Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Size: px
Start display at page:

Download "Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models"

Transcription

1 Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics and Statistics April 5th, 2012 (Joint work with Jeff Nisen)

2 Outline 1 The Statistical Problems and the Main Estimators 2 Optimally Thresholded Power Estimators 3 Main Results 4 Extensions 5 Conclusions

3 Set-up 1 Continuous-time stochastic process t X t with dynamics where dx t = γ t dt + σ t dw t + dj t, t W t is a standard Brownian motion; t J t := N t j=1 ζ j is a piece-wise constant process of finite jump activity; t γ t and t σ t are adapted processes; 2 Finite-jump activity Lévy model: N t X t = γt + σw t + ζ j, where {N t } t 0 is a homogeneous Poisson process with jump intensity λ, {ζ j } j 0 are i.i.d. with density f ζ : R R +, and the triplet ({W t }, {N t }, {ξ j }) are mutually independent. j=1

4 Statistical Problems Given a discrete record of observations, X t0, X t1,..., X tn, from the process during a fixed finite time-horizon [0, T ], the following problems are of interest: 1 Estimating the integrated variance (or quadratic variation): σ 2 T = T 0 σ 2 t dt. 2 Estimating the jump features of the process: Jump times τ 1 < τ 2 < < τ NT Jump sizes ζ 1 < ζ 2 < < ζ NT 3 Jump detection during a given time interval [s, t] [0, T ]

5 Two main classes of estimators Precursor. Realized Quadratic Variation: n 1 ( QV (X) π := Xti+1 X ) 2 t i, (π : 0 = t0 < < t n = T ). i=0 Under very general conditions: RV (X) π mesh(π) 0 σ 2 T + N T j=1 ζ2 j. 1 Multipower Realized Variations (Barndorff-Nielsen and Shephard (2004)): n 1 BPV (X) π := Xti+1 X ti Xti+2 X ti+1, MPV (X) (r 1,...,r k ) π := i=0 n k X ti+1 X ti r 1... X ti+k X ti+k 1 r k. i=0 2 Threshold Realized Variations (Mancini (2003)): n 1 ( TRV (X)[B] π := Xti+1 X ) 2 t i 1{ Xti+1 Xti B}, (B (0, )). i=0

6 Advantages and Drawbacks 1 Multipower Realized Variations (MPV) Easy to implement; Exhibit high" bias in the presence of jumps: ] E [MPV (X) (r 1,...,r k ) C r σ T 2 2 Threshold Realized Variations (TRV): π tc r, with Cr = n max i r i Can be adapted for estimating other jump features: k i=1 E Z i r i r r k = 2. n 1 n 1 ( ) N[B] π := 1 { 2 >B} Xti+1, Ĵ[B] X π := Xti+1 X ti 1 { ti Xti+1 Xti i=0 i=0 } >B Its performance strongly depends on a good" choice of the threshold level B; e.g., given a sequence π n of sampling schemes with mesh(π n) 0, L TRV (X)[B] 2 πn σ 2 T B(π n) 0, Ad-hoc thresholds proposed in the literature: B(π n) mesh(πn). B(π) := α mesh(π) ω, B n(π) = α mesh 1 2 Φ 1 (1 β mesh(π))

7 Advantages and Drawbacks 1 Multipower Realized Variations (MPV) Easy to implement; Exhibit high" bias in the presence of jumps: ] E [MPV (X) (r 1,...,r k ) C r σ T 2 2 Threshold Realized Variations (TRV): π tc r, with Cr = n max i r i Can be adapted for estimating other jump features: k i=1 E Z i r i r r k = 2. n 1 n 1 ( ) N[B] π := 1 { 2 >B} Xti+1, Ĵ[B] X π := Xti+1 X ti 1 { ti Xti+1 Xti i=0 i=0 } >B Its performance strongly depends on a good" choice of the threshold level B; e.g., given a sequence π n of sampling schemes with mesh(π n) 0, L TRV (X)[B] 2 πn σ 2 T B(π n) 0, Ad-hoc thresholds proposed in the literature: B(π n) mesh(πn). B(π) := α mesh(π) ω, B n(π) = α mesh 1 2 Φ 1 (1 β mesh(π))

8 Advantages and Drawbacks 1 Multipower Realized Variations (MPV) Easy to implement; Exhibit high" bias in the presence of jumps: ] E [MPV (X) (r 1,...,r k ) C r σ T 2 2 Threshold Realized Variations (TRV): π tc r, with Cr = n max i r i Can be adapted for estimating other jump features: k i=1 E Z i r i r r k = 2. n 1 n 1 ( ) N[B] π := 1 { 2 >B} Xti+1, Ĵ[B] X π := Xti+1 X ti 1 { ti Xti+1 Xti i=0 i=0 } >B Its performance strongly depends on a good" choice of the threshold level B; e.g., given a sequence π n of sampling schemes with mesh(π n) 0, L TRV (X)[B] 2 πn σ 2 T B(π n) 0, Ad-hoc thresholds proposed in the literature: B(π n) mesh(πn). B(π) := α mesh(π) ω, B n(π) = α mesh 1 2 Φ 1 (1 β mesh(π))

9 Advantages and Drawbacks 1 Multipower Realized Variations (MPV) Easy to implement; Exhibit high" bias in the presence of jumps: ] E [MPV (X) (r 1,...,r k ) C r σ T 2 2 Threshold Realized Variations (TRV): π tc r, with Cr = n max i r i Can be adapted for estimating other jump features: k i=1 E Z i r i r r k = 2. n 1 n 1 ( ) N[B] π := 1 { 2 >B} Xti+1, Ĵ[B] X π := Xti+1 X ti 1 { ti Xti+1 Xti i=0 i=0 } >B Its performance strongly depends on a good" choice of the threshold level B; e.g., given a sequence π n of sampling schemes with mesh(π n) 0, L TRV (X)[B] 2 πn σ 2 T B(π n) 0, Ad-hoc thresholds proposed in the literature: B(π n) mesh(πn). B(π) := α mesh(π) ω, B n(π) = α mesh 1 2 Φ 1 (1 β mesh(π))

10 Advantages and Drawbacks 1 Multipower Realized Variations (MPV) Easy to implement; Exhibit high" bias in the presence of jumps: ] E [MPV (X) (r 1,...,r k ) C r σ T 2 2 Threshold Realized Variations (TRV): π tc r, with Cr = n max i r i Can be adapted for estimating other jump features: k i=1 E Z i r i r r k = 2. n 1 n 1 ( ) N[B] π := 1 { 2 >B} Xti+1, Ĵ[B] X π := Xti+1 X ti 1 { ti Xti+1 Xti i=0 i=0 } >B Its performance strongly depends on a good" choice of the threshold level B; e.g., given a sequence π n of sampling schemes with mesh(π n) 0, L TRV (X)[B] 2 πn σ 2 T B(π n) 0, Ad-hoc thresholds proposed in the literature: B(π n) mesh(πn). B(π) := α mesh(π) ω, B n(π) = α mesh 1 2 Φ 1 (1 β mesh(π))

11 Numerical illustration Diffusion Volatility Parameter (DVP) Estimates RMPV(1, 1) RMPV(2 3, 2 3, 2 3) RMPV(1 2,, 1 2) RMPV(2 5,, 2 5) RMPV(1 3,, 1 3) Min RV(2) Med RV(2) TBPV(Pow(0.05)) TBPV(Pow(0.15)) TBPV(Pow(0.25)) TBPV(Pow(0.35)) TBPV(Pow(0.45)) TBPV(Pow(0.495)) TBPV(B opt) TBPV(BF(0.05)) TBPV(BH(0.05)) Merton Model: Diffusion Volatility Parameter Estimates Actual DVP Multi Power Variation Style Estimators Thresholded Multi Power Style Estimators Multiple Testing Style Estimators Figure: Box Plots of MC numerical experiments (2500 simulations) based on T = 1 year, 5 min sample observations. Parameters: σ = 0.3, λ = 20, f ζ N ( 0.1, ).

12 Optimal Threshold Realized Estimators 1 Aims Develop a well-posed optimal selection criterion for the threshold B, that minimizes a suitable statistical loss function of estimation. Characterize the optimal threshold B asymptotically when mesh(π) 0. Developed a feasible implementation method for the optimal threhold sequence. 2 Assumptions Finite activity Lévy model: X t = γt + σw t + N t j=1 ζ i.i.d. j, ζ j f ζ. Regular sampling scheme with mesh h n := 1 ; i.e., π : t n i = i. n The jump density function f ζ takes the mixture form: 3 Notation: f ζ (x) = pf +(x)1 {x 0} + qf ( x)1 {x<0} with p + q = 1, f ± : [0, ) R + C 1 b(0, ) C(f ζ ) := pf +(0) + qf (0). Φ and φ are the cdf and pdf of a standard Normal variable, respectively. n i X := i X := X ti X ti 1, n i N := i N := N ti N ti 1

13 Optimal Threshold Realized Estimators 1 Aims Develop a well-posed optimal selection criterion for the threshold B, that minimizes a suitable statistical loss function of estimation. Characterize the optimal threshold B asymptotically when mesh(π) 0. Developed a feasible implementation method for the optimal threhold sequence. 2 Assumptions Finite activity Lévy model: X t = γt + σw t + N t j=1 ζ i.i.d. j, ζ j f ζ. Regular sampling scheme with mesh h n := 1 ; i.e., π : t n i = i. n The jump density function f ζ takes the mixture form: 3 Notation: f ζ (x) = pf +(x)1 {x 0} + qf ( x)1 {x<0} with p + q = 1, f ± : [0, ) R + C 1 b(0, ) C(f ζ ) := pf +(0) + qf (0). Φ and φ are the cdf and pdf of a standard Normal variable, respectively. n i X := i X := X ti X ti 1, n i N := i N := N ti N ti 1

14 Optimal Threshold Realized Estimators 1 Aims Develop a well-posed optimal selection criterion for the threshold B, that minimizes a suitable statistical loss function of estimation. Characterize the optimal threshold B asymptotically when mesh(π) 0. Developed a feasible implementation method for the optimal threhold sequence. 2 Assumptions Finite activity Lévy model: X t = γt + σw t + N t j=1 ζ i.i.d. j, ζ j f ζ. Regular sampling scheme with mesh h n := 1 ; i.e., π : t n i = i. n The jump density function f ζ takes the mixture form: 3 Notation: f ζ (x) = pf +(x)1 {x 0} + qf ( x)1 {x<0} with p + q = 1, f ± : [0, ) R + C 1 b(0, ) C(f ζ ) := pf +(0) + qf (0). Φ and φ are the cdf and pdf of a standard Normal variable, respectively. n i X := i X := X ti X ti 1, n i N := i N := N ti N ti 1

15 Loss Functions 1 Natural Loss Function Loss (1) n (B) := E [ TRV (X)[B]n T σ 2 2] + E [ N[B]n N T 2 ]. 2 Alternative Loss Function 3 Interpretation Loss (2) n ( B) := E nt i=1 ( ) 1 [ n i X >B, n N=0] + 1 i [ n i X B, n N 0]. i Loss (1) n (B) favors sequences that minimizes the estimation errors of both the continuous and the jump component. Loss (2) n (B) favors sequences that minimizes the total number of miss-classifications: flag jump when there is no jump and fail to flag jump when there is a jump. Loss (2) n (B) is much more tractable than Loss (1) n (B).

16 Asymptotic Comparison of Loss Functions Theorem (FL & Nisen (2013)) Given a threshold sequence (B n ) n satisfying B n 0 and B n n, there exists a positive sequence (C n ) n, with lim n C n = 0, such that Loss (2) n (B) + R n (B) Loss (1) n (B) (1 + C n (B))Loss (2) n (B) + R n (B) + R n (B), where, as n, R n (B) T ( ( ) 2 λ2 2σ n 2n + T 2 nbn φ λb n C(f )), B n σ [ ] 6T σ 4 R n (B) + 3B 6 n nt 2 λ 2 C(f ) 2. Furthermore, lim n inf B>0 Loss(1) n (B) = 1. (1) inf B>0 Loss(2) n (B)

17 Well-posedness and asymptotic characterization Theorem (FL & Nisen (2013)) There exists an N N such that for all n N, the loss function Loss (2) n (B) is quasi-convex and possesses a unique global minimum Bn: Bn := arg inf B>0 Loss (2) n (B). Furthermore, the optimal threshold sequence (Bn) n is such that Bn 3σ2 ln(n) ( ) = + o ln(n)/n, (n ). n

18 Remarks 1 The leading term of the optimal sequence is proportional to the Lévy modulus of Brownian motion: lim sup h 0 1 2h ln(1/h) 2 The leading order sequence sup W t W s = 1, a.s. t s <h,s,t [0,1] B,1 n := 3σ2 ln(n), n provides a blueprint" to look for a suitable threshold sequence. 3 Merton Model: ζ N (0, δ 2 ). With αn 2 := σ2 n + δ2, ( ) Bn = 3σ2 ln(n) 2σ 2 σλ ln α n + 3σ4 ln(n) n n n 2 δ 2 2σ4 ln(σλ/α n ) n 2 δ 2 4 The performance of the leading term (compared to the optimal threshold) will depend on the quantity: σλ δ. 1/2.

19 A Feasible Iterative Algorithm to Find B n 1 Key Issue: The optimal threshold B would allow us to find an optimal estimate ˆσ for σ 2 of the form but B depends on precisely σ 2. Set σ 2 n,0 := 1 T ˆσ 2 := 1 T TRV (X)[B (σ 2 )] n, 2 The previous issue suggests a fixed-point type of implementation: ( ) 1/2 nt i=1 X t i X ti 1 2 and B n,0 := while σ 2 n,k 1 > σ2 n,k do σ 2 n,k+1 1 T TRV (X)[ B n,k ] n and B n,k+1 ( 3 σ 2 n,0 ln(n) n ) 1/2 3 σ 2 n,k+1 ln(n) n end while { } Let kn := inf k 1 : σ n,k+1 2 = σ2 n,k and take σ n,k 2 as the final n estimate for σ and the corresponding B n,k as an estimate for n B n. 3 The previous algorithm generates a non-increasing sequence of estimators { σ 2 n,k } k and finish in finite time.

20 A numerical illustration Merton Model: 4-year / 1-day σ = 0.3 λ = 5 µ = 0, δ = 0.6 Method TRV S TRV Loss S Loss B n,k n Pow BF Table: Finite-sample performance of the threshold realized variation (TRV) estimators i.i.d. based on K = 5, 000 sample paths for the Merton model ζ i N (µ, δ 2 ). Loss represents the total number of Jump Misclassification Errors, while TRV, Loss, S TRV, and S Loss denote the corresponding sample means and standard deviations, respectively.

21 A numerical illustration (S2) Kou Model: 1-week / 5-minute σ = 0.5 λ = 50 p = 0.45, α + = 0.05, α = 0.1 Method TRV S TRV Loss S Loss B n,k n Pow BF Table: Finite-sample performance of the threshold realized variation (TRV) estimators based on K = 5, 000 sample paths for the Kou model: f Kou (x) = p α + e x/α+ 1 [x 0] + (1 p) α e x /α 1 [x<0]. Loss represents the total number of Jump Misclassification Errors, while TRV, Loss, S TRV, and S Loss denote the corresponding sample means and standard deviations, respectively.

22 A numerical illustration (S3) Kou Model: 1-year / 5-minute σ = 0.4 λ = 1000 p = 0.5, α + = α = 0.1 Method TRV S TRV Loss S Loss B n,k n Pow BF Table: Finite-sample performance of the threshold realized variation (TRV) estimators based on K = 5, 000 sample paths for the Kou model: f ζ (x) = p α + e x/α+ 1 [x 0] + q α e x /α 1 [x<0]. Loss represents the total number of Jump Misclassification Errors, while TRV, Loss, S TRV, and S Loss denote the corresponding sample means and standard deviations, respectively.

23 Additive Processes 1 The model X s := s 0 γ(u)du + s 0 N s σ(u)dw u + ζ j =: Xs c + J s, where (N s ) s 0 Poiss ({λ(s)} s 0 ), independent of W, and deterministic smooth functions σ, λ : [0, ) R + and γ : [0, ) R with σ and λ bounded away from 0. 2 Optimal Threshold Problem Given a sampling scheme π : t 0 < < t n = T, determine the vector B π, = ( B π, t 1 inf E B=(Bt1,...,B tn ) R m + n = i=1 j=1,..., B π, t n ) that minimizes the problem n i=1 ( 1 [ Xti X ti 1 >B ti,n ti N ti 1 =0] + 1 [ Xti X ti 1 B ti,n ti N ti 1 0] inf {P ( i X > B ti, i N = 0) + P ( i X B ti, i N 0)}, B ti ( i X := X ti X ti 1, i N := N ti N ti 1 ) )

24 Optimal Threshold Spot Volatility Estimation Notation: h i = t i t i 1 (Mesh), K θ (t) = 1 θ K ( t θ ) (Kernel), θ = Bandwidth Algorithm: For each i {1, 2,..., n}, set σ 2 0(t i ) := l j= l 1 h i+j i+j X 2 K θ (t i t i+j ) and B,0 t i := [ 3 σ 2 0(t i )h i ln(1/h i ) ] 1/2 while there exists i {1, 2,..., m} such that σ k 1 2 (t i) > σ k 2(t i) do σ k+1 2 (t i) l 1 j= l h i+j i+j X 2 1 [ ] K i+j X B,k θ (t i t i+j ) and t i+j B,k+1 t i [ 3 σ k+1 2 (t i)h i ln(1/h i ) ] 1/2 end while Let k (π) := inf { k 1 : σ k+1 2 (t i) = σ k 2(t i); for all i = 1, 2,..., n } and take σ k 2 (t i) as the final estimate for σ(t m i ) and the corresponding B,k m t i estimate for Bt i. as an The previous algorithm generates a non-increasing sequence of estimators { σ 2 k (t i)} k,i and finish in finite time.

25 Numerical Illustration (A) Initial Estimates Actual Spot Volatility Est. Spot Vol. (Uniform) Est. Spot Vol. (Quad) Sample Increments Time Horizon Figure: Spot Volatility Estimation using Adaptive Kernel Weighted Realized Volatility.

26 Numerical Illustration (B) Intermediate Estimates Actual Spot Volatility Est. Spot Vol. (Uniform) Est. Spot Vol. (Quad) Sample Increments Time Horizon Figure: Spot Volatility Estimation using Adaptive Kernel Weighted Realized Volatility.

27 Numerical Illustration (C) Terminal Estimates Actual Spot Volatility Est. Spot Vol. (Uniform) Est. Spot Vol. (Quad) Sample Increments Time Horizon Figure: Spot Volatility Estimation using Adaptive Kernel Weighted Realized Volatility.

28 Numerical Illustration (D) Estimation Variability Time Horizon Actual Spot Volatility Figure: Spot Volatility Estimation using Adaptive Kernel Weighted Realized Volatility. 50 simulations

29 Conclusions 1 Introduce an objective threshold selection procedure based on statistical optimality reasoning via a well-posed optimization problem. 2 Characterize precisely the infill asymptotic behavior of the optimal threshold sequence. 3 Proposed an iterative algorithm to find the optimal threshold sequence. 4 Extend the approach to more general stochastic models, which allows time-varying volatility and jump intensity.

30 For Further Reading I Figueroa-López & Nisen. Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models To appear in Stochastic Processes and their Applications, Available at figueroa. Figueroa-López & Nisen. Optimality properties of thresholded multi power variation estimators. In preparation, 2013.

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University High Dimensional Probability VII Institut d Études Scientifiques

More information

Optimally Thresholded Realized Power Variations for Stochastic Volatility Models with Jumps

Optimally Thresholded Realized Power Variations for Stochastic Volatility Models with Jumps Optimally Thresholded Realized Power Variations for Stochastic Volatility Models with Jumps José E. Figueroa-López 1 1 Department of Mathematics Washington University ISI 2015: 60th World Statistics Conference

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Statistics Stevanovich Center The University

More information

Asymptotic Methods in Financial Mathematics

Asymptotic Methods in Financial Mathematics Asymptotic Methods in Financial Mathematics José E. Figueroa-López 1 1 Department of Mathematics Washington University in St. Louis Statistics Seminar Washington University in St. Louis February 17, 2017

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-18-2018 A Simulation Study of Bipower and Thresholded

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Department of Applied Mathematics, Illinois Institute of Technology

More information

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias

Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias Small-time asymptotics of stopped Lévy bridges and simulation schemes with controlled bias José E. Figueroa-López 1 1 Department of Statistics Purdue University Computational Finance Seminar Purdue University

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics and Statistics Washington University in St. Louis School Of Mathematics, UMN March 14, 2019 Based

More information

Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models

Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models Applications of short-time asymptotics to the statistical estimation and option pricing of Lévy-driven models José Enrique Figueroa-López 1 1 Department of Statistics Purdue University CIMAT and Universidad

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Optimal Kernel Estimation of Spot Volatility of SDE

Optimal Kernel Estimation of Spot Volatility of SDE Optimal Kernel Estimation of Spot Volatility of SDE José E. Figueroa-López Department of Mathematics Washington University in St. Louis figueroa@math.wustl.edu (Joint work with Cheng Li from Purdue U.)

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

I Preliminary Material 1

I Preliminary Material 1 Contents Preface Notation xvii xxiii I Preliminary Material 1 1 From Diffusions to Semimartingales 3 1.1 Diffusions.......................... 5 1.1.1 The Brownian Motion............... 5 1.1.2 Stochastic

More information

Testing for non-correlation between price and volatility jumps and ramifications

Testing for non-correlation between price and volatility jumps and ramifications Testing for non-correlation between price and volatility jumps and ramifications Claudia Klüppelberg Technische Universität München cklu@ma.tum.de www-m4.ma.tum.de Joint work with Jean Jacod, Gernot Müller,

More information

Modeling the dependence between a Poisson process and a continuous semimartingale

Modeling the dependence between a Poisson process and a continuous semimartingale 1 / 28 Modeling the dependence between a Poisson process and a continuous semimartingale Application to electricity spot prices and wind production modeling Thomas Deschatre 1,2 1 CEREMADE, University

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Hilmar Mai Mohrenstrasse 39 1117 Berlin Germany Tel. +49 3 2372 www.wias-berlin.de Haindorf

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

induced by the Solvency II project

induced by the Solvency II project Asset Les normes allocation IFRS : new en constraints assurance induced by the Solvency II project 36 th International ASTIN Colloquium Zürich September 005 Frédéric PLANCHET Pierre THÉROND ISFA Université

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

Economics 883: The Basic Diffusive Model, Jumps, Variance Measures. George Tauchen. Economics 883FS Spring 2015

Economics 883: The Basic Diffusive Model, Jumps, Variance Measures. George Tauchen. Economics 883FS Spring 2015 Economics 883: The Basic Diffusive Model, Jumps, Variance Measures George Tauchen Economics 883FS Spring 2015 Main Points 1. The Continuous Time Model, Theory and Simulation 2. Observed Data, Plotting

More information

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio

Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Beatrice Acciaio Arbitrage of the first kind and filtration enlargements in semimartingale financial models Beatrice Acciaio the London School of Economics and Political Science (based on a joint work with C. Fontana and

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen

Parametric Inference and Dynamic State Recovery from Option Panels. Torben G. Andersen Parametric Inference and Dynamic State Recovery from Option Panels Torben G. Andersen Joint work with Nicola Fusari and Viktor Todorov The Third International Conference High-Frequency Data Analysis in

More information

Optimal Placement of a Small Order Under a Diffusive Limit Order Book (LOB) Model

Optimal Placement of a Small Order Under a Diffusive Limit Order Book (LOB) Model Optimal Placement of a Small Order Under a Diffusive Limit Order Book (LOB) Model José E. Figueroa-López Department of Mathematics Washington University in St. Louis INFORMS National Meeting Houston, TX

More information

Option Pricing Modeling Overview

Option Pricing Modeling Overview Option Pricing Modeling Overview Liuren Wu Zicklin School of Business, Baruch College Options Markets Liuren Wu (Baruch) Stochastic time changes Options Markets 1 / 11 What is the purpose of building a

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Modeling financial markets with extreme risk Tobias Kusche Preprint Nr. 04/2008 Modeling financial markets with extreme risk Dr. Tobias Kusche 11. January 2008 1 Introduction

More information

Optimal Kernel Estimation of Spot Volatility

Optimal Kernel Estimation of Spot Volatility Optimal Kernel Estimation of Spot Volatility José E. Figueroa-López Department of Mathematics and Statistics Washington University in St. Louis figueroa@math.wustl.edu Joint work with Cheng Li from Purdue

More information

Estimation methods for Levy based models of asset prices

Estimation methods for Levy based models of asset prices Estimation methods for Levy based models of asset prices José Enrique Figueroa-López Financial mathematics seminar Department of Statistics and Applied Probability UCSB October, 26 Abstract Stock prices

More information

Near-expiration behavior of implied volatility for exponential Lévy models

Near-expiration behavior of implied volatility for exponential Lévy models Near-expiration behavior of implied volatility for exponential Lévy models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Mathematics Seminar The Stevanovich Center for

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps

Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps Numerical Methods for Pricing Energy Derivatives, including Swing Options, in the Presence of Jumps, Senior Quantitative Analyst Motivation: Swing Options An electricity or gas SUPPLIER needs to be capable,

More information

Estimation of High-Frequency Volatility: An Autoregressive Conditional Duration Approach

Estimation of High-Frequency Volatility: An Autoregressive Conditional Duration Approach Estimation of High-Frequency Volatility: An Autoregressive Conditional Duration Approach Yiu-Kuen Tse School of Economics, Singapore Management University Thomas Tao Yang Department of Economics, Boston

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

Effectiveness of CPPI Strategies under Discrete Time Trading

Effectiveness of CPPI Strategies under Discrete Time Trading Effectiveness of CPPI Strategies under Discrete Time Trading S. Balder, M. Brandl 1, Antje Mahayni 2 1 Department of Banking and Finance, University of Bonn 2 Department of Accounting and Finance, Mercator

More information

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation

Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Asymptotic Theory for Renewal Based High-Frequency Volatility Estimation Yifan Li 1,2 Ingmar Nolte 1 Sandra Nolte 1 1 Lancaster University 2 University of Manchester 4th Konstanz - Lancaster Workshop on

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Optimal Securitization via Impulse Control

Optimal Securitization via Impulse Control Optimal Securitization via Impulse Control Rüdiger Frey (joint work with Roland C. Seydel) Mathematisches Institut Universität Leipzig and MPI MIS Leipzig Bachelier Finance Society, June 21 (1) Optimal

More information

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction

Approximations of Stochastic Programs. Scenario Tree Reduction and Construction Approximations of Stochastic Programs. Scenario Tree Reduction and Construction W. Römisch Humboldt-University Berlin Institute of Mathematics 10099 Berlin, Germany www.mathematik.hu-berlin.de/~romisch

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

Self-Exciting Corporate Defaults: Contagion or Frailty?

Self-Exciting Corporate Defaults: Contagion or Frailty? 1 Self-Exciting Corporate Defaults: Contagion or Frailty? Kay Giesecke CreditLab Stanford University giesecke@stanford.edu www.stanford.edu/ giesecke Joint work with Shahriar Azizpour, Credit Suisse Self-Exciting

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Estimating Bivariate GARCH-Jump Model Based on High Frequency Data : the case of revaluation of Chinese Yuan in July 2005

Estimating Bivariate GARCH-Jump Model Based on High Frequency Data : the case of revaluation of Chinese Yuan in July 2005 Estimating Bivariate GARCH-Jump Model Based on High Frequency Data : the case of revaluation of Chinese Yuan in July 2005 Xinhong Lu, Koichi Maekawa, Ken-ichi Kawai July 2006 Abstract This paper attempts

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Volume and volatility in European electricity markets

Volume and volatility in European electricity markets Volume and volatility in European electricity markets Roberto Renò reno@unisi.it Dipartimento di Economia Politica, Università di Siena Commodities 2007 - Birkbeck, 17-19 January 2007 p. 1/29 Joint work

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Operational Risk. Robert Jarrow. September 2006

Operational Risk. Robert Jarrow. September 2006 1 Operational Risk Robert Jarrow September 2006 2 Introduction Risk management considers four risks: market (equities, interest rates, fx, commodities) credit (default) liquidity (selling pressure) operational

More information

Logarithmic derivatives of densities for jump processes

Logarithmic derivatives of densities for jump processes Logarithmic derivatives of densities for jump processes Atsushi AKEUCHI Osaka City University (JAPAN) June 3, 29 City University of Hong Kong Workshop on Stochastic Analysis and Finance (June 29 - July

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Numerical valuation for option pricing under jump-diffusion models by finite differences

Numerical valuation for option pricing under jump-diffusion models by finite differences Numerical valuation for option pricing under jump-diffusion models by finite differences YongHoon Kwon Younhee Lee Department of Mathematics Pohang University of Science and Technology June 23, 2010 Table

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Modeling the extremes of temperature time series. Debbie J. Dupuis Department of Decision Sciences HEC Montréal

Modeling the extremes of temperature time series. Debbie J. Dupuis Department of Decision Sciences HEC Montréal Modeling the extremes of temperature time series Debbie J. Dupuis Department of Decision Sciences HEC Montréal Outline Fig. 1: S&P 500. Daily negative returns (losses), Realized Variance (RV) and Jump

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Semi-Markov model for market microstructure and HFT

Semi-Markov model for market microstructure and HFT Semi-Markov model for market microstructure and HFT LPMA, University Paris Diderot EXQIM 6th General AMaMeF and Banach Center Conference 10-15 June 2013 Joint work with Huyên PHAM LPMA, University Paris

More information

Anumericalalgorithm for general HJB equations : a jump-constrained BSDE approach

Anumericalalgorithm for general HJB equations : a jump-constrained BSDE approach Anumericalalgorithm for general HJB equations : a jump-constrained BSDE approach Nicolas Langrené Univ. Paris Diderot - Sorbonne Paris Cité, LPMA, FiME Joint work with Idris Kharroubi (Paris Dauphine),

More information

Dependence Structure and Extreme Comovements in International Equity and Bond Markets

Dependence Structure and Extreme Comovements in International Equity and Bond Markets Dependence Structure and Extreme Comovements in International Equity and Bond Markets René Garcia Edhec Business School, Université de Montréal, CIRANO and CIREQ Georges Tsafack Suffolk University Measuring

More information

Variable Annuities with Lifelong Guaranteed Withdrawal Benefits

Variable Annuities with Lifelong Guaranteed Withdrawal Benefits Variable Annuities with Lifelong Guaranteed Withdrawal Benefits presented by Yue Kuen Kwok Department of Mathematics Hong Kong University of Science and Technology Hong Kong, China * This is a joint work

More information

Discrete time interest rate models

Discrete time interest rate models slides for the course Interest rate theory, University of Ljubljana, 2012-13/I, part II József Gáll University of Debrecen, Faculty of Economics Nov. 2012 Jan. 2013, Ljubljana Introduction to discrete

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Jumps in Equilibrium Prices. and Market Microstructure Noise

Jumps in Equilibrium Prices. and Market Microstructure Noise Jumps in Equilibrium Prices and Market Microstructure Noise Suzanne S. Lee and Per A. Mykland Abstract Asset prices we observe in the financial markets combine two unobservable components: equilibrium

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS

SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS SHORT-TIME IMPLIED VOLATILITY IN EXPONENTIAL LÉVY MODELS ERIK EKSTRÖM1 AND BING LU Abstract. We show that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Economics 883: The Basic Diffusive Model, Jumps, Variance Measures, and Noise Corrections. George Tauchen. Economics 883FS Spring 2014

Economics 883: The Basic Diffusive Model, Jumps, Variance Measures, and Noise Corrections. George Tauchen. Economics 883FS Spring 2014 Economics 883: The Basic Diffusive Model, Jumps, Variance Measures, and Noise Corrections George Tauchen Economics 883FS Spring 2014 Main Points 1. The Continuous Time Model, Theory and Simulation 2. Observed

More information