FE 5204 Stochastic Differential Equations

Size: px
Start display at page:

Download "FE 5204 Stochastic Differential Equations"

Transcription

1 Instructor: Jim Zhu zhu/ January 13, 2009

2 Stochastic differential equations deal with continuous random processes. They are idealization of discrete stochastic processes. Discrete random process often arise in gaming problems. We use example in gaming to understand discrete case first. Our main reference for this lecture is Chapter 2 of Steele s book.

3 Disclaimer An example This lecture contains examples related to gambling and their analysis. This analysis is based on past experience and data and is not necessarily applicable to future examples. Thus, practicing the methods discussed in this lecture may result in huge financial gains or losses. The instructor will share in your profit but will absolutely take no responsibly for any of your financial losses and related emotional distresses.

4 The game An example Tossing a coin A discrete stochastic process Information Bet on flipping a fair coin. Head: the house will double your bet. Tail: you lose your bet to the house.

5 A discrete stochastic process Tossing a coin A discrete stochastic process Information Play the game i times and always bet 1. Denote the outcome of the ith game by X i. Then X i is a random variable and P(X i = 1) = P(X i = 1) = 1/2. If we start with an initial endowment of w 0 then our total wealth after the ith game is w i = w 0 + X X i. (1) Now (w i ) n i=1 is an example of a discrete stochastic process.

6 Information An example Tossing a coin A discrete stochastic process Information Suppose we know X 1,...,X i. Does this help us to play the (i + 1)th game? In this case we have no reason to believe so. How do we clearly describe this conclusion? Let us look at the game with n = 3 to get some feeling. We use H to represent a head and T, tail. The information we can get at each stage can be illustrated with the following binary tree.

7 Tossing a coin A discrete stochastic process Information F 0 F 1 F 2 F 3 HHH HH HHT H HTH HT HTT {Ω} THH TH THT T TTH TT TTT

8 for 3 coin tosses Concrete case Definition of filtration Adapted random process All the information are represented by F 3 = 2 Ω,Ω = {HHH,HHT,HTH,HTT,THH,THT, TTH, TTT }. Similarly, after 2 tosses F 2 = 2 {HH,HT,TH,TT }, where {HH,HT,TH,TT } = {{HHH,HHT }, {HTH,HTT }, {THH,THT }, {TTH,TTT }}. F 2 has less information than F 3. Similarly, F 1 = 2 {H,T }, where {H,T } = {{HHH,HHT,HTH,HTT }, {THH, THT,TTH,TTT }}. F 0 = {, {Ω}}.

9 for 3 coin tosses Concrete case Definition of filtration Adapted random process The sequence is a filtration for (w i ) 3 i=0. F : F 0 F 1 F 2 F 3 For each i, F i is a set algebra, i.e., its elements as sets are closed under union, intersection and compliment.

10 General filtration An example Concrete case Definition of filtration Adapted random process Let Ω be a sample space (representing possible states of a chance event). A sequence of algebra (σ-algebra when Ω is infinite) F : F i,i = 0,1,...,n satisfying is called a filtration. F 0 F 1 F 2... F n (2) If F 0 = {Ω} and F n = Ω then F is called an information structure.

11 Adapted random process Concrete case Definition of filtration Adapted random process If a random variable such as w i relies only on information up to time i, then, for any a, (w i < a) F i. In other words, w i is F i -measurable. We say a stochastic process X = (X i ) is F-adapted if, for each i, X i is F i -measurable. The random process (w i ) in the coin toss example is F-adapted.

12 Fair game and martingale Fair game and martingale Sub and supper-martingale Examples of martingales Generating martingales Toss a fair coin is a fair game in the sense that no player has an advantage. In other words, restricted to information at (i 1)th game, the expectation of w i and w i 1 are the same. Mathematically, E[w i F i 1 ] = w i 1. (3) A stochastic process satisfying (3) is called a martingale.

13 Sub and supper-martingale Fair game and martingale Sub and supper-martingale Examples of martingales Generating martingales Change to an unfair coin with probability p 1/2 for head and 1 p for tail. We have an unfair game. when p > 1/2 (p < 1/2) we have E[w i F i 1 ] > w i 1 (E[w i F i 1 ] < w i 1 ). (4) We call such a stochastic process sub-martingale (super-martingale). It represent a game that favors the player (house).

14 Examples An example Fair game and martingale Sub and supper-martingale Examples of martingales Generating martingales 1 Let X i be independent with E[X i ] = 0 for all i. Then, S 0 = 0, S i = X X i defines a martingale. 2 Let X i be independent with E[X i ] = 0 and Var[X i ] = σ 2 for all i. Then, M 0 = 0, M i = S 2 i iσ 2 gives a martingale. 3 Let X i be independent random variables with E[X i ] = 1 for all i. Then, M 0 = 0, M i = X 1... X i gives a martingale with respect to F i.

15 Generating martingales Fair game and martingale Sub and supper-martingale Examples of martingales Generating martingales Let Y i be iid (independent identically distributed) and φ(λ) = E[exp(λY i )] <. Then X i = exp(λy i )/φ(λ) are independent and E[X i ] = 1 for all i. Then, M 0 = 1, M i = X 1... X i = exp(λ i Y k )/φ(λ) i k=1 is a martingale. In particular, if there is λ 0 0 such that φ(λ 0 ) = 1 then, for S i = ik=1 Y k, is a martingale. M i = exp(λ 0 S i )

16 The motivating question The motivating question Mathematical formulation The answer Can we take advantage of a fair game by changing the betting size?

17 transform The motivating question Mathematical formulation The answer Let us try to formulate the problem mathematically. Let (M i ) n i=1 be an F i adapted martingale representing this fair game. Denote M 0 = 0. A i is the bet for the ith game. A i has to be F i 1 -measurable called predictable (determined after the (i 1)th game). At the end of the ith game the player has w i = i A k (M k M k 1 ). (5) k=1 The new stochastic process (w i ) n i=1 is a martingale transform of (M i ) n i=0.

18 The motivating question Mathematical formulation The answer Transform Theorem A martingale transform of a martingale is again a martingale. Transform Theorem Let M i be a martingale and A i be a predictable process with respect to F i. Then the martingale transform w i = ik=1 A k(m k M k 1 ) is also a martingale. Proof. E[w i w i 1 F i 1 ] = E[A i (M i M i 1 ) F i 1 ] = A i E[M i M i 1 F i 1 ] = 0.

19 The motivating question The motivating question Mathematical formulation The answer Can we take advantage of a fair game by selecting the time of finishing the game?

20 Stopping time An example The motivating question Mathematical formulation The answer Let F = (F i ) i=0 be a filtration. A random variable τ that takes value 0,1,... and + is an F-stopping time if (τ i) F i.

21 Stopped process An example The motivating question Mathematical formulation The answer Let (X i ) i=0 be a random process. If τ < with probability 1 then we define the stopped process by τ as X τ = 1(τ = k)x k. k=0

22 Stopping Time Theorem The motivating question Mathematical formulation The answer Stopping Time Theorem A stopped martingale is again a martingale. Stopping Time Theorem Let (M i ) i=0 be an F martingale and let τ be an F-stopping time. Then (M i τ ) i=0 is a F-martingale.

23 Proof An example The motivating question Mathematical formulation The answer We may assume M 0 = 0. Write M n τ = = = n 1(τ = k)m k k=0 n (1(τ k) 1(τ k + 1))M k k=0 n 1(τ k)(m k M k 1 ). k=1 Thus, (M n τ ) is a martingale transform and, therefore, a martingale.

24 Jensen s inequality An example Jensen s inequality Generating submartingales Doob s inequality Jensen s inequality Let X be a random variable on probability space (Ω, F,P) and G is a σ-algebra contained in F. Suppose that φ is a convex function. Then φ(e[x G]) E[φ(X) G]. Jensen s inequality follows directly from the definition of a convex function.

25 Generating submartingales Jensen s inequality Generating submartingales Doob s inequality Let M i is a martingale with respect to F i, and φ is a convex function then φ(m i 1 ) = φ(e[m i F i 1 ]) E[φ(M i ) F i 1 ]. That is to say φ(m i ) is a submartingale. In particular, M i p,p 1 are submartingales.

26 Doob s Maximal inequality Jensen s inequality Generating submartingales Doob s inequality Doob s Maximal inequality Let M i be a nonnegative submartingale and λ > 0. Then λp(mi λ) E[M i 1(Mi λ)] E[M i ]. Here Mi = sup 0 j i M j.

27 Proof of Doob s inequality Jensen s inequality Generating submartingales Doob s inequality First repeatedly use submartingale inequality on M i and towel property of conditional expectation we have Second, is a stopping time and E[M j 1 A ] E[M i 1 A ], j i,a F j. (6) τ := min{j : M j λ} P(M i λ) = P(τ i).

28 Proof of Doob s inequality Jensen s inequality Generating submartingales Doob s inequality Note that on the set (τ i) we have M τ λ. Thus, i λ1(τ i) M τ 1(τ i) = M j 1(τ = j). Finally, taking expectation and using (6) we have i λp(mi λ) E[ M i 1(τ = j)] E[M i 1(Mi λ)] E[M i ]. j=0 j=0

29 theorem Let M i be a martingale with E[Mi 2 ] B <. Then there exist a random variable M with E[M ] 2 B such that P( lim i M i = M ) = 1 and lim i E[(M i M ) 2 ] = 0.

30 Proof An example Set M 0 = 0 and denote d k = M k M k 1 we have M i = ik=1 d k and i i E[Mi 2 ] = E[( d k ) 2 ] = E[dk 2 ]. k=1 k=1 So the hypothesis implies that E[dk 2 ] B. k=1

31 Proof An example Let D be the set where M i diverges. Then D = m=1 i=1 {ω : sup M k M i 1 m }. k i Using the Doob maximal inequality we have, for any i, P(sup k i M k M i 1 m ) = P(sup k i Thus, D has a measure 0. (M k M i ) 2 1 m 2) m2 E[dk 2 ]. k=i

32 Proof An example Let M be the limit of M i, we have E[(M M i ) 2 ] = E[dk 2 ]. k=i Thus, lim E[(M i M ) 2 ] = 0. i

33 Instruction An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Homework is an important part of learning SDE. Homework problems are given as exercises following each lecture and those marked with * are optional. The homework of this lecture is due on Jan 27 at the beginning of the lecture. Discussions with me or classmates are encouraged but the final work should be independently completed. I expect that you submit clear and neatly written work with careful justifications for your conclusions.

34 Exercise 1.1 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Consider a game of betting 1 dollar on a fair coin. Using random variable X i to represent the outcome of the ith game, we have P(X i = 1) = P(X i = 1) = 1/2. Suppose that we use an exit strategy of stopping the game when we either win A dollars or loss B dollars. Calculate the probability of winning and losing.

35 Exercise 1.2 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Consider a game of betting 1 dollar on a unfair coin with probability p 1/2 for head. Using random variable X i to represent the outcome of the ith game, we have P(X i = 1) = p and P(X i = 1) = q = 1 p. Let S 0 = 0, and S i = X ,+X i. Show that M i = (q/p) S i is a martingale.

36 Exercise 1.3 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Repeat Exercise 1.1 for a unfair coin with probability p 1/2 for head.

37 Exercise 1.4 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Let τ be a stopping time for the filtration F i,i = 1,2,... Show that the random process A i = 1(τ i) is predictable. Hint: 1(τ i) = 1 1(τ < i).

38 Exercise 1.5 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Let X i be iid random variables with E[X i ] = 0 and Var[X i ] = σ 2 for all i. Show that M 0 = 0, is a martingale. M i = S 2 i iσ 2

39 Exercise 1.6 An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Let M i,i = 0,1,... be a martingale with M 0 = 0 and let and d i = M i M i 1. Show that i E[Mi 2 ] = E[dk 2 ]. k=1

40 Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Exercise 1.7* (Doob s decomposition) Let M i,i = 0,1,... be a F i -martingale with E[Mi 2 ] <. Show that we can write Mi 2 = N i + A i, where (1) N i is a F i -martingale; (2) A i A i 1 i.e. A i is monotone; and (3) A i is predictable with respect to F i. Hint: Set A 0 = 0 and define A i recursively by A i+1 = A i + E[(M i+1 M i ) 2 F i ],i 1.

41 Exercise 1.8* An example Exercise 1.1 Exercise 1.2 Exercise 1.3 Exercise 1.4 Exercise 1.5 Exercise 1.6 Exercise 1.7* Exercise 1.8* Let M i,i = 0,1,... be a subartingale and let τ and ν be bounded stopping time such that ν τ. Show that E[M ν ] E[M τ ].

Why Bankers Should Learn Convex Analysis

Why Bankers Should Learn Convex Analysis Jim Zhu Western Michigan University Kalamazoo, Michigan, USA March 3, 2011 A tale of two financial economists Edward O. Thorp and Myron Scholes Influential works: Beat the Dealer(1962) and Beat the Market(1967)

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Statistics for Business and Economics: Random Variables (1)

Statistics for Business and Economics: Random Variables (1) Statistics for Business and Economics: Random Variables (1) STT 315: Section 201 Instructor: Abdhi Sarkar Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides.

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Statistical Methods for NLP LT 2202

Statistical Methods for NLP LT 2202 LT 2202 Lecture 3 Random variables January 26, 2012 Recap of lecture 2 Basic laws of probability: 0 P(A) 1 for every event A. P(Ω) = 1 P(A B) = P(A) + P(B) if A and B disjoint Conditional probability:

More information

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable

6.1 Discrete and Continuous Random Variables. 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable 6.1 Discrete and Continuous Random Variables 6.1A Discrete random Variables, Mean (Expected Value) of a Discrete Random Variable Random variable Takes numerical values that describe the outcomes of some

More information

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe

Marquette University MATH 1700 Class 8 Copyright 2018 by D.B. Rowe Class 8 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 208 by D.B. Rowe Agenda: Recap Chapter 4.3-4.5 Lecture Chapter 5. - 5.3 2 Recap Chapter 4.3-4.5 3 4:

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

Math 14 Lecture Notes Ch Mean

Math 14 Lecture Notes Ch Mean 4. Mean, Expected Value, and Standard Deviation Mean Recall the formula from section. for find the population mean of a data set of elements µ = x 1 + x + x +!+ x = x i i=1 We can find the mean of the

More information

Conditional Probability. Expected Value.

Conditional Probability. Expected Value. Conditional Probability. Expected Value. CSE21 Winter 2017, Day 22 (B00), Day 14-15 (A00) March 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Random Variables A random variable assigns a real number

More information

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017

Sec$on 6.1: Discrete and Con.nuous Random Variables. Tuesday, November 14 th, 2017 Sec$on 6.1: Discrete and Con.nuous Random Variables Tuesday, November 14 th, 2017 Discrete and Continuous Random Variables Learning Objectives After this section, you should be able to: ü COMPUTE probabilities

More information

CHAPTER 6 Random Variables

CHAPTER 6 Random Variables CHAPTER 6 Random Variables 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Discrete and Continuous Random

More information

Advanced Probability and Applications (Part II)

Advanced Probability and Applications (Part II) Advanced Probability and Applications (Part II) Olivier Lévêque, IC LTHI, EPFL (with special thanks to Simon Guilloud for the figures) July 31, 018 Contents 1 Conditional expectation Week 9 1.1 Conditioning

More information

The Binomial distribution

The Binomial distribution The Binomial distribution Examples and Definition Binomial Model (an experiment ) 1 A series of n independent trials is conducted. 2 Each trial results in a binary outcome (one is labeled success the other

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Lecture 19: March 20

Lecture 19: March 20 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 19: March 0 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY

INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY 9 January 2004 revised 18 January 2004 INTRODUCTION TO MATHEMATICAL MODELLING LECTURES 3-4: BASIC PROBABILITY THEORY Project in Geometry and Physics, Department of Mathematics University of California/San

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Lecture 23: April 10

Lecture 23: April 10 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 23: April 10 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

3 Stock under the risk-neutral measure

3 Stock under the risk-neutral measure 3 Stock under the risk-neutral measure 3 Adapted processes We have seen that the sampling space Ω = {H, T } N underlies the N-period binomial model for the stock-price process Elementary event ω = ω ω

More information

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n

6. Martingales. = Zn. Think of Z n+1 as being a gambler s earnings after n+1 games. If the game if fair, then E [ Z n+1 Z n 6. Martingales For casino gamblers, a martingale is a betting strategy where (at even odds) the stake doubled each time the player loses. Players follow this strategy because, since they will eventually

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

Keeping Your Options Open: An Introduction to Pricing Options

Keeping Your Options Open: An Introduction to Pricing Options The College of Wooster Libraries Open Works Senior Independent Study Theses 2014 Keeping Your Options Open: An Introduction to Pricing Options Ryan F. Snyder The College of Wooster, rsnyder14@wooster.edu

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is

More information

European Contingent Claims

European Contingent Claims European Contingent Claims Seminar: Financial Modelling in Life Insurance organized by Dr. Nikolic and Dr. Meyhöfer Zhiwen Ning 13.05.2016 Zhiwen Ning European Contingent Claims 13.05.2016 1 / 23 outline

More information

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012

Finance 651: PDEs and Stochastic Calculus Midterm Examination November 9, 2012 Finance 65: PDEs and Stochastic Calculus Midterm Examination November 9, 0 Instructor: Bjørn Kjos-anssen Student name Disclaimer: It is essential to write legibly and show your work. If your work is absent

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Remarks on Probability

Remarks on Probability omp2011/2711 S1 2006 Random Variables 1 Remarks on Probability In order to better understand theorems on average performance analyses, it is helpful to know a little about probability and random variables.

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model

Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model International Journal of Basic & Applied Sciences IJBAS-IJNS Vol:3 No:05 47 Some Computational Aspects of Martingale Processes in ruling the Arbitrage from Binomial asset Pricing Model Sheik Ahmed Ullah

More information

Chapter 7. Random Variables

Chapter 7. Random Variables Chapter 7 Random Variables Making quantifiable meaning out of categorical data Toss three coins. What does the sample space consist of? HHH, HHT, HTH, HTT, TTT, TTH, THT, THH In statistics, we are most

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability

Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Comparison of proof techniques in game-theoretic probability and measure-theoretic probability Akimichi Takemura, Univ. of Tokyo March 31, 2008 1 Outline: A.Takemura 0. Background and our contributions

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

12. THE BINOMIAL DISTRIBUTION

12. THE BINOMIAL DISTRIBUTION 12. THE BINOMIAL DISTRIBUTION Eg: The top line on county ballots is supposed to be assigned by random drawing to either the Republican or Democratic candidate. The clerk of the county is supposed to make

More information

The binomial distribution

The binomial distribution The binomial distribution The coin toss - three coins The coin toss - four coins The binomial probability distribution Rolling dice Using the TI nspire Graph of binomial distribution Mean & standard deviation

More information

On the Lower Arbitrage Bound of American Contingent Claims

On the Lower Arbitrage Bound of American Contingent Claims On the Lower Arbitrage Bound of American Contingent Claims Beatrice Acciaio Gregor Svindland December 2011 Abstract We prove that in a discrete-time market model the lower arbitrage bound of an American

More information

Stat 211 Week Five. The Binomial Distribution

Stat 211 Week Five. The Binomial Distribution Stat 211 Week Five The Binomial Distribution Last Week E x E x = x p(x) = n p σ x = x μ x 2 p(x) We will see this again soon!! Binomial Experiment We have an experiment with the following qualities : 1.

More information

Martingales. Will Perkins. March 18, 2013

Martingales. Will Perkins. March 18, 2013 Martingales Will Perkins March 18, 2013 A Betting System Here s a strategy for making money (a dollar) at a casino: Bet $1 on Red at the Roulette table. If you win, go home with $1 profit. If you lose,

More information

CHAPTER 10: Introducing Probability

CHAPTER 10: Introducing Probability CHAPTER 10: Introducing Probability The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 10 Concepts 2 The Idea of Probability Probability Models Probability

More information

Casino gambling problem under probability weighting

Casino gambling problem under probability weighting Casino gambling problem under probability weighting Sang Hu National University of Singapore Mathematical Finance Colloquium University of Southern California Jan 25, 2016 Based on joint work with Xue

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

18.440: Lecture 35 Martingales and the optional stopping theorem

18.440: Lecture 35 Martingales and the optional stopping theorem 18.440: Lecture 35 Martingales and the optional stopping theorem Scott Sheffield MIT 1 Outline Martingales and stopping times Optional stopping theorem 2 Outline Martingales and stopping times Optional

More information

Outline of Lecture 1. Martin-Löf tests and martingales

Outline of Lecture 1. Martin-Löf tests and martingales Outline of Lecture 1 Martin-Löf tests and martingales The Cantor space. Lebesgue measure on Cantor space. Martin-Löf tests. Basic properties of random sequences. Betting games and martingales. Equivalence

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

MARTINGALES AND LOCAL MARTINGALES

MARTINGALES AND LOCAL MARTINGALES MARINGALES AND LOCAL MARINGALES If S t is a (discounted) securtity, the discounted P/L V t = need not be a martingale. t θ u ds u Can V t be a valid P/L? When? Winter 25 1 Per A. Mykland ARBIRAGE WIH SOCHASIC

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Changes of the filtration and the default event risk premium

Changes of the filtration and the default event risk premium Changes of the filtration and the default event risk premium Department of Banking and Finance University of Zurich April 22 2013 Math Finance Colloquium USC Change of the probability measure Change of

More information

SECTION 4.4: Expected Value

SECTION 4.4: Expected Value 15 SECTION 4.4: Expected Value This section tells you why most all gambling is a bad idea. And also why carnival or amusement park games are a bad idea. Random Variables Definition: Random Variable A random

More information

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part one) Dr Nic Freeman December 15, 2017 Contents 0 Introduction 3 0.1 Syllabus......................................... 4 0.2 Problem sheets.....................................

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Answers 1. Suppose a statistician working for CSULA Federal Credit Union collected data on ATM withdrawals for the population of the credit union s customers. The statistician

More information

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008

Optimal Stopping. Nick Hay (presentation follows Thomas Ferguson s Optimal Stopping and Applications) November 6, 2008 (presentation follows Thomas Ferguson s and Applications) November 6, 2008 1 / 35 Contents: Introduction Problems Markov Models Monotone Stopping Problems Summary 2 / 35 The Secretary problem You have

More information

Laws of probabilities in efficient markets

Laws of probabilities in efficient markets Laws of probabilities in efficient markets Vladimir Vovk Department of Computer Science Royal Holloway, University of London Fifth Workshop on Game-Theoretic Probability and Related Topics 15 November

More information

The Simple Random Walk

The Simple Random Walk Chapter 8 The Simple Random Walk In this chapter we consider a classic and fundamental problem in random processes; the simple random walk in one dimension. Suppose a walker chooses a starting point on

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

CONDITIONAL EXPECTATION AND MARTINGALES

CONDITIONAL EXPECTATION AND MARTINGALES Chapter 7 CONDITIONAL EXPECTATION AND MARTINGALES 7.1 Conditional Expectation. Throughout this section we will assume that random variables X are defined on a probability space (Ω, F,P) and have finite

More information

Choice under risk and uncertainty

Choice under risk and uncertainty Choice under risk and uncertainty Introduction Up until now, we have thought of the objects that our decision makers are choosing as being physical items However, we can also think of cases where the outcomes

More information

Theoretical Statistics. Lecture 4. Peter Bartlett

Theoretical Statistics. Lecture 4. Peter Bartlett 1. Concentration inequalities. Theoretical Statistics. Lecture 4. Peter Bartlett 1 Outline of today s lecture We have been looking at deviation inequalities, i.e., bounds on tail probabilities likep(x

More information

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Wednesday, October 4, Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Wednesday, October 4, 27 Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut Financial Mathematics Spring 22 Richard F. Bass Department of Mathematics University of Connecticut These notes are c 22 by Richard Bass. They may be used for personal use or class use, but not for commercial

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

MATH20180: Foundations of Financial Mathematics

MATH20180: Foundations of Financial Mathematics MATH20180: Foundations of Financial Mathematics Vincent Astier email: vincent.astier@ucd.ie office: room S1.72 (Science South) Lecture 1 Vincent Astier MATH20180 1 / 35 Our goal: the Black-Scholes Formula

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Distribution Distribute in anyway but normal Distribution Distribute in anyway but normal VI. DISTRIBUTION A probability distribution is a mathematical function that provides the probabilities of occurrence of all distinct outcomes in the sample

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Universal Portfolios

Universal Portfolios CS28B/Stat24B (Spring 2008) Statistical Learning Theory Lecture: 27 Universal Portfolios Lecturer: Peter Bartlett Scribes: Boriska Toth and Oriol Vinyals Portfolio optimization setting Suppose we have

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

N(A) P (A) = lim. N(A) =N, we have P (A) = 1.

N(A) P (A) = lim. N(A) =N, we have P (A) = 1. Chapter 2 Probability 2.1 Axioms of Probability 2.1.1 Frequency definition A mathematical definition of probability (called the frequency definition) is based upon the concept of data collection from an

More information

Mean, Variance, and Expectation. Mean

Mean, Variance, and Expectation. Mean 3 Mean, Variance, and Expectation The mean, variance, and standard deviation for a probability distribution are computed differently from the mean, variance, and standard deviation for samples. This section

More information

Real Business Cycles (Solution)

Real Business Cycles (Solution) Real Business Cycles (Solution) Exercise: A two-period real business cycle model Consider a representative household of a closed economy. The household has a planning horizon of two periods and is endowed

More information

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI

Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Lesson 97 - Binomial Distributions IBHL2 - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin 3 times where P(H) = / (b) THUS, find the probability

More information

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI

Opening Exercise: Lesson 91 - Binomial Distributions IBHL2 - SANTOWSKI 08-0- Lesson 9 - Binomial Distributions IBHL - SANTOWSKI Opening Exercise: Example #: (a) Use a tree diagram to answer the following: You throwing a bent coin times where P(H) = / (b) THUS, find the probability

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information