exist a random variable Z with E(Z) < such that Y n = E(Z F n ) If Y n Y in mean then Y n = E(Y F n ) If such random variable Z exists we say that the martingale (Y, F) is closed.

15 Zero-One Law Consider X 0, X 1,... independent random variables. T = n H n tail σ-algebra with H n = σ(x n, X n+1,...) Claim: For all A T either P(A) = 0 or P(A) = 1 Let A T and we define Y n = E(I A F n ) with F n = σ(x 1, X 2,... X n ). A T F = lim n F n Y n E(I A F ) = I A a.s and in mean. Y n = E(I A F n ) = P(A) since A T is independent of the events in F n Then P(A) = I A almost surely P(A) = 0 or P(A) = 1.

16 Dubins s inequality Dubins s inequality Let (Y, F) be a non-negative supermartingale. Then P(U n (a, b; Y ) j) (a/b) j E(min{1, Y 0 /a}) for 0 a b and j 0. Summing over j upccrossing inequality. E(U n (a, b; Y ) a/(b a)e(min{1, Y 0 /a})

17 Maximal inequality Let Y n = max{y i : 0 i n} Theorem If (Y, F) is a submartingale then P(Yn x) E(Y n + ) for x > 0 x If (Y, F) is a supermartingale and E Y 0 < then P(Y n x) E(Y 0) + E(Y n ) x for x > 0 Doob-Kolmogorov inequality Kolmogorov s inequality

18 Stopping Times or Markov Times Stopping time A random variable T taking values in {0, 1, 2, } { } is called a stopping time with respect to the filtration F if {T = n} F n for all n 0 {T > n} = {T n} c F n for all n since F is a filtration. T are not require to be finite.

19 Notation Given a filtraton F and a stopping time T. Then F T the collection of all events A such that A {T n} F n fo all n. F T is a σ-algebra representing the set of events whose occurrence or non-occurrence is known by time T.

20 Example We toss a fair coin repetedly. T the time of the first head Let X i = number of heads on the i th toss {T = n} = {X n = 1, X j = 0, 1 j < n} F n with F n = σ(x 1, X 2,..., X n ). T is a stopping time. T is finite almost surely.

21 Stopping and martingales A martingale which is stopped at a random time T remains a martingale as long as T is stopping time! Theorem Let (Y, F) be a submartingale and let T be an stopping time (with respect to F ). Then (Z n, F) defined as is a submartingale. x y = minx, y Z n = Y T n If (Y, F) submartingale submartingale and a supermartingale Y T n is a supermartingale.

22 Switching time A possible strategy of a gambler in a casino is to change games. If he is playing fair games then there should not gain or lose (on average) at such a change... Let (X, F) and let (Y, F) be two martingales with respect to the filtration F. T be a stopping time with respect to F. T is switching time from X to Y and X T is the capital-fortune which is carried forward.

23 Optional switching Suppose { that X T = Y T on the event {T < }. Then Xn if n < T Z n = if n T Y n defines a martingale with respect to F. Changing games, if both of them are fair, will not increase our loses or gains!!

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 13, 2009 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Akimichi Takemura, Univ. of Tokyo March 31, 2008 1 Outline: A.Takemura 0. Background and our contributions

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

MTH The theory of martingales in discrete time Summary

MTH The theory of martingales in discrete time Summary MTH 5220 - The theory of martingales in discrete time Summary This document is in three sections, with the first dealing with the basic theory of discrete-time martingales, the second giving a number of

More information

Probability, Price, and the Central Limit Theorem. Glenn Shafer. Rutgers Business School February 18, 2002

Probability, Price, and the Central Limit Theorem. Glenn Shafer. Rutgers Business School February 18, 2002 Probability, Price, and the Central Limit Theorem Glenn Shafer Rutgers Business School February 18, 2002 Review: The infinite-horizon fair-coin game for the strong law of large numbers. The finite-horizon

More information

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is

Math 180A. Lecture 5 Wednesday April 7 th. Geometric distribution. The geometric distribution function is Geometric distribution The geometric distribution function is x f ( x) p(1 p) 1 x {1,2,3,...}, 0 p 1 It is the pdf of the random variable X, which equals the smallest positive integer x such that in a

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

CONDITIONAL EXPECTATION AND MARTINGALES

CONDITIONAL EXPECTATION AND MARTINGALES Chapter 7 CONDITIONAL EXPECTATION AND MARTINGALES 7.1 Conditional Expectation. Throughout this section we will assume that random variables X are defined on a probability space (Ω, F,P) and have finite

More information

Sidney I. Resnick. A Probability Path. Birkhauser Boston Basel Berlin

Sidney I. Resnick. A Probability Path. Birkhauser Boston Basel Berlin Sidney I. Resnick A Probability Path Birkhauser Boston Basel Berlin Preface xi 1 Sets and Events 1 1.1 Introduction 1 1.2 Basic Set Theory 2 1.2.1 Indicator functions 5 1.3 Limits of Sets 6 1.4 Monotone

More information

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest

Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 ) available tomorrow at the latest Plan Martingales 1. Basic Definitions 2. Examles 3. Overview of Results Reading: G&S Section 12.1-12.4 Next Time: More Martingales Midterm Exam: Tuesday 28 March in class Samle exam roblems ( Homework

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut Financial Mathematics Spring 22 Richard F. Bass Department of Mathematics University of Connecticut These notes are c 22 by Richard Bass. They may be used for personal use or class use, but not for commercial

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Theoretical Statistics. Lecture 4. Peter Bartlett

Theoretical Statistics. Lecture 4. Peter Bartlett 1. Concentration inequalities. Theoretical Statistics. Lecture 4. Peter Bartlett 1 Outline of today s lecture We have been looking at deviation inequalities, i.e., bounds on tail probabilities likep(x

More information

A game-theoretic ergodic theorem for imprecise Markov chains

A game-theoretic ergodic theorem for imprecise Markov chains A game-theoretic ergodic theorem for imprecise Markov chains Gert de Cooman Ghent University, SYSTeMS gert.decooman@ugent.be http://users.ugent.be/ gdcooma gertekoo.wordpress.com GTP 2014 CIMAT, Guanajuato

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

STOCHASTIC PROCESSES IN FINANCE AND INSURANCE * Leda Minkova

STOCHASTIC PROCESSES IN FINANCE AND INSURANCE * Leda Minkova МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2009 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2009 Proceedings of the Thirty Eighth Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 1

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration

Lecture 14: Examples of Martingales and Azuma s Inequality. Concentration Lecture 14: Examples of Martingales and Azuma s Inequality A Short Summary of Bounds I Chernoff (First Bound). Let X be a random variable over {0, 1} such that P [X = 1] = p and P [X = 0] = 1 p. n P X

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

Goal Problems in Gambling Theory*

Goal Problems in Gambling Theory* Goal Problems in Gambling Theory* Theodore P. Hill Center for Applied Probability and School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 Abstract A short introduction to goal

More information

Introduction to Game-Theoretic Probability

Introduction to Game-Theoretic Probability Introduction to Game-Theoretic Probability Glenn Shafer Rutgers Business School January 28, 2002 The project: Replace measure theory with game theory. The game-theoretic strong law. Game-theoretic price

More information

Why Bankers Should Learn Convex Analysis

Why Bankers Should Learn Convex Analysis Jim Zhu Western Michigan University Kalamazoo, Michigan, USA March 3, 2011 A tale of two financial economists Edward O. Thorp and Myron Scholes Influential works: Beat the Dealer(1962) and Beat the Market(1967)

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

6 Stopping times and the first passage

6 Stopping times and the first passage 6 Stopping times and the first passage Definition 6.1. Let (F t,t 0) be a filtration of σ-algebras. Stopping time is a random variable τ with values in [0, ] and such that {τ t} F t for t 0. We can think

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Casino gambling problem under probability weighting

Casino gambling problem under probability weighting Casino gambling problem under probability weighting Sang Hu National University of Singapore Mathematical Finance Colloquium University of Southern California Jan 25, 2016 Based on joint work with Xue

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

An introduction to game-theoretic probability from statistical viewpoint

An introduction to game-theoretic probability from statistical viewpoint .. An introduction to game-theoretic probability from statistical viewpoint Akimichi Takemura (joint with M.Kumon, K.Takeuchi and K.Miyabe) University of Tokyo May 14, 2013 RPTC2013 Takemura (Univ. of

More information

Introduction to Stochastic Calculus

Introduction to Stochastic Calculus Introduction to Stochastic Calculus Director Chennai Mathematical Institute rlk@cmi.ac.in rkarandikar@gmail.com Introduction to Stochastic Calculus - 1 A Game Consider a gambling house. A fair coin is

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

MATH/STAT 3360, Probability FALL 2012 Toby Kenney

MATH/STAT 3360, Probability FALL 2012 Toby Kenney MATH/STAT 3360, Probability FALL 2012 Toby Kenney In Class Examples () August 31, 2012 1 / 81 A statistics textbook has 8 chapters. Each chapter has 50 questions. How many questions are there in total

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 4 Steve Dunbar Due Mon, October 5, 2009 1. (a) For T 0 = 10 and a = 20, draw a graph of the probability of ruin as a function

More information

Finite Additivity in Dubins-Savage Gambling and Stochastic Games. Bill Sudderth University of Minnesota

Finite Additivity in Dubins-Savage Gambling and Stochastic Games. Bill Sudderth University of Minnesota Finite Additivity in Dubins-Savage Gambling and Stochastic Games Bill Sudderth University of Minnesota This talk is based on joint work with Lester Dubins, David Heath, Ashok Maitra, and Roger Purves.

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

A GENERALIZED MARTINGALE BETTING STRATEGY

A GENERALIZED MARTINGALE BETTING STRATEGY DAVID K. NEAL AND MICHAEL D. RUSSELL Astract. A generalized martingale etting strategy is analyzed for which ets are increased y a factor of m 1 after each loss, ut return to the initial et amount after

More information

1 Math 797 FM. Homework I. Due Oct. 1, 2013

1 Math 797 FM. Homework I. Due Oct. 1, 2013 The first part is homework which you need to turn in. The second part is exercises that will not be graded, but you need to turn it in together with the take-home final exam. 1 Math 797 FM. Homework I.

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

Derivatives Pricing and Stochastic Calculus

Derivatives Pricing and Stochastic Calculus Derivatives Pricing and Stochastic Calculus Romuald Elie LAMA, CNRS UMR 85 Université Paris-Est Marne-La-Vallée elie @ ensae.fr Idris Kharroubi CEREMADE, CNRS UMR 7534, Université Paris Dauphine kharroubi

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Binomial Distribution and Discrete Random Variables

Binomial Distribution and Discrete Random Variables 3.1 3.3 Binomial Distribution and Discrete Random Variables Prof. Tesler Math 186 Winter 2017 Prof. Tesler 3.1 3.3 Binomial Distribution Math 186 / Winter 2017 1 / 16 Random variables A random variable

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam

Discrete Mathematics for CS Spring 2008 David Wagner Final Exam CS 70 Discrete Mathematics for CS Spring 2008 David Wagner Final Exam PRINT your name:, (last) SIGN your name: (first) PRINT your Unix account login: Your section time (e.g., Tue 3pm): Name of the person

More information

The value of foresight

The value of foresight Philip Ernst Department of Statistics, Rice University Support from NSF-DMS-1811936 (co-pi F. Viens) and ONR-N00014-18-1-2192 gratefully acknowledged. IMA Financial and Economic Applications June 11, 2018

More information

On Utility Based Pricing of Contingent Claims in Incomplete Markets

On Utility Based Pricing of Contingent Claims in Incomplete Markets On Utility Based Pricing of Contingent Claims in Incomplete Markets J. Hugonnier 1 D. Kramkov 2 W. Schachermayer 3 March 5, 2004 1 HEC Montréal and CIRANO, 3000 Chemin de la Côte S te Catherine, Montréal,

More information

Computable randomness and martingales a la probability theory

Computable randomness and martingales a la probability theory Computable randomness and martingales a la probability theory Jason Rute www.math.cmu.edu/ jrute Mathematical Sciences Department Carnegie Mellon University November 13, 2012 Penn State Logic Seminar Something

More information

Mathematical Finance in discrete time

Mathematical Finance in discrete time Lecture Notes for Mathematical Finance in discrete time University of Vienna, Faculty of Mathematics, Fall 2015/16 Christa Cuchiero University of Vienna christa.cuchiero@univie.ac.at Draft Version June

More information

MATH/STAT 3360, Probability FALL 2013 Toby Kenney

MATH/STAT 3360, Probability FALL 2013 Toby Kenney MATH/STAT 3360, Probability FALL 2013 Toby Kenney In Class Examples () September 6, 2013 1 / 92 Basic Principal of Counting A statistics textbook has 8 chapters. Each chapter has 50 questions. How many

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 126 Spring 2006 Final Exam Wednesday, May 17, 8am 11am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 180 minutes to complete the final. The final consists of

More information

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice

Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice Section 8.5: Expected Value and Variance Have you ever wondered whether it would be worth it to buy a lottery ticket every week, or pondered on questions such as If I were offered a choice between a million

More information

Remarks on Probability

Remarks on Probability omp2011/2711 S1 2006 Random Variables 1 Remarks on Probability In order to better understand theorems on average performance analyses, it is helpful to know a little about probability and random variables.

More information

The Simple Random Walk

The Simple Random Walk Chapter 8 The Simple Random Walk In this chapter we consider a classic and fundamental problem in random processes; the simple random walk in one dimension. Suppose a walker chooses a starting point on

More information

Lesson 3: Basic theory of stochastic processes

Lesson 3: Basic theory of stochastic processes Lesson 3: Basic theory of stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Probability space We start with some

More information

University of Regina. Lecture Notes. Michael Kozdron

University of Regina. Lecture Notes. Michael Kozdron University of Regina Statistics 441 Stochastic Calculus with Applications to Finance Lecture Notes Winter 9 Michael Kozdron kozdron@stat.math.uregina.ca http://stat.math.uregina.ca/ kozdron List of Lectures

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making

Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making Case Study: Heavy-Tailed Distribution and Reinsurance Rate-making May 30, 2016 The purpose of this case study is to give a brief introduction to a heavy-tailed distribution and its distinct behaviors in

More information

MORE REALISTIC FOR STOCKS, FOR EXAMPLE

MORE REALISTIC FOR STOCKS, FOR EXAMPLE MARTINGALES BASED ON IID: ADDITIVE MG Y 1,..., Y t,... : IID EY = 0 X t = Y 1 +... + Y t is MG MULTIPLICATIVE MG Y 1,..., Y t,... : IID EY = 1 X t = Y 1... Y t : X t+1 = X t Y t+1 E(X t+1 F t ) = E(X t

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Convergence of trust-region methods based on probabilistic models

Convergence of trust-region methods based on probabilistic models Convergence of trust-region methods based on probabilistic models A. S. Bandeira K. Scheinberg L. N. Vicente October 24, 2013 Abstract In this paper we consider the use of probabilistic or random models

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Bargaining and Competition Revisited Takashi Kunimoto and Roberto Serrano

Bargaining and Competition Revisited Takashi Kunimoto and Roberto Serrano Bargaining and Competition Revisited Takashi Kunimoto and Roberto Serrano Department of Economics Brown University Providence, RI 02912, U.S.A. Working Paper No. 2002-14 May 2002 www.econ.brown.edu/faculty/serrano/pdfs/wp2002-14.pdf

More information