STAT/MATH 395 PROBABILITY II

Size: px
Start display at page:

Download "STAT/MATH 395 PROBABILITY II"

Transcription

1 STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017

2 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws of Large Numbers The Central Limit Theorem

3 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws of Large Numbers The Central Limit Theorem

4 Internet usage time in the United States Time spent on selected platforms by digital population in the United States as of December 2015 (in billion minutes)

5 Definition (i.i.d. Sample) Let X 1,..., X n be collection of n N random variables on probability space (Ω, A, P). (X 1,..., X n ) is a random sample of size n if and only if: (1) X 1,..., X n are mutually independent (2) X 1,..., X n are identically distributed We say that X 1,..., X n are independent and identically distributed (abbreviated i.i.d.). Definition (Sample mean) Let (X 1,..., X n ) be a random sample.then the random variable is called the sample mean. X n = 1 n X i (1) n i=1

6 Definition (Independence) Let X 1,..., X n be n N rrvs on probability space (Ω, A, P). Then X 1,..., X n are said to be independent if and only if : (Discrete case) For all (x 1,..., x n ) X 1 (Ω)... X n (Ω) n p X1...X n (x 1,..., x n ) = p Xi (x i ), (2) i=1 (Continuous case) For all (x 1,..., x n ) R n n f X1...X n (x 1,..., x n ) = f Xi (x i ), (3) i=1

7 Property (Distribution of iid sample) Let (X 1,..., X n ) be a random sample of size n N on probability space (Ω, A, P). Then (Discrete case) For all (x 1,..., x n ) X 1 (Ω)... X n (Ω) n p X1...X n (x 1,..., x n ) = p X1 (x i ), (4) i=1 (Continuous case) For all (x 1,..., x n ) R n n f X1...X n (x 1,..., x n ) = f X1 (x i ), (5) i=1 Example. Let (X 1,..., X n ) be a random sample of size n N from an exponential distribution with parameter λ. Give the joint pdf of the sample.

8 Definition (Expected Value) Let X 1,..., X n be n N rrvs on probability space (Ω, A, P) and let g : R n R. Then, the mathematical expectation of g(x 1... X n ), if it exists, is : (Discrete case) E[g(X 1... X n )] = (Continuous case) E[g(X 1... X n )] = x 1 X 1 (Ω)... x n X n(ω) g(x 1,..., x n )p X1...X n (x 1,..., x n ) g(x 1,..., x n )f X1...X n (x 1,..., x n ) R n (6) (7)

9 Theorem Let X 1,..., X n be n N independent rrvs on probability space (Ω, A, P) and let g 1,..., g n be n real-valued functions on R. Then, E[g 1 (X 1 )... g n (X n )] = E[g 1 (X 1 )]... E[g n (X n )] (8) provided that the expectations exist. Theorem (Variance of independent rrvs) Let X 1,..., X n be n N independent rrvs on probability space (Ω, A, P). Then, provided that the variances exist. ( n ) n Var X i = Var(X i ) (9) i=1 i=1

10 Property Let (X 1,..., X n ) be a random sample of size n N on probability space (Ω, A, P) with mean µ = E[X 1 ] and variance σ 2 = Var(X 1 ) <. Then E[X n ] = µ (10) and Var(X n ) = σ2 n (11)

11 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws of Large Numbers The Central Limit Theorem

12 Definition Let (X n ) n N be a sequence of rrvs on probability space (Ω, A, P) and X be a rrv on the same probability space. Sequence (X n ) is said to converge in probability towards X if, for all ɛ > 0 : lim P ( X n X > ɛ) = 0 (12) n Convergence in probability is denoted as follows : X n P X Example Let X be a discrete rrv with pmf p X defined by : 1/3 if x = 1 p X (x) = 2/3 if x = 0 0 otherwise and let X n = (1 + 1 n )X.

13 Definition Let (X n ) n N be a sequence of rrvs on probability space (Ω, A, P) and X be a rrv on the same probability space. Sequence (X n ) is said to converge almost surely or almost everywhere or with probability 1 or strongly towards X if: ( ) P lim X n = X = 1 (13) n Almost sure convergence is denoted as follows : X n a.s. X

14 Definition Let (X n ) n N be a sequence of rrvs on probability space (Ω, A, P). For any n, the distribution function of X n is denoted by F n. Let X be a rrv with distribution function F X. Sequence (X n ) is said to converge in distribution or converge weakly towards X if: lim F n (x) = F X (x) (14) n for all x R at which F X is continuous. Convergence in distribution is denoted as follows : X n D X Example. Let (X n ) n N be a sequence of rrvs with cdf F n ( ( F n (x) = ) nx ) 1 n (0, ) (x)

15 Theorem Let (X n ) n N be a sequence of rrvs on probability space (Ω, A, P) with respective mgfs M n. Let X be a rrv with mgf M X. If the following holds : lim M n (x) = M X (x) (15) n for all x R where M n (x) and M X (x) exist, then sequence (X n ) converges in distribution to X.

16 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws of Large Numbers The Central Limit Theorem

17 Property (Markov s Inequality) Let X be a rrv that takes only on nonnegative values. Then, for any a > 0, we have : P(X a) E[X] a (16) Property (Bienaymé-Chebyshev s Inequality) Let X be a rrv that has expectation and variance. Then, for any α > 0, we have : P ( X E[X] α) Var(X) α 2 (17)

18 Theorem (Weak law of large numbers) Let (X n ) n N be a sequence of i.i.d. rrvs, each having finite expectation. The weak law of large numbers (also called Khintchine s law) states that the sample mean X n converges in probability towards E[X 1 ], that is, for all ɛ > 0 : ( ) lim P X n E[X 1 ] > ɛ = 0 (18) n

19 Theorem (Strong law of large numbers) Let (X n ) n N be a sequence of i.i.d. rrvs, each having finite expectation. The strong law of large numbers (also called Kolmogorov s strong law) states that the sample mean X n converges almost surely towards E[X 1 ], that is: ( ) P lim X n = E[X 1 ] = 1 (19) n

20 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws of Large Numbers The Central Limit Theorem

21 Property Let X 1,..., X n be n N independent rrvs on probability space (Ω, A, P) with respective moment generating functions M 1,..., M n. Then the moment generating function of is : for all x R where M n (x) exist. n S n = X i i=1 n M Sn (x) = M i (x) (20) i=1

22 Corollary (Mgf of iid sample) Let (X 1,..., X n ) be a random sample of size n N on probability space (Ω, A, P) with moment generating function M = M X1. Then the moment generating function of n S n = X i i=1 is : M Sn (x) = (M(x)) n (21) for all x R where M(x) exists.

23 Theorem (Central Limit Theorem) Let (X n ) n N be a sequence of i.i.d. rrvs, each having expectation E[X 1 ] = µ and finite variance Var(X 1 ) = σ 2 <. The Central Limit Theorem states that the sequence of variables (Z n ) n N defined by: Z n = X n µ σ 2 n converges in distribution towards Z following a standard normal distribution N (0, 1), that is: lim F Zn (x) = Φ(x), for all x R (22) n

24 Example Let (X 1,..., X 15 ) be a random sample with probability density function : f (x) = 3 2 x 2 1 ( 1,1) (x) What is the approximate probability that the sample mean X 15 falls between -2/5 and 1/5?

25 Example Let (X n ) be a sequence of i.i.d. Poisson random variables with mean 3. Estimate approximately how large n must be such that: ( P ) n X i > 0.1 = 0.1. n i=1

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

Chapter 3 - Lecture 4 Moments and Moment Generating Funct

Chapter 3 - Lecture 4 Moments and Moment Generating Funct Chapter 3 - Lecture 4 and s October 7th, 2009 Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness The expected value of

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007

Math 489/Math 889 Stochastic Processes and Advanced Mathematical Finance Dunbar, Fall 2007 Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 68588-0130 http://www.math.unl.edu Voice: 402-472-3731 Fax: 402-472-8466 Math 489/Math 889 Stochastic

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016

508-B (Statistics Camp, Wash U, Summer 2016) Asymptotics. Author: Andrés Hincapié and Linyi Cao. This Version: August 9, 2016 Asymtotics Author: Anrés Hincaié an Linyi Cao This Version: August 9, 2016 Asymtotics 3 In arametric moels, we usually assume that the oulation follows some istribution F (x θ) with unknown θ. Knowing

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

18.440: Lecture 32 Strong law of large numbers and Jensen s inequality

18.440: Lecture 32 Strong law of large numbers and Jensen s inequality 18.440: Lecture 32 Strong law of large numbers and Jensen s inequality Scott Sheffield MIT 1 Outline A story about Pedro Strong law of large numbers Jensen s inequality 2 Outline A story about Pedro Strong

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

Central Limit Thm, Normal Approximations

Central Limit Thm, Normal Approximations Central Limit Thm, Normal Approximations Engineering Statistics Section 5.4 Josh Engwer TTU 23 March 2016 Josh Engwer (TTU) Central Limit Thm, Normal Approximations 23 March 2016 1 / 26 PART I PART I:

More information

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum

Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Normal Distribution and Brownian Process Page 1 Outline Brownian Process Continuity of Sample Paths Differentiability of Sample Paths Simulating Sample Paths Hitting times and Maximum Searching for a Continuous-time

More information

Elementary Statistics Lecture 5

Elementary Statistics Lecture 5 Elementary Statistics Lecture 5 Sampling Distributions Chong Ma Department of Statistics University of South Carolina Chong Ma (Statistics, USC) STAT 201 Elementary Statistics 1 / 24 Outline 1 Introduction

More information

Welcome to Stat 410!

Welcome to Stat 410! Welcome to Stat 410! Personnel Instructor: Liang, Feng TA: Gan, Gary (Lingrui) Instructors/TAs from two other sessions Websites: Piazza and Compass Homework When, where and how to submit your homework

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Probability without Measure!

Probability without Measure! Probability without Measure! Mark Saroufim University of California San Diego msaroufi@cs.ucsd.edu February 18, 2014 Mark Saroufim (UCSD) It s only a Game! February 18, 2014 1 / 25 Overview 1 History of

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

arxiv: v1 [math.st] 18 Sep 2018

arxiv: v1 [math.st] 18 Sep 2018 Gram Charlier and Edgeworth expansion for sample variance arxiv:809.06668v [math.st] 8 Sep 08 Eric Benhamou,* A.I. SQUARE CONNECT, 35 Boulevard d Inkermann 900 Neuilly sur Seine, France and LAMSADE, Universit

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

Chapter 2: Random Variables (Cont d)

Chapter 2: Random Variables (Cont d) Chapter : Random Variables (Cont d) Section.4: The Variance of a Random Variable Problem (1): Suppose that the random variable X takes the values, 1, 4, and 6 with probability values 1/, 1/6, 1/, and 1/6,

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence

Convergence. Any submartingale or supermartingale (Y, F) converges almost surely if it satisfies E Y n <. STAT2004 Martingale Convergence Convergence Martingale convergence theorem Let (Y, F) be a submartingale and suppose that for all n there exist a real value M such that E(Y + n ) M. Then there exist a random variable Y such that Y n

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

STOR Lecture 7. Random Variables - I

STOR Lecture 7. Random Variables - I STOR 435.001 Lecture 7 Random Variables - I Shankar Bhamidi UNC Chapel Hill 1 / 31 Example 1a: Suppose that our experiment consists of tossing 3 fair coins. Let Y denote the number of heads that appear.

More information

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions.

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions. (DMSTT 0 NR) ASSIGNMENT -, MAY-04. PAPER- I : PROBABILITY AND DISTRIBUTION THEORY ) a) State and prove Borel-cantelli lemma b) Let (x, y) be jointly distributed with density 4 y(+ x) f( x, y) = y(+ x)

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Theoretical Statistics. Lecture 4. Peter Bartlett

Theoretical Statistics. Lecture 4. Peter Bartlett 1. Concentration inequalities. Theoretical Statistics. Lecture 4. Peter Bartlett 1 Outline of today s lecture We have been looking at deviation inequalities, i.e., bounds on tail probabilities likep(x

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

9 Expectation and Variance

9 Expectation and Variance 9 Expectation and Variance Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN PROBABILITY With Applications and R ROBERT P. DOBROW Department of Mathematics Carleton College Northfield, MN Wiley CONTENTS Preface Acknowledgments Introduction xi xiv xv 1 First Principles 1 1.1 Random

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics and Statistics Washington State University Lisbon, May 218 Haijun Li An Introduction to Stochastic Calculus Lisbon,

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

A class of coherent risk measures based on one-sided moments

A class of coherent risk measures based on one-sided moments A class of coherent risk measures based on one-sided moments T. Fischer Darmstadt University of Technology November 11, 2003 Abstract This brief paper explains how to obtain upper boundaries of shortfall

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

STAT Chapter 7: Central Limit Theorem

STAT Chapter 7: Central Limit Theorem STAT 251 - Chapter 7: Central Limit Theorem In this chapter we will introduce the most important theorem in statistics; the central limit theorem. What have we seen so far? First, we saw that for an i.i.d

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Lecture Neyman Allocation vs Proportional Allocation and Stratified Random Sampling vs Simple Random Sampling

Lecture Neyman Allocation vs Proportional Allocation and Stratified Random Sampling vs Simple Random Sampling Math 408 - Mathematical Statistics Lecture 20-21. Neyman Allocation vs Proportional Allocation and Stratified Random Sampling vs Simple Random Sampling March 8-13, 2013 Konstantin Zuev (USC) Math 408,

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions Bernoulli and Binomial Distributions Bernoulli Distribution a flipped coin turns up either heads or tails an item on an assembly line is either defective or not defective a piece of fruit is either damaged

More information

I. Time Series and Stochastic Processes

I. Time Series and Stochastic Processes I. Time Series and Stochastic Processes Purpose of this Module Introduce time series analysis as a method for understanding real-world dynamic phenomena Define different types of time series Explain the

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Lecture 22. Survey Sampling: an Overview

Lecture 22. Survey Sampling: an Overview Math 408 - Mathematical Statistics Lecture 22. Survey Sampling: an Overview March 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 22 March 25, 2013 1 / 16 Survey Sampling: What and Why In surveys sampling

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

Modelling financial data with stochastic processes

Modelling financial data with stochastic processes Modelling financial data with stochastic processes Vlad Ardelean, Fabian Tinkl 01.08.2012 Chair of statistics and econometrics FAU Erlangen-Nuremberg Outline Introduction Stochastic processes Volatility

More information

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable

6 If and then. (a) 0.6 (b) 0.9 (c) 2 (d) Which of these numbers can be a value of probability distribution of a discrete random variable 1. A number between 0 and 1 that is use to measure uncertainty is called: (a) Random variable (b) Trial (c) Simple event (d) Probability 2. Probability can be expressed as: (a) Rational (b) Fraction (c)

More information

Martingales. by D. Cox December 2, 2009

Martingales. by D. Cox December 2, 2009 Martingales by D. Cox December 2, 2009 1 Stochastic Processes. Definition 1.1 Let T be an arbitrary index set. A stochastic process indexed by T is a family of random variables (X t : t T) defined on a

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

Point Estimation. Edwin Leuven

Point Estimation. Edwin Leuven Point Estimation Edwin Leuven Introduction Last time we reviewed statistical inference We saw that while in probability we ask: given a data generating process, what are the properties of the outcomes?

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions

UNIVERSITY OF VICTORIA Midterm June 2014 Solutions UNIVERSITY OF VICTORIA Midterm June 04 Solutions NAME: STUDENT NUMBER: V00 Course Name & No. Inferential Statistics Economics 46 Section(s) A0 CRN: 375 Instructor: Betty Johnson Duration: hour 50 minutes

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Basic notions of probability theory: continuous probability distributions. Piero Baraldi

Basic notions of probability theory: continuous probability distributions. Piero Baraldi Basic notions of probability theory: continuous probability distributions Piero Baraldi Probability distributions for reliability, safety and risk analysis: discrete probability distributions continuous

More information