Chapter 4: Asymptotic Properties of MLE (Part 3)

Size: px
Start display at page:

Download "Chapter 4: Asymptotic Properties of MLE (Part 3)"

Transcription

1 Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1

2 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to Score Equations Number of Parameters Increase with the Sample Size Support of p(x; θ) depends on θ Non-I.I.D. Data 2 / 1

3 Non-Existence of the MLE The non-existence of the MLE may occur for all values of x n or for only some of them. In general, this is due either to the fact that the parameter space is not compact or that the log-likelihood is discontinuous in θ. Example 4.1: Suppose that X Bernoulli(1/(1 + exp(θ)), where Θ = R. If we observe x = 1, then L(θ; 1) = 1/(1 + exp(θ)). The likelihood function is a decreasing function of θ and the maximum is not attained on Θ. If Θ were closed, i.e., Θ = R, the MLE would be. Example 4.2: Suppose that X Normal(µ, σ 2 ). So, θ = (µ, σ 2 ) and Θ = R R +. Now, l(θ; x) log σ 1 (x µ) 2. Take 2σ 2 µ = x. Then as σ 0, l(θ; x) +. So, the MLE does not exist. 3 / 1

4 Multiple Solutions One reason for multiple solutions to the maximization problem is non-identification of the parameter θ. Example 4.3: Suppose that Y Normal(X θ, I ), where X is an n k matrix with rank smaller than k and θ Θ R k. The density function is p(y; θ) = (2π) n/2 exp( 1 2 (y X θ) (y X θ)) Since X is not full rank, there exists an infinite number of solutions to X θ = 0. That means that there exists an infinite number of θ s that generate the same density function. So, θ is not identified. Furthermore, note that the likelihood is maximized at all values of θ satisfying X X θ = X y. 4 / 1

5 Multiple Roots to the Score Equations Even though the score equations may have multiple roots for fixed n, we can still use our theorems to show consistency and asymptotic normality. This will work provided that as n gets large there is a unique maximum with large probability. Example 4.4: Suppose that X n = (X 1,..., X n ), where the X i s are i.i.d. Cauchy(θ, 1). We assume that θ 0 lies in the interior of a compact set Θ R. So, p(x; θ) = 1 π(1 + (x θ) 2 ) So, the log-likelihood for the full sample is l(θ; x) = n log π log(1 + (x i θ) 2 ) Note that as θ ±, l(θ; x). 5 / 1

6 Multiple Roots to the Score Equations The score for θ is given by dl(θ; x) dθ = 2(x i θ) 1 + (x i θ) 2 There can be multiple roots to the score equations. Regardless, the MLE is consistent (see Homework 2). 6 / 1

7 Number of Parameters Increase with the Sample Size Up to now, we have implicitly assumed that the number of parameters is equal to a fixed constant k. In some cases the number of parameters increases naturally with the number of observations. In such cases, the MLE may i. no longer converge ii. may converge to a parameter value different than θ 0 iii. may still converge to θ 0. In general, the outcome depends on the importance of the number of parameters relative to the number of observations. 7 / 1

8 Example 8.5: (Neyman-Scott, Econometrika, 1948) Suppose that X n = (X 1,..., X n ), where the X i s are independent with X i = (X i1, X i2 ), X i1 independent of X i2 and X ip N(µ i, σ 2 ) for p = 1, 2. We are interested in estimating the µ i s and σ 2. In this problem, we have n + 1 parameters. The likelihood function is L(µ 1,..., µ n, σ 2 ; x n ) = n It is easy to show that the MLE s are 1 2πσ 2 exp( 1 2σ 2 2 (X ip µ i ) 2 ) p=1 ˆµ i = 1 2 (X i1 + X i2 ) for i = 1,..., n ˆσ 2 = 1 2n p=1 2 (X ip ˆµ i ) 2 8 / 1

9 Example 4.5: (Neyman-Scott, Econometrika, 1948) Note that ˆµ i doesn t converge to µ i and we can show that ˆσ 2 converges in probability to σ 2 /2. To show this latter fact, note that we can express ˆσ 2 as 1 n 4n (X i1 X i2 ) 2. Let Z i = X i1 X 2σ i2. Then Z i N(0, 1) and Zi 2 is χ 2 1. Since we have an i.i.d. sample of Z 2 i s, we can employ the WLLN to show that 1 n This implies that ˆσ 2 = σ2 2 1 n Z 2 i P σ2 2 n Z 2 i P 1. 9 / 1

10 Example 4.6 Suppose that X n = (X 1,..., X n ), where the X i s are independent with X i = (X i1, X i2,..., X in ), X ip s are independent N(µ i, σ 2 ) random variables for p = 1, 2,..., n. We are interested in estimating the µ i s and σ 2. Again, we have n + 1 parameters. The likelihood function is L(µ 1,..., µ n, σ 2 ; x n ) = n 1 2πσ 2 exp( 1 2σ 2 (X ip µ i ) 2 ) p=1 It is easy to show that the MLE s are ˆµ i = 1 X ip for i = 1,..., n n p=1 ˆσ 2 = 1 n 2 p=1 (X ip ˆµ i ) 2 By the WLLN, we know that ˆµ i converges in probability to µ i and we can also show that ˆσ 2 converges in probability to σ / 1

11 Support of p(x; θ) depends on θ In this case, the MLE is frequently consistent, but not asymptotically normal. Example 4.7: Suppose X n = (X 1,..., X n ), where the X i s are i.i.d. from a shifted exponential. That is, p(x; θ) = exp( (x θ))i (x θ) Then, the likelihood for the full sample is L(θ; x n ) = exp( (x i θ))i (min x i θ) 11 / 1

12 Support of p(x; θ) depends on θ The MLE for θ is min X i or the first order statistic X (1). Note that the likelihood is not differentiable at the MLE. This violates condition (iv) of Theorem 4.6. We can show that the MLE is consistent. P θ0 [ X (1) θ 0 > ɛ] = P θ0 [X (1) θ 0 > ɛ] + P θ0 [X (1) θ 0 < ɛ] = P θ0 [X (1) > θ 0 + ɛ] + P θ0 [X (1) < θ 0 ɛ] n = P θ0 [X i > θ 0 + ɛ] = exp( nɛ) 0 12 / 1

13 Support of p(x; θ) depends on θ It is obvious that n(x (1) θ 0 ) cannot be centered at zero since X (1) is always greater than θ 0. W can show that n(x (1) θ 0 ) D Exponential(1). To see this, not that P θ0 [n(x (1) θ 0 ) a] = P θ0 [X (1) a/n + θ 0 ] = P θ0 [X i a/n + θ 0 ] n = exp( a) Here the rate of convergence is n instead of n. 13 / 1

14 Non-I.I.D. Data Example 4.8: Consider independent random variables Y i Normal(θx i, 1), where the x i s are given constants. The MLE of θ is ˆθ = x i Y i / xi 2 Normal(θ, 1/ xi 2 ) This estimator may not be consistent. Suppose that n x i 2 1. Then, we know that ˆθ D(θ 0) N(θ 0, 1), which is not θ 0. If n x 2 i, then ˆθ is consistent. To see this, note that ˆθ is unbiased and its variance goes to zero. 14 / 1

15 Non-I.I.D. Data What about the limiting distribution of n(ˆθ θ 0 )? We know that n xi 2(ˆθ θ 0 ) D N(0, 1) If n/ n x 2 i it converges at n x 2 i 1, then ˆθ converges at n rates. In general, rates. 15 / 1

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice.

Likelihood Methods of Inference. Toss coin 6 times and get Heads twice. Methods of Inference Toss coin 6 times and get Heads twice. p is probability of getting H. Probability of getting exactly 2 heads is 15p 2 (1 p) 4 This function of p, is likelihood function. Definition:

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

CS340 Machine learning Bayesian model selection

CS340 Machine learning Bayesian model selection CS340 Machine learning Bayesian model selection Bayesian model selection Suppose we have several models, each with potentially different numbers of parameters. Example: M0 = constant, M1 = straight line,

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

Qualifying Exam Solutions: Theoretical Statistics

Qualifying Exam Solutions: Theoretical Statistics Qualifying Exam Solutions: Theoretical Statistics. (a) For the first sampling plan, the expectation of any statistic W (X, X,..., X n ) is a polynomial of θ of degree less than n +. Hence τ(θ) cannot have

More information

Introduction to the Maximum Likelihood Estimation Technique. September 24, 2015

Introduction to the Maximum Likelihood Estimation Technique. September 24, 2015 Introduction to the Maximum Likelihood Estimation Technique September 24, 2015 So far our Dependent Variable is Continuous That is, our outcome variable Y is assumed to follow a normal distribution having

More information

Chapter 6: Point Estimation

Chapter 6: Point Estimation Chapter 6: Point Estimation Professor Sharabati Purdue University March 10, 2014 Professor Sharabati (Purdue University) Point Estimation Spring 2014 1 / 37 Chapter Overview Point estimator and point estimate

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006 Random Samples Mathematics 47: Lecture 6 Dan Sloughter Furman University March 13, 2006 Dan Sloughter (Furman University) Random Samples March 13, 2006 1 / 9 Random sampling Definition We call a sequence

More information

Hardy Weinberg Model- 6 Genotypes

Hardy Weinberg Model- 6 Genotypes Hardy Weinberg Model- 6 Genotypes Silvelyn Zwanzig Hardy -Weinberg with six genotypes. In a large population of plants (Mimulus guttatus there are possible alleles S, I, F at one locus resulting in six

More information

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE)

CSE 312 Winter Learning From Data: Maximum Likelihood Estimators (MLE) CSE 312 Winter 2017 Learning From Data: Maximum Likelihood Estimators (MLE) 1 Parameter Estimation Given: independent samples x1, x2,..., xn from a parametric distribution f(x θ) Goal: estimate θ. Not

More information

Learning From Data: MLE. Maximum Likelihood Estimators

Learning From Data: MLE. Maximum Likelihood Estimators Learning From Data: MLE Maximum Likelihood Estimators 1 Parameter Estimation Assuming sample x1, x2,..., xn is from a parametric distribution f(x θ), estimate θ. E.g.: Given sample HHTTTTTHTHTTTHH of (possibly

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2013 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2013 1 / 31

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

PROBABILITY AND STATISTICS

PROBABILITY AND STATISTICS Monday, January 12, 2015 1 PROBABILITY AND STATISTICS Zhenyu Ye January 12, 2015 Monday, January 12, 2015 2 References Ch10 of Experiments in Modern Physics by Melissinos. Particle Physics Data Group Review

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

STAT 111 Recitation 4

STAT 111 Recitation 4 STAT 111 Recitation 4 Linjun Zhang http://stat.wharton.upenn.edu/~linjunz/ September 29, 2017 Misc. Mid-term exam time: 6-8 pm, Wednesday, Oct. 11 The mid-term break is Oct. 5-8 The next recitation class

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Comparing the Means of. Two Log-Normal Distributions: A Likelihood Approach

Comparing the Means of. Two Log-Normal Distributions: A Likelihood Approach Journal of Statistical and Econometric Methods, vol.3, no.1, 014, 137-15 ISSN: 179-660 (print), 179-6939 (online) Scienpress Ltd, 014 Comparing the Means of Two Log-Normal Distributions: A Likelihood Approach

More information

Conjugate Models. Patrick Lam

Conjugate Models. Patrick Lam Conjugate Models Patrick Lam Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Huber smooth M-estimator. Mâra Vçliòa, Jânis Valeinis. University of Latvia. Sigulda,

Huber smooth M-estimator. Mâra Vçliòa, Jânis Valeinis. University of Latvia. Sigulda, University of Latvia Sigulda, 28.05.2011 Contents M-estimators Huber estimator Smooth M-estimator Empirical likelihood method for M-estimators Introduction Aim: robust estimation of location parameter

More information

CSC 411: Lecture 08: Generative Models for Classification

CSC 411: Lecture 08: Generative Models for Classification CSC 411: Lecture 08: Generative Models for Classification Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 08-Generative Models 1 / 23 Today Classification

More information

The method of Maximum Likelihood.

The method of Maximum Likelihood. Maximum Likelihood The method of Maximum Likelihood. In developing the least squares estimator - no mention of probabilities. Minimize the distance between the predicted linear regression and the observed

More information

Exam 1 Spring 2015 Statistics for Applications 3/5/2015

Exam 1 Spring 2015 Statistics for Applications 3/5/2015 8.443 Exam Sprig 05 Statistics for Applicatios 3/5/05. Log Normal Distributio: A radom variable X follows a Logormal(θ, σ ) distributio if l(x) follows a Normal(θ, σ ) distributio. For the ormal radom

More information

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration

Stochastic Models. Statistics. Walt Pohl. February 28, Department of Business Administration Stochastic Models Statistics Walt Pohl Universität Zürich Department of Business Administration February 28, 2013 The Value of Statistics Business people tend to underestimate the value of statistics.

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Log-linear Modeling Under Generalized Inverse Sampling Scheme

Log-linear Modeling Under Generalized Inverse Sampling Scheme Log-linear Modeling Under Generalized Inverse Sampling Scheme Soumi Lahiri (1) and Sunil Dhar (2) (1) Department of Mathematical Sciences New Jersey Institute of Technology University Heights, Newark,

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

STAT 111 Recitation 3

STAT 111 Recitation 3 STAT 111 Recitation 3 Linjun Zhang stat.wharton.upenn.edu/~linjunz/ September 23, 2017 Misc. The unpicked-up homeworks will be put in the STAT 111 box in the Stats Department lobby (It s on the 4th floor

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Computer Statistics with R

Computer Statistics with R MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology []

More information

Bayesian Linear Model: Gory Details

Bayesian Linear Model: Gory Details Bayesian Linear Model: Gory Details Pubh7440 Notes By Sudipto Banerjee Let y y i ] n i be an n vector of independent observations on a dependent variable (or response) from n experimental units. Associated

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil]

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil] START HERE: Instructions Thanks a lot to John A.W.B. Constanzo and Shi Zong for providing and allowing to use the latex source files for quick preparation of the HW solution. The homework was due at 9:00am

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

ECON 5350 Class Notes Maximum Likelihood Estimation

ECON 5350 Class Notes Maximum Likelihood Estimation ECON 5350 Class Notes Maximum Likelihood Estimatio 1 Maximum Likelihood Estimatio Example #1. Cosider the radom sample {X 1 = 0.5, X 2 = 2.0, X 3 = 10.0, X 4 = 1.5, X 5 = 7.0} geerated from a expoetial

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Further Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Outline

More information

Chapter 6. Importance sampling. 6.1 The basics

Chapter 6. Importance sampling. 6.1 The basics Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ E[X]. There is an event E such that P(E) is small but

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Objective Bayesian Analysis for Heteroscedastic Regression

Objective Bayesian Analysis for Heteroscedastic Regression Analysis for Heteroscedastic Regression & Esther Salazar Universidade Federal do Rio de Janeiro Colóquio Inter-institucional: Modelos Estocásticos e Aplicações 2009 Collaborators: Marco Ferreira and Thais

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Parameter Estimation for the Lognormal Distribution

Parameter Estimation for the Lognormal Distribution Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2009-11-13 Parameter Estimation for the Lognormal Distribution Brenda Faith Ginos Brigham Young University - Provo Follow this

More information

Point Estimation. Edwin Leuven

Point Estimation. Edwin Leuven Point Estimation Edwin Leuven Introduction Last time we reviewed statistical inference We saw that while in probability we ask: given a data generating process, what are the properties of the outcomes?

More information

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006.

12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. 12. Conditional heteroscedastic models (ARCH) MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. Autoregressive Conditional Heteroscedasticity with Estimates of Variance

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Probability & Statistics

Probability & Statistics Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics Statistics Descriptive statistics Inferential statistics /38 Inferential Statistics 1. Involves:

More information

Conditional Heteroscedasticity

Conditional Heteroscedasticity 1 Conditional Heteroscedasticity May 30, 2010 Junhui Qian 1 Introduction ARMA(p,q) models dictate that the conditional mean of a time series depends on past observations of the time series and the past

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Modeling and Estimation of

Modeling and Estimation of Modeling and of Financial and Actuarial Mathematics Christian Doppler Laboratory for Portfolio Risk Management Vienna University of Technology PRisMa 2008 29.09.2008 Outline 1 2 3 4 5 Credit ratings describe

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

The Vasicek Distribution

The Vasicek Distribution The Vasicek Distribution Dirk Tasche Lloyds TSB Bank Corporate Markets Rating Systems dirk.tasche@gmx.net Bristol / London, August 2008 The opinions expressed in this presentation are those of the author

More information

A Regime Switching model

A Regime Switching model Master Degree Project in Finance A Regime Switching model Applied to the OMXS30 and Nikkei 225 indices Ludvig Hjalmarsson Supervisor: Mattias Sundén Master Degree Project No. 2014:92 Graduate School Masters

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

2.1 Probability, stochastic variables and distribution functions

2.1 Probability, stochastic variables and distribution functions Chapter 2 Probability and statistics 2.1 Probability, stochastic variables and distribution functions The defining characteristic of a stochastic experiment E is that it produces different outcomes under

More information