An Introduction to Stochastic Calculus

Size: px
Start display at page:

Download "An Introduction to Stochastic Calculus"

Transcription

1 An Introduction to Stochastic Calculus Haijun Li Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week / 24

2 Outline 1 Brownian Motion Basic Properties Processes Related to Brownian Motion 2 Simulation of Brownian Sample Paths Simulation via the Functional Central Limit Theorem Simulation via Series Representations Haijun Li An Introduction to Stochastic Calculus Week / 24

3 Definition A stochastic process B = (B t, t 0) is called a standard Brownian motion or a Wiener process if B 0 = 0, it has stationary, independent increments, for every t > 0, B t has a normal N(0, t) distribution, and it has continuous sample paths. Haijun Li An Introduction to Stochastic Calculus Week / 24

4 3-D Brownian Motion Haijun Li An Introduction to Stochastic Calculus Week / 24

5 A Fascinating History Brownian motion is named after the botanist Robert Brown who first observed, in the 1820s, the irregular motion of pollen grains immersed in water. By the end of the nineteenth century, the phenomenon was understood by means of kinetic theory as a result of molecular bombardment. In 1900, Louis Bachelier had employed it to model the stock market, where the analogue of molecular bombardment is the interplay of the myriad of individual market decisions that determine the market price. The construction in Bachelier s PhD thesis was in error but captured many properties of the process. In 1905, Albert Einstein, although unaware of the phenomenon and of previous research, predicted the existence of Brownian motion from purely theoretical consideration. Norbert Wiener (1923) was the first to put Brownian motion on a firm mathematical basis. Haijun Li An Introduction to Stochastic Calculus Week / 24

6 Distributional Properties of Brownian Motion For any t > s, B t B s d = Bt s B 0 = B t s has an N(0, t s) distribution. That is, the larger the interval, the larger the fluctuations of B on this interval. µ B (t) := E(B t ) = 0, and for any t > s, 0 {}}{ C B (t, s) := E(B t B s ) E(B t )E(B s ) = E[((B t B s ) + B s )B s ] = E[(B t B s )B s ] + E(Bs 2 ) = E(B t B s )E(B s ) +s = min(s, t). }{{} 0 Brownian motion is a Gaussian process: its finite-dimensional distributions are multivariate Gaussian. Question: How irregular are Brownian sample paths? Haijun Li An Introduction to Stochastic Calculus Week / 24

7 Self-Similarity A stochastic process X = (X t, t 0) is H-self-similar for some H > 0 if it satisfies the condition (s H X t1,..., s H X tn ) d = (X st1,..., X stn ) for every s > 0 and any choice of t i 0, i = 1,..., n. Self-similarity means that the properly scaled patterns of a sample path in any small or large time interval have a similar shape. Non-Differentiability of Self-Similar Processes For any H-self-similar process X with stationary increments and 0 < H < 1, X t X t0 lim sup =, at any fixed t 0. t t 0 t t 0 That is, sample paths of H-self-similar processes are nowhere differentiable with probability 1. Haijun Li An Introduction to Stochastic Calculus Week / 24

8 Ethernet traffic burstiness at different time scales Haijun Li An Introduction to Stochastic Calculus Week / 24

9 Path Properties of Brownian Motion Brownian motion is 0.5-self-similar. Its sample paths are nowhere differentiable. That is, any sample path changes its shape in the neighborhood of any time epoch in a completely non-predictable fashion (Wiener, Paley and Zygmund, 1930s). Unbounded Variation of Brownian Sample Paths n sup B ti (ω) B ti 1 (ω) =, for almost all ω, τ i=1 where the supremum is taken over all possible partitions τ : 0 = t 0 < < t n = T of any finite interval [0, T ]. The unbounded variation and non-differentiability of Brownian sample paths are major reasons for the failure of classical integration methods, when applied to these paths, and for the introduction of stochastic calculus. Haijun Li An Introduction to Stochastic Calculus Week / 24

10 Brownian Bridge Let B = (B t, t 0) denote Brownian Motion. The process X = (X t, 0 t 1) defined by X t := B t tb 1, 0 t 1 satisfies that X 0 = X 1 = 0. This process is called the (standard) Brownian bridge. Since multivariate normal distributions are closed under linear transforms, the finite-dimensional distributions of X are Gaussian. The Brownian bridge is characterized by two functions µ X (t) = 0 and C X (t, s) = min(t, s) ts, for all s, t [0, 1]. The Brownian bridge appears as the limit process of the normalized empirical distribution function of a sample of iid uniform U(0, 1) random variables. Haijun Li An Introduction to Stochastic Calculus Week / 24

11 Brownian Bridge Haijun Li An Introduction to Stochastic Calculus Week / 24

12 Brownian Motion with Drift Let B = (B t, t 0) denote Brownian Motion. The process X := (µt + σb t, t 0), for constants σ > 0 and µ R, is called Brownian motion with (linear) drift. X is a Gaussian process with expectation and covariance functions µ X (t) = µt, C X (t, s) = σ 2 min(t, s), s, t 0. Haijun Li An Introduction to Stochastic Calculus Week / 24

13 Brownian Motion with Drift Haijun Li An Introduction to Stochastic Calculus Week / 24

14 Geometric Brownian Motion The process X = (e µt+σb t, t 0), for constants σ > 0 and µ R, is called geometric Brownian motion. Since E(e tz ) = e t2 /2 for an N(0, 1) random variable Z, it follows from the self-similarity of Brownian motion that µ X (t) = e µt E(e σb t ) = e µt E(e σt1/2 B 1 ) = e (µ+0.5σ2 )t. Since B t B s and B s are independent for any s t, and B t B s d = Bt s, then C X (t, s) = e (µ+0.5σ2 )(t+s) (e σ2t 1). In particular, σ 2 X (t) = e(2µ+σ2 )t (e σ2t 1). Geometric Brownian Motion is used to model stock prices in the Black-Scholes model (Black, Scholes and Merton 1973) and is the most widely used model of stock price behavior. Haijun Li An Introduction to Stochastic Calculus Week / 24

15 Geometric Brownian Motion Figure : Two Sample Paths Haijun Li An Introduction to Stochastic Calculus Week / 24

16 Central Limit Theorem Consider a sequence {Y 1, Y 2,..., } of iid non-degenerate random variables with mean µ Y = EY 1 and variance σ 2 Y = var(y 1) > 0. Define the partial sums: R 0 := 0, R n := n i=1 Y i, n 1. Central Limit Theorem (CLT) If Y 1 has finite variance, then the sequence (R n ) obeys the CLT via the following uniform convergence: ( ) Rn E(R n ) P [var(r n )] 1/2 x Φ(x) 0, as n, sup x R where Φ(x) denotes the distribution of the standard normal distribution. That is, for large sample size n, the distribution of [R n E(R n )]/[var(r n )] 1/2 is approximately standard normal. Haijun Li An Introduction to Stochastic Calculus Week / 24

17 Functional Approximation Let (Y i ) be a sequence of iid random variables with mean µ Y = EY 1 and variance σy 2 = var(y 1) > 0. Consider the process S n = (S n (t), t [0, 1]) with continuous sample paths on [0, 1], { (σ 2 S n (t) = Y n) 1/2 (R i i µ Y ), if t = i/n, i = 0,..., n linearly interpolated, otherwise. Example: If Y i s are iid N(0, 1), consider the restriction of the process S n on the points i/n: S n (i/n) = n 1/2 ik=1 Y k, i = 0,..., n. S n (0) = 0. S n has independent increments: for any 0 i 1 i m n, S n (i 2 /n) S n (i 1 /n),..., S n (i m /n) S n (i m 1 /n) are independent. For any 0 i n, S n (i/n) has a normal N(0, i/n) distribution. S n and Brownian motion B on [0, 1], when restricted to the points i/n, have very much the same properties. Haijun Li An Introduction to Stochastic Calculus Week / 24

18 46 CHAPTER 1. Sample Paths of the Process S n, n = 2,..., O t Figure Sample paths of the process S, for one sequence of realizations YI(w), Figure : 9 realizations of Y 1 (ω),..., Y 9 (ω)...., Yg(w) and n = 2,...,9. Haijun Li An Introduction to Stochastic Calculus Week / 24

19 Functional Central Limit Theorem Let C[0, 1] denote the space of all continuous functions defined on [0, 1]. Donsker s Theorem If Y 1 has finite variance, then the process S n obeys the functional CLT: Eφ(S n ) Eφ(B), as n, for all bounded continuous functions φ : C[0, 1] R, where B is the Brownian motion on [0, 1]. The finite-dimensional distributions of S n converge to the corresponding finite-dimensional distributions of B: As n, P(S n (t 1 ) x 1,..., S n (t m ) x m ) P(B t1 x 1,..., B tm x m ), for all possible t i [0, 1], x i R. The max functional max 0 i n S n (t i ) converges in distribution to max 0 t 1 B t as n. Haijun Li An Introduction to Stochastic Calculus Week / 24

20 Simulating a Brownian Sample Path Plot the paths of the processes S n, for sufficiently large n, and get a reasonable approximation to Brownian sample paths. Since Brownian motion appears as a distributional limit, completely different graphs for different values of n may appear for the same sequence of realizations Y i (ω)s. Simulating a Brownian Sample Path on [0, T ] Simulate one path of S n on [0, 1], then scale the time interval by the factor T and the sample path by the factor T 1/2. Haijun Li An Introduction to Stochastic Calculus Week / 24

21 Figure Sample paths of the process S, for one sequence of realizations Sample YI(w),..., Paths Yg(w) and of n = the 2,... Process,9. S n, for different n 3: n= o t Figure Sample paths of the process S, for different n and the same sequence of realizations Figure YI (w),.. :. Realizations, YLOO,OOO (w). of Y 1 (ω),..., Y 100,000 (ω). Haijun Li An Introduction to Stochastic Calculus Week / 24

22 Lévy-Ciesielski Representation Since Brownian sample paths are continuous functions, we can try to expand them in a series. However, the paths are random functions: for different ω, we obtain different path functions. This means that the coefficients of this series are random variables. Since the process is Gaussian, the coefficients must be Gaussian as well. Lévy-Ciesielski Expansion Brownian motion on [0, 1] can be represented in the form B t (ω) = n=1 t Z n (ω) φ n (x)dx, t [0, 1], 0 where Z n s are iid N(0, 1) random variables and (φ n ) is a complete orthonormal function system on [0, 1]. Haijun Li An Introduction to Stochastic Calculus Week / 24

23 Paley-Wiener Representation There are infinitely many possible representations of Brownian motion. Let (Z n, n 0) be a sequence of iid N(0,1) random variables, then t B t (ω) = Z 0 (ω) (2π) 1/2 + 2 π 1/2 n=1 Z n (ω) sin(nt/2), t [0, 2π]. n This series converges for every t, and uniformly for t [0, 2π]. Simulating a Brownian Path via Paley-Wiener Expansion Calculate Z 0 (ω) t j (2π) 1/2 + 2 π 1/2 M n=1 Z n (ω) sin(nt j/2) n, t j = 2πj, for 0 j N. N The problem of choosing the right values for M and N is similar to the choice of the sample size n in the functional CLT. Haijun Li An Introduction to Stochastic Calculus Week / 24

24 Paley-Wiener Expansion, N = 1, 000 I I I Figure Simulation of one Brownian sample path from the discretization Figure : Left: M = 100 Right: M = 800 (1.24) of the Paley-Wiener representation with N = 1,000. Top left: all paths for M = 2,...,40. Top right: the path only for M = 40. Bottom left: A4 = 100. Bottom right: M = 800. Haijun Li An Introduction to Stochastic Calculus Week / 24

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics and Statistics Washington State University Lisbon, May 218 Haijun Li An Introduction to Stochastic Calculus Lisbon,

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 5 Haijun Li An Introduction to Stochastic Calculus Week 5 1 / 20 Outline 1 Martingales

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Continuous Processes. Brownian motion Stochastic calculus Ito calculus

Continuous Processes. Brownian motion Stochastic calculus Ito calculus Continuous Processes Brownian motion Stochastic calculus Ito calculus Continuous Processes The binomial models are the building block for our realistic models. Three small-scale principles in continuous

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

1 IEOR 4701: Notes on Brownian Motion

1 IEOR 4701: Notes on Brownian Motion Copyright c 26 by Karl Sigman IEOR 47: Notes on Brownian Motion We present an introduction to Brownian motion, an important continuous-time stochastic process that serves as a continuous-time analog to

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 11 10/9/2013. Martingales and stopping times II MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 11 10/9/013 Martingales and stopping times II Content. 1. Second stopping theorem.. Doob-Kolmogorov inequality. 3. Applications of stopping

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Randomness and Fractals

Randomness and Fractals Randomness and Fractals Why do so many physicists become traders? Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago September 25, 2011 1 / 24 Mathematics and the

More information

Geometric Brownian Motions

Geometric Brownian Motions Chapter 6 Geometric Brownian Motions 1 Normal Distributions We begin by recalling the normal distribution briefly. Let Z be a random variable distributed as standard normal, i.e., Z N(0, 1). The probability

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

Beyond the Black-Scholes-Merton model

Beyond the Black-Scholes-Merton model Econophysics Lecture Leiden, November 5, 2009 Overview 1 Limitations of the Black-Scholes model 2 3 4 Limitations of the Black-Scholes model Black-Scholes model Good news: it is a nice, well-behaved model

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Brownian Motion. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Brownian Motion Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Brownian Motion STAT 870 Summer 2011 1 / 33 Purposes of Today s Lecture Describe

More information

Some history. The random walk model. Lecture notes on forecasting Robert Nau Fuqua School of Business Duke University

Some history. The random walk model. Lecture notes on forecasting Robert Nau Fuqua School of Business Duke University Lecture notes on forecasting Robert Nau Fuqua School of Business Duke University http://people.duke.edu/~rnau/forecasting.htm The random walk model Some history Brownian motion is a random walk in continuous

More information

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report Author (s): B. L. S. Prakasa Rao Title of the Report: Option pricing for processes driven by mixed fractional

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Normal Distribution and Brownian Process Page 1 Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Searching for a Continuous-time

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

I Preliminary Material 1

I Preliminary Material 1 Contents Preface Notation xvii xxiii I Preliminary Material 1 1 From Diffusions to Semimartingales 3 1.1 Diffusions.......................... 5 1.1.1 The Brownian Motion............... 5 1.1.2 Stochastic

More information

BROWNIAN MOTION II. D.Majumdar

BROWNIAN MOTION II. D.Majumdar BROWNIAN MOTION II D.Majumdar DEFINITION Let (Ω, F, P) be a probability space. For each ω Ω, suppose there is a continuous function W(t) of t 0 that satisfies W(0) = 0 and that depends on ω. Then W(t),

More information

Lesson 3: Basic theory of stochastic processes

Lesson 3: Basic theory of stochastic processes Lesson 3: Basic theory of stochastic processes Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@univaq.it Probability space We start with some

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Option Pricing Formula for Fuzzy Financial Market

Option Pricing Formula for Fuzzy Financial Market Journal of Uncertain Systems Vol.2, No., pp.7-2, 28 Online at: www.jus.org.uk Option Pricing Formula for Fuzzy Financial Market Zhongfeng Qin, Xiang Li Department of Mathematical Sciences Tsinghua University,

More information

Hedging under arbitrage

Hedging under arbitrage Hedging under arbitrage Johannes Ruf Columbia University, Department of Statistics AnStAp10 August 12, 2010 Motivation Usually, there are several trading strategies at one s disposal to obtain a given

More information

Barrier Options Pricing in Uncertain Financial Market

Barrier Options Pricing in Uncertain Financial Market Barrier Options Pricing in Uncertain Financial Market Jianqiang Xu, Jin Peng Institute of Uncertain Systems, Huanggang Normal University, Hubei 438, China College of Mathematics and Science, Shanghai Normal

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

MAS3904/MAS8904 Stochastic Financial Modelling

MAS3904/MAS8904 Stochastic Financial Modelling MAS3904/MAS8904 Stochastic Financial Modelling Dr Andrew (Andy) Golightly a.golightly@ncl.ac.uk Semester 1, 2018/19 Administrative Arrangements Lectures on Tuesdays at 14:00 (PERCY G13) and Thursdays at

More information

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus.

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus. Itô s Calculus Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 21, 2016 Christopher Ting QF 101 Week 10 October

More information

Introduction to Stochastic Calculus With Applications

Introduction to Stochastic Calculus With Applications Introduction to Stochastic Calculus With Applications Fima C Klebaner University of Melbourne \ Imperial College Press Contents Preliminaries From Calculus 1 1.1 Continuous and Differentiable Functions.

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Asymptotic Methods in Financial Mathematics

Asymptotic Methods in Financial Mathematics Asymptotic Methods in Financial Mathematics José E. Figueroa-López 1 1 Department of Mathematics Washington University in St. Louis Statistics Seminar Washington University in St. Louis February 17, 2017

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

Value at Risk and Self Similarity

Value at Risk and Self Similarity Value at Risk and Self Similarity by Olaf Menkens School of Mathematical Sciences Dublin City University (DCU) St. Andrews, March 17 th, 2009 Value at Risk and Self Similarity 1 1 Introduction The concept

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Math 239 Homework 1 solutions

Math 239 Homework 1 solutions Math 239 Homework 1 solutions Question 1. Delta hedging simulation. (a) Means, standard deviations and histograms are found using HW1Q1a.m with 100,000 paths. In the case of weekly rebalancing: mean =

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Stochastic Processes and Financial Mathematics (part two) Dr Nic Freeman

Stochastic Processes and Financial Mathematics (part two) Dr Nic Freeman Stochastic Processes and Financial Mathematics (part two) Dr Nic Freeman April 25, 218 Contents 9 The transition to continuous time 3 1 Brownian motion 5 1.1 The limit of random walks...............................

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

23 Stochastic Ordinary Differential Equations with Examples from Finance

23 Stochastic Ordinary Differential Equations with Examples from Finance 23 Stochastic Ordinary Differential Equations with Examples from Finance Scraping Financial Data from the Web The MATLAB/Octave yahoo function below returns daily open, high, low, close, and adjusted close

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES

CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES CONVERGENCE OF OPTION REWARDS FOR MARKOV TYPE PRICE PROCESSES MODULATED BY STOCHASTIC INDICES D. S. SILVESTROV, H. JÖNSSON, AND F. STENBERG Abstract. A general price process represented by a two-component

More information

American Option Pricing Formula for Uncertain Financial Market

American Option Pricing Formula for Uncertain Financial Market American Option Pricing Formula for Uncertain Financial Market Xiaowei Chen Uncertainty Theory Laboratory, Department of Mathematical Sciences Tsinghua University, Beijing 184, China chenxw7@mailstsinghuaeducn

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

Stochastic Computation in Finance

Stochastic Computation in Finance Stochastic Computation in Finance Chuan-Hsiang Han Dept. of Quantitative Finance, NTHU Dept of Math & CS Education TMUE November 3, 2008 Outline History of Math and Finance: Fundamental Problems in Modern

More information

How Much Should You Pay For a Financial Derivative?

How Much Should You Pay For a Financial Derivative? City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology Winter 2-26-2016 How Much Should You Pay For a Financial Derivative? Boyan Kostadinov

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Chapter-2 Black and Scholes Option Pricing Model and its Alternatives

Chapter-2 Black and Scholes Option Pricing Model and its Alternatives Black and Scholes Option Pricing Model and its Alternatives CHAPER- BLACK AND SCHOLES OPION PRICING MODEL AND IS ALERNAIVES his chapter introduces and derives the Black and Scholes (BS) formula for option

More information

INVESTMENTS Class 2: Securities, Random Walk on Wall Street

INVESTMENTS Class 2: Securities, Random Walk on Wall Street 15.433 INVESTMENTS Class 2: Securities, Random Walk on Wall Street Reto R. Gallati MIT Sloan School of Management Spring 2003 February 5th 2003 Outline Probability Theory A brief review of probability

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

Forecasting Life Expectancy in an International Context

Forecasting Life Expectancy in an International Context Forecasting Life Expectancy in an International Context Tiziana Torri 1 Introduction Many factors influencing mortality are not limited to their country of discovery - both germs and medical advances can

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

arxiv: v2 [q-fin.gn] 13 Aug 2018

arxiv: v2 [q-fin.gn] 13 Aug 2018 A DERIVATION OF THE BLACK-SCHOLES OPTION PRICING MODEL USING A CENTRAL LIMIT THEOREM ARGUMENT RAJESHWARI MAJUMDAR, PHANUEL MARIANO, LOWEN PENG, AND ANTHONY SISTI arxiv:18040390v [q-fingn] 13 Aug 018 Abstract

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Theoretical Problems in Credit Portfolio Modeling 2

Theoretical Problems in Credit Portfolio Modeling 2 Theoretical Problems in Credit Portfolio Modeling 2 David X. Li Shanghai Advanced Institute of Finance (SAIF) Shanghai Jiaotong University(SJTU) November 3, 2017 Presented at the University of South California

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

ECON FINANCIAL ECONOMICS I

ECON FINANCIAL ECONOMICS I Lecture 3 Stochastic Processes & Stochastic Calculus September 24, 2018 STOCHASTIC PROCESSES Asset prices, asset payoffs, investor wealth, and portfolio strategies can all be viewed as stochastic processes.

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information

Ornstein-Uhlenbeck Theory

Ornstein-Uhlenbeck Theory Beatrice Byukusenge Department of Technomathematics Lappeenranta University of technology January 31, 2012 Definition of a stochastic process Let (Ω,F,P) be a probability space. A stochastic process is

More information

Energy Price Processes

Energy Price Processes Energy Processes Used for Derivatives Pricing & Risk Management In this first of three articles, we will describe the most commonly used process, Geometric Brownian Motion, and in the second and third

More information

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Applied Mathematical Sciences, Vol. 6, 2012, no. 112, 5597-5602 Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Nasir Rehman Department of Mathematics and Statistics

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information