BROWNIAN MOTION II. D.Majumdar

Size: px
Start display at page:

Download "BROWNIAN MOTION II. D.Majumdar"

Transcription

1 BROWNIAN MOTION II D.Majumdar

2 DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t), t 0 is a Brownian Motion if for all 0 = t 0 < t 1 <.. < t m the increments W t 1 = W t 1 W t 0, W t 2 W t 1,.3.1 Are independent and each of these increments are normally distributed with E W t i+1 W t i = 0 and Var W t i+1 W t i = t i+1 t i.3.2 The difference between W(t) and let s say W 100 (t) is that W 100 (t) has a natural time step of 1/100 and is linear between these time steps, on the other hand Brownian Motion has no linear pieces. W 100 (t) is approximately normal for each t, while Brownian Motion is exactly normal. We might want to determine the probability of the set A containing all ω Ω that result in a Brownian Motion path satisfying 0 W t 0.2 We can 1 st try to think of this from the perspective of the scaled Random Walk W So the scaled Random Walk has to take the value between [0,0.2] in the 1 st 25 coin tosses. But the scaled Random Walk can only take the value of 0.1 in the specified range, and that is possible if there are 13 H s and 12 T s in the 1 st 25 coin tosses.

3 So A is the set of all infinite sequence of coin tosses with the property that in the 1 st 25 tosses there are 13 H s and 12 T s. P(A) = as seen before. In case of Brownian Motion we can define P{0 W } = 2 2π e 2x 2 dx

4 DISTRIBUTION OF BROWNIAN MOTION As we know, the increments W t 1 = W t 1 W t 0, W t 2 W t 1.. Are independent and normally distributed, the R.V. s W t 1, W t 2, W t m are jointly normally distributed. The joint distribution of jointly normal random variables is determined by their means and covariance's. Each of the R.V. s W(t i ) has mean 0. For any two times 0 s < t, the covariance of W(s) and W(t) is E[W(s)W(t)] = E[{W(t)-W(s)+W(s)}W(s)] = E[{W(t)-W(s)}W(s)] + E[ W s 2 ] = E[W(s)] * E[W(t)-W(s)] + Var[W(s)] = 0 + s = s. So with this logic we can create the Covariance Matrix for the m-dim Random Vector t 1 t 1 (W t 1, W t 2, W t m ) as t 1 t m From here we can create the Moment Generating Function of the Random Vector. In conclusion, the moment generating function for Brownian Motion (i.e. for the m-dim Random Vector [W t 1, W t 2, W t m ] is

5 M(u 1, u 2,.. u m ) = E[exp{u m W t m + u m 1 W t m 1 + u 1 W t 1 }] =exp{ 1 2 u 1 + u m 2 t u 2 +. u m 2 t 2 t u m 1 u m 2 (t m 1

6 FILTRATION FOR BROWNIAN MOTION Let (Ω, F, P) be a probability space, on which is defined a Brownian Motion W(t), t 0. A filtration for the Brownian Motion is a collection of σ algebras F(t), t 0, satisfying: 1. For 0 s < t, every set in F(s) is also in F(t). There is at least as much information available at time F(t) as there is at earlier time F(s) 2. For each t 0, the Brownian Motion W(t), at time t is F(t) measurable. In other words, the information available at time t is sufficient to evaluate the Brownian Motion W(t) at that time. 3. For 0 t < u, the increment W(u) W(t) is independent of F(t). In other words any increment of the Brownian Motion after time t is independent of the information available at time t. Let t, t 0, be a stochastic process. We say that t is adapted to the filtration F(t), if for each t 0 the R.V. t is F(t) measurable. Martingale Property for Brownian Motion Brownian Motion is a Martingale. The proof is similar to what we have seen before and can be found in Shreve in details.

7 FIRST ORDER VARIATION

8 We would like to compute the amount of up and down oscillation undergone by this function between times 0 and T, with the down moves adding to rather than subtracting from the up moves. We call this the 1 st order variation FV T f.this can be written as:- FV T f = [f t 1 f(t 0 )] [f t 2 f(t 1 )] + [f T f(t 2 )] = 0 t 1 f t dt + t1 t 2 f t dt + t2 T f t dt = 0 T f t dt.4.2 In general, to compute the 1 st order variation of a function up to time T, we 1 st choose a partition Π = t 0, t 1,. t n of 0, T where 0 = t 0 < t 1,. t n = T. It is not required for the partition points to be equally spaced but they can be. Π = max j=0,.n 1 (t j+1 t j ). We define :- FV T f = lim σ n 1 j=0 f t j+1 Π 0 f t j st we need to verify if 4.3 is consistent with 4.2 or not. Mean Value Theorem If f is a continuous function on the closed interval [a,b], and differentiable on the open interval (a,b), then there exists a point c in (a,b) such that: f c = f b f(a) b a

9 By using Mean Value Theorem, f t j+1 f t j = f (t j )(t j+1 t j ) FV T f = lim Π 0 σ n 1 j=0 f t j (t j+1 t j ), this is nothing but the Riemann Sum for the integral of the function f (t). Hence we have :- FV T f = lim σ n 1 j=0 f t T j (t j+1 t j ) = Π 0 0 f t dt which is 4.2

10 QUADRATIC VARIATION Let f(t) be a function defined for 0 t T. The quadratic variation of f up to time T is [f,f](t) = lim σ n 1 2 j=0 f t j+1 f t j.4.5 Π 0 Where Π = {t 0, t 1,. t n } and 0=t 0 <.. < t n = T Suppose the function f has continuous derivative. Then, σ n 1 2 j=0 f t j+1 f t j = n 1 σj=0 f t j 2 ൫tj+1

11 We usually work with functions that have continuous derivatives, and their Quadratic Variations are 0. For this reason we never consider Quadratic Variation in ordinary calculus. The paths of the Brownian Motion, on the other hand, cannot be differentiated w.r.t. the time variable. For functions that do not have derivatives, the Mean Value Theorem can fail and previous proof also fails. Let s think of the function f(t) = t. We can easily see that we wont be able to find a point c such that f f b f(a) c = such that this relationship is valid. b a f (t) = -1 for t<0 and = 1 for t > 0 and undefined at t=0, which is like a point. You can think of the paths of the Brownian Motion to be very pointy. For a path of the Brownian Motion W(t) there is no value of t for which d W(t) is defined. dt Thereon 4.3:- Let W be a Brownian Motion. Then [W,W](T) = T for all T 0 almost surely. Proof Let Π = {t 0, t 1,. t n } and 0=t 0 <.. < t n = T. We define the sample quadratic variation to be Q Π = σ n 1 j=0 (W(t j+1 ) W(t j ))^2 We need to show that this R.V. converges to T as Π 0. We will show that this has Expected Value = T and Variance Converges to 0. Hence it is converging to it s expected value T regardless of it s path. This type of convergence is also known as L 2 convergence.

12 We say that X n converges to X in L P or on the p-th moment, p > 0, (X n Lp X) if, lim E X n X p = 0 n E W t j+1 W t j 2 = Var[W tj+1 W t j ] = t j+1 - t j.4.6 E[Q Π ] = E[σ n 1 j=0 (W(t j+1 ) W(t j ))^2] = σ n 1 j=0 E[(W(t j+1 ) W(t j ))^2 ] = σ n 1 j=0 ൫t j+1

13 Var[Q Π ] = σ n 1 2 j=0 Var W t j+1 W t j = n 1 σj=0 2൫t j+1

14 CROSS VARIATION We can compute the Cross Variation of W(t) with t and the quadratic variation of t with itself, which are denoted as :- lim σ n 1 j=0 W t j+1 W t j t j+1 t j = Π 0 lim σ n 1 2 j=0 t j+1 t j = Π 0 Proof W t j+1 W t j t j+1 t j max 0 k n 1 W t k+1 W t k t j+1 t j σ n 1 n 1 j=0 W t j+1 W t j t j+1 t j σ j=0 max W t k+1 W t k ൫t j+1 0 k n 1

15 QUADRATIC VARIATION OF TIME n 1 t j+1 t j 2 σ j=0 Π 0 Hence 4.13 is proved max 0 k n 1 t k+1 t k σ n 1 j=0 t j+1 t j = Π *T -> 0 as Hence we can informally write dw(t)dt = 0 and dt dt =

16 QUIZ 1. Let W(t) be a Brownian Motion. Is W 2 t t a martingale? 2. Prove:- a) σ n 1 j=0 W(t j+1 ) W(t j ) = b) σ n 1 j=0 W t j+1 W(t j ) 3 = 0

17 QUIZ SOLUTION 1. Let 0 s t be given. Then E[{W 2 t t } F(s)] = E[W 2 t F(s)] E[t F(s)] = E[ W t W s + W s - t = E[ W t W s 2 + W 2 s + 2W s W t W s F s t = E[ W t W s 2 ] + W 2 s + 2W(s)E[W(t) F(s)] - 2W 2 s - t = t s - W 2 s + 2W(s)W(s) t = W 2 s - s Hence proved that W 2 t t 2 F s

18 QUIZ SOLUTION 2 a)σ n 1 j=0 W(t j+1 ) W(t j ) = Let s assume there exists A F, such that P A > 0 and for every ω A lim σ n j=0 n 1 j=0 n 1 W(t j+1 ) W(t j ) < n 1 W t j+1 W t j 2 max 0 k n 1 W t k+1 W t k j=0 W(t j+1 ) W(t j ) = 0 As W is continuous, when Π 0, then max 0 k n 1 W t k+1 W t k 0. This is only possible when the other term is finite. On the other hand 0* can give you anything from 0 to n 1 But this contradicts the fact that σ j=0 Hence lim σ n 1 n j=0 W(t j+1 ) W(t j ) = W t j+1 W t j 2 = T

19 QUIZ SOLUTION σ n 1 j=0 W t j+1 W(t j ) 3 = 0 n 1 σ j=0 W t j+1 W t j 3 max W t k+1 W t k σ n 1 j=0 ቀW t j+1 0 k n 1

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Chapter 1. Bond Pricing (continued)

Chapter 1. Bond Pricing (continued) Chapter 1 Bond Pricing (continued) How does the bond pricing illustrated here help investors in their investment decisions? This pricing formula can allow the investors to decide for themselves what the

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Normal Distribution and Brownian Process Page 1 Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Searching for a Continuous-time

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Introduction to Stochastic Calculus With Applications

Introduction to Stochastic Calculus With Applications Introduction to Stochastic Calculus With Applications Fima C Klebaner University of Melbourne \ Imperial College Press Contents Preliminaries From Calculus 1 1.1 Continuous and Differentiable Functions.

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Stochastic Calculus for Finance Brief Lecture Notes. Gautam Iyer

Stochastic Calculus for Finance Brief Lecture Notes. Gautam Iyer Stochastic Calculus for Finance Brief Lecture Notes Gautam Iyer Gautam Iyer, 17. c 17 by Gautam Iyer. This work is licensed under the Creative Commons Attribution - Non Commercial - Share Alike 4. International

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

ECON FINANCIAL ECONOMICS I

ECON FINANCIAL ECONOMICS I Lecture 3 Stochastic Processes & Stochastic Calculus September 24, 2018 STOCHASTIC PROCESSES Asset prices, asset payoffs, investor wealth, and portfolio strategies can all be viewed as stochastic processes.

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics and Statistics Washington State University Lisbon, May 218 Haijun Li An Introduction to Stochastic Calculus Lisbon,

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model

Class Notes on Financial Mathematics. No-Arbitrage Pricing Model Class Notes on No-Arbitrage Pricing Model April 18, 2016 Dr. Riyadh Al-Mosawi Department of Mathematics, College of Education for Pure Sciences, Thiqar University References: 1. Stochastic Calculus for

More information

Variance derivatives and estimating realised variance from high-frequency data. John Crosby

Variance derivatives and estimating realised variance from high-frequency data. John Crosby Variance derivatives and estimating realised variance from high-frequency data John Crosby UBS, London and Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Math-Stat-491-Fall2014-Notes-V

Math-Stat-491-Fall2014-Notes-V Math-Stat-491-Fall2014-Notes-V Hariharan Narayanan December 7, 2014 Martingales 1 Introduction Martingales were originally introduced into probability theory as a model for fair betting games. Essentially

More information

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli 6 Martingales in continuous time Just as in discrete time, the notion of a martingale will play a key r^ole in our continuous time models. Recall that in discrete time, a sequence ; 1 ;::: ; n for which

More information

then for any deterministic f,g and any other random variable

then for any deterministic f,g and any other random variable Martingales Thursday, December 03, 2015 2:01 PM References: Karlin and Taylor Ch. 6 Lawler Sec. 5.1-5.3 Homework 4 due date extended to Wednesday, December 16 at 5 PM. We say that a random variable is

More information

(Informal) Introduction to Stochastic Calculus

(Informal) Introduction to Stochastic Calculus (Informal) Introduction to Stochastic Calculus Paola Mosconi Banca IMI Bocconi University, 19/02/2018 Paola Mosconi 20541 Lecture 2-3 1 / 68 Disclaimer The opinion expressed here are solely those of the

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Option pricing. Lars Haringa Universiteit Utrecht. Supervisor: dr. Karma Dajani

Option pricing. Lars Haringa Universiteit Utrecht. Supervisor: dr. Karma Dajani Option pricing Lars Haringa Universiteit Utrecht Supervisor: dr. Karma Dajani August 31, 214 Abstract Using mathematical techniques at undergraduate level, an introduction to axiomatic probability theory

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

Chapter 5 Integration

Chapter 5 Integration Chapter 5 Integration Integration Anti differentiation: The Indefinite Integral Integration by Substitution The Definite Integral The Fundamental Theorem of Calculus 5.1 Anti differentiation: The Indefinite

More information

Martingale representation theorem

Martingale representation theorem Martingale representation theorem Ω = C[, T ], F T = smallest σ-field with respect to which B s are all measurable, s T, P the Wiener measure, B t = Brownian motion M t square integrable martingale with

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Central Limit Theorem 11/08/2005

Central Limit Theorem 11/08/2005 Central Limit Theorem 11/08/2005 A More General Central Limit Theorem Theorem. Let X 1, X 2,..., X n,... be a sequence of independent discrete random variables, and let S n = X 1 + X 2 + + X n. For each

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 1. Overview of Lecture 1, Part 1: Background Mater.

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 1. Overview of Lecture 1, Part 1: Background Mater. Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Course Aim: Give an accessible intro. to SDEs and their numerical

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Stochastic Integral Representation of One Stochastically Non-smooth Wiener Functional

Stochastic Integral Representation of One Stochastically Non-smooth Wiener Functional Bulletin of TICMI Vol. 2, No. 2, 26, 24 36 Stochastic Integral Representation of One Stochastically Non-smooth Wiener Functional Hanna Livinska a and Omar Purtukhia b a Taras Shevchenko National University

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Introduction to Stochastic Calculus

Introduction to Stochastic Calculus Introduction to Stochastic Calculus Director Chennai Mathematical Institute rlk@cmi.ac.in rkarandikar@gmail.com Introduction to Stochastic Calculus - 1 The notion of Conditional Expectation of a random

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut

Financial Mathematics. Spring Richard F. Bass Department of Mathematics University of Connecticut Financial Mathematics Spring 22 Richard F. Bass Department of Mathematics University of Connecticut These notes are c 22 by Richard Bass. They may be used for personal use or class use, but not for commercial

More information

X i = 124 MARTINGALES

X i = 124 MARTINGALES 124 MARTINGALES 5.4. Optimal Sampling Theorem (OST). First I stated it a little vaguely: Theorem 5.12. Suppose that (1) T is a stopping time (2) M n is a martingale wrt the filtration F n (3) certain other

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero

Introduction to Stochastic Calculus and Financial Derivatives. Simone Calogero Introduction to Stochastic Calculus and Financial Derivatives Simone Calogero December 7, 215 Preface Financial derivatives, such as stock options for instance, are indispensable instruments in modern

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

How Much Should You Pay For a Financial Derivative?

How Much Should You Pay For a Financial Derivative? City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology Winter 2-26-2016 How Much Should You Pay For a Financial Derivative? Boyan Kostadinov

More information

by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University

by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University by Kian Guan Lim Professor of Finance Head, Quantitative Finance Unit Singapore Management University Presentation at Hitotsubashi University, August 8, 2009 There are 14 compulsory semester courses out

More information

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio Arbitrage of the first kind and filtration enlargements in semimartingale financial models Beatrice Acciaio the London School of Economics and Political Science (based on a joint work with C. Fontana and

More information

American Option Pricing Formula for Uncertain Financial Market

American Option Pricing Formula for Uncertain Financial Market American Option Pricing Formula for Uncertain Financial Market Xiaowei Chen Uncertainty Theory Laboratory, Department of Mathematical Sciences Tsinghua University, Beijing 184, China chenxw7@mailstsinghuaeducn

More information

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a

Trinomial Tree. Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a Trinomial Tree Set up a trinomial approximation to the geometric Brownian motion ds/s = r dt + σ dw. a The three stock prices at time t are S, Su, and Sd, where ud = 1. Impose the matching of mean and

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information