Conjugate Models. Patrick Lam

Size: px
Start display at page:

Download "Conjugate Models. Patrick Lam"

Transcription

1 Conjugate Models Patrick Lam

2 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

3 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

4 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

5 Conjugacy Suppose we have a Bayesian model with a likelihood p(y θ) and a prior p(θ). If we multiply our likelihood and prior, we get our posterior p(θ y) up to a constant of proportionality. If our posterior is a distribution that is of the same family as our prior, then we have conjugacy. We say that the prior is conjugate to the likelihood. Conjugate models are great because we know the exact distribution of the posterior so we can easily simulate or derive quantities of interest analytically. In practice, we rarely have conjugacy.

6 Brief List of Conjugate Models Likelihood Prior Posterior Binomial Beta Beta Negative Binomial Beta Beta Poisson Gamma Gamma Geometric Beta Beta Exponential Gamma Gamma Normal (mean unknown) Normal Normal Normal (variance unknown) Inverse Gamma Inverse Gamma Normal (mean and variance unknown) Normal/Gamma Normal/Gamma Multinomial Dirichlet Dirichlet

7 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

8 A Binomial Example Suppose we have vector of data on voter turnout for a random sample of n voters in the 004 US Presidential election. We can model the voter turnout with a binomial model. Y Binomial(n, π) Quantity of interest: π (voter turnout) Assumptions: Each voter s decision to vote follows the Bernoulli distribution. Each voter has the same probability of voting. (unrealistic) Each voter s decision to vote is independent. (unrealistic)

9 The Conjugate Beta Prior We can use the beta distribution as a prior for π, since the beta distribution is conjugate to the binomial distribution. p(π y) p(y π)p(π) = Binomial(n, π) Beta(α, β) ( ) n = π y (n y) Γ(α + β) ( π) y Γ(α)Γ(β) π(α ) ( π) (β ) π y ( π) (n y) π (α ) ( π) (β ) p(π y) π y+α ( π) n y+β The posterior distribution is simply a Beta(y + α, n y + β) distribution. Effectively, our prior is just adding α successes and β failures to the dataset.

10 The Uninformative (Flat) Uniform Prior Suppose we have no strong prior beliefs about the parameters. We can choose a prior that gives equal weight to all possible values of the parameters, essentially an uninformative or flat prior. for all values of π. p(π) = constant For the binomial model, one example of a flat prior is the Beta(,) prior: p(π) = Γ() Γ()Γ() π( ) ( π) ( ) = which is the Uniform distribution over the [0, ] interval.

11 Since we know that a Binomial likelihood and a Beta(,) prior produces a Beta(y +, n y + ) posterior, we can simulate the posterior in R. Suppose our turnout data had 500 voters, of which 85 voted. > table(turnout) turnout Setting our prior parameters at α = and β =, > a <- > b <- we get the posterior > posterior.unif.prior <- rbeta(0000, shape = 85 + a, shape = b)

12 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

13 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

14 Normal Model with Unknown Mean, Known Variance Suppose we wish to estimate a model where the likelihood of the data is normal with an unknown mean µ and a known variance σ. Our parameter of interest is µ. We can use a conjugate Normal prior on µ, with mean µ 0 and variance τ 0. p(µ y, σ ) p(y µ, σ )p(µ) Normal(µ, τ ) = Normal(µ, σ ) Normal(µ 0, τ 0 )

15 Let θ represent our parameter of interest, in this case µ. p(θ y) ny i= exp (y «i θ) πσ σ p exp πτ 0! «(θ µ0) τ0 nx (y i θ) (θ µ0) exp σ τ i= 0 "!# = exp nx (y i θ) (θ µ0) + σ τ i= 0 "!# = exp nx τ σ τ0 0 (y i θ) +σ (θ µ 0) i= "!# = exp nx τ σ τ0 0 (yi θy i + θ )+σ (θ θµ 0 + µ 0) i=

16 We can multiply the θy i term in the summation by n n in order to get the equations in terms of the sufficient statistic ȳ. "!# p(θ y) exp nx τ σ τ0 0 (yi θ n n y i + θ )+σ (θ θµ 0 + µ 0) i= "!# = exp nx τ σ τ0 0 yi τ0 θnȳ + τ0 nθ +θ σ θµ 0σ + µ 0σ i= We can then factor the terms into several parts. Since µ 0 σ and τ0 n i= y i do not contain θ, we can represent them as some constant k, which we will drop into the normalizing constant.» p(θ y) exp θ σ + τ0 n θ µ 0σ + τ0 nȳ + k» = exp σ τ 0 θ σ + τ0 n σ τ0» = exp θ τ0 «θ + n σ «θ µ0σ + τ 0 nȳ µ0 τ 0 ««+ k σ τ0 + nȳ ««+ k σ

17 τ Let s multiply by 0 τ 0 p(θ y) exp 4 τ0 = exp 4 + n σ «+ n σ «in order to simplify the θ term. τ 0 = exp 4 τ n σ 0 + n «σ + n τ0 σ + n τ0 σ 0 + n «@θ σ 0 A µ 0 + nȳ τ0 σ + n τ0 σ µ 0 + nȳ τ0 σ + n τ0 σ µ 0 τ 0 τ 0 + nȳ σ + n σ 3 A + ka5 3 AA 5 3 A + ka5 Finally, we have something that looks like the density function of a Normal distribution!

18 p(θ y) exp 4 τ n «@θ σ µ 0 + nȳ τ0 σ + n τ0 σ 3 AA 5 Posterior Mean: µ = µ 0 τ 0 τ 0 + nȳ σ «+ n σ «Posterior Variance: τ = ( τ 0 + n σ ) Posterior Precision: τ = τ 0 + n σ Posterior Precision is just the sum of the prior precision and the data precision.

19 We can also look more closely at how the prior mean µ 0 and the posterior mean µ relate to each other. µ0 + nȳ τ0 µ = σ + n σ = τ 0 µ 0 σ +τ 0 nȳ τ 0 σ σ +nτ 0 τ 0 σ = µ0σ + τ0 nȳ σ + nτ0 µ 0σ = + τ 0 nȳ σ + nτ0 σ + nτ0 As n increases, data mean dominates prior mean. As τ0 decreases (less prior variance, greater prior precision), our prior mean becomes more important.

20 A Simple Example Suppose we have some (fake) data on the heights (in inches) of a random sample of 00 individuals in the U.S. population. > known.sigma.sq <- 6 > unknown.mean <- 68 > n <- 00 > heights <- rnorm(n, mean = unknown.mean, sd = sqrt(known.sigma.sq)) We believe that the heights are normally distributed with some unknown mean µ and a known variance σ = 6. Suppose before we see the data, we have a prior belief about the distribution of µ. Let our prior mean µ 0 = 7 and our prior variance τ 0 = 36. > mu0 <- 7 > tau.sq0 <- 36

21 Our posterior is a Normal distribution with Mean Variance ( τ 0 + n σ ) µ 0 τ 0 τ 0 > post.mean <- (mu0/tau.sq0 + (n * mean(heights)/known.sigma.sq))/(/tau.sq0 + + n/known.sigma.sq) > post.mean [] > post.var <- /(/tau.sq0 + n/known.sigma.sq) > post.var [] nȳ σ «+ n σ «and

22 Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

23 Normal Model with Known Mean, Unknown Variance Now suppose we wish to estimate a model where the likelihood of the data is normal with a known mean µ and an unknown variance σ. Now our parameter of interest is σ. We can use a conjugate inverse gamma prior on σ, with shape parameter α 0 and scale parameter β 0. p(σ y, µ) p(y µ, σ )p(σ ) Invgamma(α, β ) = Normal(µ, σ ) Invgamma(α 0, β 0 )

24 Let θ represent our parameter of interest, in this case σ. ny p(θ y, µ) exp (y ««i µ) βα 0 0 i= πθ θ Γ(α 0) θ (α 0+) exp β0 θ ny θ exp (y ««i µ) θ (α0+) exp β0 θ θ i= P n = θ n exp i= (y i µ) ««θ (α0+) exp β0 θ θ» P n = θ (α 0+ n +) β0 exp θ + i= (y i µ) «θ 0 Pn = θ (α 0+ n +) exp β0 + 3 i= (y i µ) A5 θ 0 Pn 3 = θ (α 0+ n +) exp β0 + i= (y i µ) A5 θ This looks like the density of an inverse gamma distribution!

25 0 Pn 3 p(θ y, µ) θ (α 0+ n +) exp β0 + i= (y i µ) A5 θ α = α 0 + n β = P n i= β 0 + i µ) Our posterior is an Invgamma(α 0 + n P, β n i= 0 + i µ) ) distribution.

26 A Simple Example Again suppose we have some (fake) data on the heights (in inches) of a random sample of 00 individuals in the U.S. population. > known.mean <- 68 > unknown.sigma.sq <- 6 > n <- 00 > heights <- rnorm(n, mean = known.mean, sd = sqrt(unknown.sigma.sq)) We believe that the heights are normally distributed with a known mean µ = 68 and some unknown variance σ. Suppose before we see the data, we have a prior belief about the distribution of σ. Let our prior shape α 0 = 5 and our prior scale β 0 = 0. > alpha0 <- 5 > beta0 <- 0

27 Our posterior is a inverse gamma distribution with shape α 0 + n and scale β 0 + P n i= (y i µ) > alpha <- alpha0 + n/ > beta <- beta0 + sum((heights - known.mean)^)/ > library(mcmcpack) > posterior <- rinvgamma(0000, alpha, beta) > post.mean <- mean(posterior) > post.mean [].8839 > post.var <- var(posterior) > post.var [] Hmm... what if we increased our sample size?

28 > n <- 000 > heights <- rnorm(n, mean = known.mean, sd = sqrt(unknown.sigma.sq)) > alpha <- alpha0 + n/ > beta <- beta0 + sum((heights - known.mean)^)/ > posterior <- rinvgamma(0000, alpha, beta) > post.mean <- mean(posterior) > post.mean [] 5.98 > post.var <- var(posterior) > post.var []

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Bayesian Normal Stuff

Bayesian Normal Stuff Bayesian Normal Stuff - Set-up of the basic model of a normally distributed random variable with unknown mean and variance (a two-parameter model). - Discuss philosophies of prior selection - Implementation

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Common one-parameter models

Common one-parameter models Common one-parameter models In this section we will explore common one-parameter models, including: 1. Binomial data with beta prior on the probability 2. Poisson data with gamma prior on the rate 3. Gaussian

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling 1: Formulation of Bayesian models and fitting them with MCMC in WinBUGS David Draper Department of Applied Mathematics and

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 12, 2018 CS 361: Probability & Statistics Inference Binomial likelihood: Example Suppose we have a coin with an unknown probability of heads. We flip the coin 10 times and observe 2 heads. What can

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 45: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 018 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 018 1 / 37 Lectures 9-11: Multi-parameter

More information

CS340 Machine learning Bayesian statistics 3

CS340 Machine learning Bayesian statistics 3 CS340 Machine learning Bayesian statistics 3 1 Outline Conjugate analysis of µ and σ 2 Bayesian model selection Summarizing the posterior 2 Unknown mean and precision The likelihood function is p(d µ,λ)

More information

Bayesian Linear Model: Gory Details

Bayesian Linear Model: Gory Details Bayesian Linear Model: Gory Details Pubh7440 Notes By Sudipto Banerjee Let y y i ] n i be an n vector of independent observations on a dependent variable (or response) from n experimental units. Associated

More information

This is a open-book exam. Assigned: Friday November 27th 2009 at 16:00. Due: Monday November 30th 2009 before 10:00.

This is a open-book exam. Assigned: Friday November 27th 2009 at 16:00. Due: Monday November 30th 2009 before 10:00. University of Iceland School of Engineering and Sciences Department of Industrial Engineering, Mechanical Engineering and Computer Science IÐN106F Industrial Statistics II - Bayesian Data Analysis Fall

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

1 Bayesian Bias Correction Model

1 Bayesian Bias Correction Model 1 Bayesian Bias Correction Model Assuming that n iid samples {X 1,...,X n }, were collected from a normal population with mean µ and variance σ 2. The model likelihood has the form, P( X µ, σ 2, T n >

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Conjugate s: Beta and normal Class 15, 18.05 Jeremy Orloff and Jonathan Bloom 1. Understand the benefits of conjugate s.. Be able to update a beta given a Bernoulli, binomial, or geometric

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

Exam STAM Practice Exam #1

Exam STAM Practice Exam #1 !!!! Exam STAM Practice Exam #1 These practice exams should be used during the month prior to your exam. This practice exam contains 20 questions, of equal value, corresponding to about a 2 hour exam.

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Part II: Computation for Bayesian Analyses

Part II: Computation for Bayesian Analyses Part II: Computation for Bayesian Analyses 62 BIO 233, HSPH Spring 2015 Conjugacy In both birth weight eamples the posterior distribution is from the same family as the prior: Prior Likelihood Posterior

More information

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm Metropolis-Hastings algorithm Dr. Jarad Niemi STAT 544 - Iowa State University March 27, 2018 Jarad Niemi (STAT544@ISU) Metropolis-Hastings March 27, 2018 1 / 32 Outline Metropolis-Hastings algorithm Independence

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example, consider

More information

Distributions and Intro to Likelihood

Distributions and Intro to Likelihood Distributions and Intro to Likelihood Gov 2001 Section February 4, 2010 Outline Meet the Distributions! Discrete Distributions Continuous Distributions Basic Likelihood Why should we become familiar with

More information

GOV 2001/ 1002/ E-200 Section 3 Inference and Likelihood

GOV 2001/ 1002/ E-200 Section 3 Inference and Likelihood GOV 2001/ 1002/ E-200 Section 3 Inference and Likelihood Anton Strezhnev Harvard University February 10, 2016 1 / 44 LOGISTICS Reading Assignment- Unifying Political Methodology ch 4 and Eschewing Obfuscation

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

STA 114: Statistics. Notes 10. Conjugate Priors

STA 114: Statistics. Notes 10. Conjugate Priors STA 114: Statistics Notes 10. Conjugate Priors Conjugate family Once we get a /pmf ξ(θ x) by combining a model X f(x θ) with a /pmf ξ(θ) on θ Θ, a report can be made by summarizing the. It helps to have

More information

Chapter 5: Statistical Inference (in General)

Chapter 5: Statistical Inference (in General) Chapter 5: Statistical Inference (in General) Shiwen Shen University of South Carolina 2016 Fall Section 003 1 / 17 Motivation In chapter 3, we learn the discrete probability distributions, including Bernoulli,

More information

Rules and Models 1 investigates the internal measurement approach for operational risk capital

Rules and Models 1 investigates the internal measurement approach for operational risk capital Carol Alexander 2 Rules and Models Rules and Models 1 investigates the internal measurement approach for operational risk capital 1 There is a view that the new Basel Accord is being defined by a committee

More information

# generate data num.obs <- 100 y <- rnorm(num.obs,mean = theta.true, sd = sqrt(sigma.sq.true))

# generate data num.obs <- 100 y <- rnorm(num.obs,mean = theta.true, sd = sqrt(sigma.sq.true)) Posterior Sampling from Normal Now we seek to create draws from the joint posterior distribution and the marginal posterior distributions and Note the marginal posterior distributions would be used to

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Extended Model: Posterior Distributions

Extended Model: Posterior Distributions APPENDIX A Extended Model: Posterior Distributions A. Homoskedastic errors Consider the basic contingent claim model b extended by the vector of observables x : log C i = β log b σ, x i + β x i + i, i

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 5, 2015

More information

CS340 Machine learning Bayesian model selection

CS340 Machine learning Bayesian model selection CS340 Machine learning Bayesian model selection Bayesian model selection Suppose we have several models, each with potentially different numbers of parameters. Example: M0 = constant, M1 = straight line,

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

STAT 111 Recitation 4

STAT 111 Recitation 4 STAT 111 Recitation 4 Linjun Zhang http://stat.wharton.upenn.edu/~linjunz/ September 29, 2017 Misc. Mid-term exam time: 6-8 pm, Wednesday, Oct. 11 The mid-term break is Oct. 5-8 The next recitation class

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

1. You are given the following information about a stationary AR(2) model:

1. You are given the following information about a stationary AR(2) model: Fall 2003 Society of Actuaries **BEGINNING OF EXAMINATION** 1. You are given the following information about a stationary AR(2) model: (i) ρ 1 = 05. (ii) ρ 2 = 01. Determine φ 2. (A) 0.2 (B) 0.1 (C) 0.4

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

Continuous Distributions

Continuous Distributions Quantitative Methods 2013 Continuous Distributions 1 The most important probability distribution in statistics is the normal distribution. Carl Friedrich Gauss (1777 1855) Normal curve A normal distribution

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Objective Bayesian Analysis for Heteroscedastic Regression

Objective Bayesian Analysis for Heteroscedastic Regression Analysis for Heteroscedastic Regression & Esther Salazar Universidade Federal do Rio de Janeiro Colóquio Inter-institucional: Modelos Estocásticos e Aplicações 2009 Collaborators: Marco Ferreira and Thais

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Extracting Information from the Markets: A Bayesian Approach

Extracting Information from the Markets: A Bayesian Approach Extracting Information from the Markets: A Bayesian Approach Daniel Waggoner The Federal Reserve Bank of Atlanta Florida State University, February 29, 2008 Disclaimer: The views expressed are the author

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Useful Probability Distributions

Useful Probability Distributions Useful Probability Distributions Standard Normal Distribution Binomial Multinomial Hypergeometric Poisson Beta Binomial Student s t Beta Gamma Dirichlet Multivariate Normal and Correlation Standard Normal

More information

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM STAM SHORT-TERM ACTUARIAL MATHEMATICS EXAM STAM SAMPLE QUESTIONS Questions 1-307 have been taken from the previous set of Exam C sample questions. Questions no longer relevant

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

(11) Case Studies: Adaptive clinical trials. ST440/540: Applied Bayesian Analysis

(11) Case Studies: Adaptive clinical trials. ST440/540: Applied Bayesian Analysis Use of Bayesian methods in clinical trials Bayesian methods are becoming more common in clinical trials analysis We will study how to compute the sample size for a Bayesian clinical trial We will then

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #3 1 Maximum likelihood of the exponential distribution 1. We assume

More information

Model 0: We start with a linear regression model: log Y t = β 0 + β 1 (t 1980) + ε, with ε N(0,

Model 0: We start with a linear regression model: log Y t = β 0 + β 1 (t 1980) + ε, with ε N(0, Stat 534: Fall 2017. Introduction to the BUGS language and rjags Installation: download and install JAGS. You will find the executables on Sourceforge. You must have JAGS installed prior to installing

More information

Outline. Review Continuation of exercises from last time

Outline. Review Continuation of exercises from last time Bayesian Models II Outline Review Continuation of exercises from last time 2 Review of terms from last time Probability density function aka pdf or density Likelihood function aka likelihood Conditional

More information

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil]

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil] START HERE: Instructions Thanks a lot to John A.W.B. Constanzo and Shi Zong for providing and allowing to use the latex source files for quick preparation of the HW solution. The homework was due at 9:00am

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Bayesian course - problem set 3 (lecture 4)

Bayesian course - problem set 3 (lecture 4) Bayesian course - problem set 3 (lecture 4) Ben Lambert November 14, 2016 1 Ticked off Imagine once again that you are investigating the occurrence of Lyme disease in the UK. This is a vector-borne disease

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

(5) Multi-parameter models - Summarizing the posterior

(5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Spring, 2017 Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example,

More information

Appendix A. Selecting and Using Probability Distributions. In this appendix

Appendix A. Selecting and Using Probability Distributions. In this appendix Appendix A Selecting and Using Probability Distributions In this appendix Understanding probability distributions Selecting a probability distribution Using basic distributions Using continuous distributions

More information

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006 Random Samples Mathematics 47: Lecture 6 Dan Sloughter Furman University March 13, 2006 Dan Sloughter (Furman University) Random Samples March 13, 2006 1 / 9 Random sampling Definition We call a sequence

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

Weight Smoothing with Laplace Prior and Its Application in GLM Model

Weight Smoothing with Laplace Prior and Its Application in GLM Model Weight Smoothing with Laplace Prior and Its Application in GLM Model Xi Xia 1 Michael Elliott 1,2 1 Department of Biostatistics, 2 Survey Methodology Program, University of Michigan National Cancer Institute

More information

Stochastic Components of Models

Stochastic Components of Models Stochastic Components of Models Gov 2001 Section February 5, 2014 Gov 2001 Section Stochastic Components of Models February 5, 2014 1 / 41 Outline 1 Replication Paper and other logistics 2 Data Generation

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Actuarial Society of India EXAMINATIONS

Actuarial Society of India EXAMINATIONS Actuarial Society of India EXAMINATIONS 7 th June 005 Subject CT6 Statistical Models Time allowed: Three Hours (0.30 am 3.30 pm) INSTRUCTIONS TO THE CANDIDATES. Do not write your name anywhere on the answer

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples

A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples 1.3 Regime switching models A potentially useful approach to model nonlinearities in time series is to assume different behavior (structural break) in different subsamples (or regimes). If the dates, the

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Central limit theorems

Central limit theorems Chapter 6 Central limit theorems 6.1 Overview Recall that a random variable Z is said to have a standard normal distribution, denoted by N(0, 1), if it has a continuous distribution with density φ(z) =

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 2008 by the Society of Actuaries and the Casualty Actuarial Society

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Lecture 18. Ingo Ruczinski. October 31, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 18. Ingo Ruczinski. October 31, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 18 Department of Bios Johns Hopkins Bloomberg School of Public Health Johns Hopkins University October 31, 2015 1 2 3 4 5 6 1 Tests for a binomial proportion 2 Score test versus Wald 3 Exact binomial

More information

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according

3 ˆθ B = X 1 + X 2 + X 3. 7 a) Find the Bias, Variance and MSE of each estimator. Which estimator is the best according STAT 345 Spring 2018 Homework 9 - Point Estimation Name: Please adhere to the homework rules as given in the Syllabus. 1. Mean Squared Error. Suppose that X 1, X 2 and X 3 are independent random variables

More information

STAT 825 Notes Random Number Generation

STAT 825 Notes Random Number Generation STAT 825 Notes Random Number Generation What if R/Splus/SAS doesn t have a function to randomly generate data from a particular distribution? Although R, Splus, SAS and other packages can generate data

More information