Generating Random Numbers

Size: px
Start display at page:

Download "Generating Random Numbers"

Transcription

1 Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized inverse of F ). For a uniformly distributed random variable U U(0, 1), let X = F 1 (U). Then X has distribution function F : P(X x) = P(F 1 (U) x) = P(U F (x)) = F (x). Example: For the exponential distribution, we have F (x) = 1 exp( θx). Thus X = F 1 (U) = 1 θ log(1 U) is exponentially distributed with parameter θ. Remarks: The result shows that the generation of sequences of random variables (usually iid) for some given distribution is based on the the production of uniform random variables. Since the algorithms for generating uniform random variables are deterministic, we call them pseudo random number generators. References: Robert, C.P. and Casella G. (2004) Monte Carlo Statistical Methods. Springer, New York. Ripley, B.D. (1987). Springer, New York Monte Carlo Methods, Apr 22,

2 Generating Random Numbers Acceptance-Rejection Method Let f be the density of some univariate distribution we want to sample from. Suppose the f( ) is majorized by c g( ), f(y) c g(y), for some simple probability density g and some constant c > 1. The idea of acceptance-rejection is to sample proposals X from the simpler (simulationwise) density g and then to reject some proposals which are likely to be overrepresented in the sample: Sample X g(x) Sample U U(0, 1) Accept X if U f(x) c g(x). Example: Non-standard prior for binomial parameter Suppose that Y is binomially distributed Y Bin(n, θ) with non-conjugate prior distribution π(θ) = 4 ( θ ), θ [0, 1]. 2 The posterior distribution (conditional on data Y = y) satisfies π(θ y) θ y (1 θ) n y ( 1 2 θ 1 ), θ [0, 1]. 2 Monte Carlo Methods, Apr 22,

3 Generating Random Numbers Example: Non-standard prior for binomial parameter (contd) Since 1 2 θ (θ 1 2 )2 = 2 θ (1 θ) we get for some c > 0 π(θ y) c θ y+1 (1 θ) n y+1 The right side is proportional to the density of a beta distribution with parameters y + 2 and n y + 2. This suggests the following sampling scheme: Define f(θ) = θ y (1 θ) ( n y 1 2 θ 1 ) 2 g(θ) = 2 θ y+1 (1 θ) n y+1 Sample θ Beta(y + 2, n y + 2) U U(0, 1) Accept θ if U f(θ) g(θ). Note: We did not need to compute the proportionality factor f(y θ) π(θ) dθ, Θ since this cancels in the ratio f(θ) g(θ). 3.0 Acceptance Rejection for Bayesian Inference with Non Standard Prior cg(θ) Density π(θ y) Frequency θ θ Monte Carlo Methods, Apr 22,

4 Generating Random Numbers For other distributions (e.g. the normal) exist special methods. In this course, we will only use the built-in generators in R: N (µ, σ 2 ) U[min, max] Beta(a, b) Bin(s, p) Cauchy(α, σ)) χ 2 n(δ) Exp(rate) F m,n Γ(a, s) Geom(p) H(m, n, k) log-normal(µ, σ 2 ) Logistic(µ, σ 2 ) NegBinom(s, p) Poisson(λ) t n Weibull(a, b) rnorm(n,mean=0,sd=1) runif(n,min=0,max=1) rbeta(n,a,b) rbinom(n,size,prob) rnorm(n,loc=0,scale=1) rchisq(n,df,ncp=0) rnorm(n,rate=1) rf(n,df1,df2) rgamma(n,shape,rate=1,scale=1/rate) rgeom(n,prob) rhyper(nn,m,n,k) rlnorm(n,mean=0,sd=1)) rlogis(n,loc=0,scale=1) rnbinom(n,size,prob,mu) rpois(n,lambda) rt(n,df) rweibull(n,shape,scale=1) R also provides functions for calculating the density (df), the distribution function (pf) and quantiles (qf), where F is the name of the distribution as in the above commands. Monte Carlo Methods, Apr 22,

5 Monte Carlo Methods Aim: Evaluate expectation E(h(Y )) = h(y) f(y) dy, (1) where Y is some (possibly high-dimensional) random variable with distribution defined by f(y). Examples: Suppose ˆθ = ˆθ(Y ) is an estimator for some parameter θ. Quantities of interest are the bias and the standard deviation of ˆθ, bias(ˆθ) = E(ˆθ) θ, σ(ˆθ) = ( E(ˆθ E(ˆθ)) 2) 1 2. In cases, where the estimate ˆθ is obtained by an iterative estimation procedures (e.g. by Newton-Raphson), the estimator ˆθ(Y ) cannot be written in closed form and the integral (1) cannot be computed by numerical integration. For two normally distributed samples Y 11,..., Y n1 1 and Y 12,..., Y n2 2, the hypothesis of equal means can be tested by the two-sample t test with test statistic T = Ȳ1 Ȳ2. s 2 1 n 1 + s2 2 n 2 The p-value of the test is defined as P(T (Y ) > t) = E ( (1 (t, ) (T (Y )) ). To see how the t test performs under departures from normality, we need to evaluate the p-value (or equivalently the significance level) of the test for nonnormal distributions f(y). Monte Carlo Methods, Apr 22,

6 Monte Carlo approach: Draw sample Y (1),..., Y Estimate expectation by 1 n h(y (t) ) (Monte Carlo integration) Monte Carlo Methods (n) iid f(y). For independent samples, the Law of Large Numbers yields 1 n h(y (t) ) E(h(Y )) as n. Example: Two-sample t test in R N< #number of MC repititions n1<-8 #sample size n2<-4 Y1<-rgamma(N*n1,1,1) #sample from gamma distribution Y2<-rgamma(N*n2,2,2) #Y1<-rnorm(N*n1,0,1) #alternatively: #Y2<-rnorm(N*n2,0,2) #sample from normal distribution Y<-c(Y1,Y2) dim(y)<-c(n,n1+n2) tstat<-function(y,n1,n2) { Y1<-Y[1:n1] Y2<-Y[(n1+1):(n1+n2)] #two-sample t test statistic T<-(mean(Y1)-mean(Y2))/sqrt(var(Y1)/n1+var(Y2)/n2) #Satterthwaite approximation of degrees of freedom df<-(var(y1)/n1+var(y2)/n2)^2/((var(y1)/n1)^2/(n1-1)+(var(y2)/n2)^2/(n2-1)) return(c(t,df)) } #calculate test statistic for N samples R<-apply(Y,1,tstat,n1,n2) #estimate significance level a<-mean(ifelse(abs(r[1,])>qt(0.975,r[2,]),1,0)) a Monte Carlo Methods, Apr 22,

7 Parametric Bootstrap Suppose Y 1,..., Y n iid P θ and ˆθ = S(Y ) is an estimator for θ. Aim: Determine variance of ˆθ. Problem: Iterative algorithms such as the EM algorithm often do not give analytic expressions for the variance of the estimator. Idea: Simulate from the distribution P θ to obtain samples Y (b) = (Y (b) 1,..., Y (b) n ), b = 1,..., B and for each sample an estimate ˆθ (b) = S(Y (b) ). Then the standard error of ˆθ = S(Y ) can be estimated by ˆσ 2 (ˆθ) = 1 B B (ˆθ(b) θ ) 2. b=1 Problem: We cannot sample from P θ since θ is unknown. Idea: Approximate P θ by Pˆθ Parametric bootstrap: Estimate θ by ˆθ = S(Y ) For b = 1,..., B, simulate bootstrap replications Y (b) j iid Pˆθ. Compute bootstrap estimate ˆθ (b) from the bootstrap sample Y (b). Estimate the variance of ˆθ = S(Y ) by ˆσ 2 (ˆθ) = 1 B B (ˆθ (b) θ ) 2, b=1 where θ = 1 B B ˆθ (b). b=1 Monte Carlo Methods, Apr 22,

8 Importance Sampling Aim: Reduction of variance Rewrite E(h(Y )) with Y f as h(y) f(y) h(y) f(y) dy = g(y) dy. g(y) Thus if Z (1),..., Z (n) g then 1 n h(z (t) ) f(z (t) ) g(z (t) ) offers an alternative approximation for E(h(Y )). The variance of the Monte Carlo estimate for E(h(Y )) is minimized if h(y) f(y) g(y) constant Example: Suppose we want to approximate p = P(Y c) for (i) Y N (0, 1) (ii) Y Cauchy(0, 1) An intuitive Monte Carlo approximation is where Y p n = 1 n ( 1 ) (c, ) Y (t) (t) iid (t) iid N (0, 1) resp. Y Cauchy(0, 1). Since p n is the mean of n Bernoulli random variables, its relative error is var(pn ) 1 p = p p n. Problem: For small p the relative error is large. Monte Carlo Methods, Apr 22,

9 Importance Sampling Alternative approach: Let Z (t) be exponentially distributed on (c, ), Z (t) g(z) = exp(c z) 1 (c, ) (z). Then p can be approximated by p n = 1 n f ( Z (t)) g ( Z (t)), where f is the density of a (i) normal or (ii) Cauchy distribution. 0.4 p n solid p n dashed 14 p n solid p n dashed pn [%] 0.2 pn [%] t t f(z)/g(z) [x1000] f(z)/g(z) z z Remarks: If the ratio f/g is unbounded, the weights f(z (t) )/g(z (t) ) vary widely and the approximation is large influence by only a few values. The distribution g should have heavier tails than f. Monte Carlo Methods, Apr 22,

10 Markov Chain Monte Carlo Suppose that Y = (Y 1,..., Y d ) T has density f(y). Aim: Approximation E(h(Y )) 1 n h(y (t) ) with Y (1),..., Y (n) iid f(y). Problem: Independent sampling from a multivariate distribution is often difficult. Solution: The Law of Large Numbers 1 n h(y (t) ) E(h(Y )) as n. still applies if Y (t) are (not too) dependent observations with Y (t) f(y). Idea: Generate a sequence of random numbers Y (k) which converges to a dependent sample from the joint distribution f(y) Y (t) f(y) but NOT Y (t) iid f(y). We will show that this can be accomplished by sampling Y (t) i conditional distribution f ( y i Y (t) 1,..., Y (t) i 1, Y (t 1) i+1,..., Y (t 1) ) d from the for i = 1,..., d Monte Carlo Methods, Apr 22,

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

STA 532: Theory of Statistical Inference

STA 532: Theory of Statistical Inference STA 532: Theory of Statistical Inference Robert L. Wolpert Department of Statistical Science Duke University, Durham, NC, USA 2 Estimating CDFs and Statistical Functionals Empirical CDFs Let {X i : i n}

More information

Exam 2 Spring 2015 Statistics for Applications 4/9/2015

Exam 2 Spring 2015 Statistics for Applications 4/9/2015 18.443 Exam 2 Spring 2015 Statistics for Applications 4/9/2015 1. True or False (and state why). (a). The significance level of a statistical test is not equal to the probability that the null hypothesis

More information

Conjugate Models. Patrick Lam

Conjugate Models. Patrick Lam Conjugate Models Patrick Lam Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Part II: Computation for Bayesian Analyses

Part II: Computation for Bayesian Analyses Part II: Computation for Bayesian Analyses 62 BIO 233, HSPH Spring 2015 Conjugacy In both birth weight eamples the posterior distribution is from the same family as the prior: Prior Likelihood Posterior

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah July 14, 2008 Liang Zhang (UofU) Applied Statistics I July 14, 2008 1 / 18 Point Estimation Liang Zhang (UofU) Applied Statistics

More information

Chapter 4: Asymptotic Properties of MLE (Part 3)

Chapter 4: Asymptotic Properties of MLE (Part 3) Chapter 4: Asymptotic Properties of MLE (Part 3) Daniel O. Scharfstein 09/30/13 1 / 1 Breakdown of Assumptions Non-Existence of the MLE Multiple Solutions to Maximization Problem Multiple Solutions to

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

M.Sc. ACTUARIAL SCIENCE. Term-End Examination

M.Sc. ACTUARIAL SCIENCE. Term-End Examination No. of Printed Pages : 15 LMJA-010 (F2F) M.Sc. ACTUARIAL SCIENCE Term-End Examination O CD December, 2011 MIA-010 (F2F) : STATISTICAL METHOD Time : 3 hours Maximum Marks : 100 SECTION - A Attempt any five

More information

MVE051/MSG Lecture 7

MVE051/MSG Lecture 7 MVE051/MSG810 2017 Lecture 7 Petter Mostad Chalmers November 20, 2017 The purpose of collecting and analyzing data Purpose: To build and select models for parts of the real world (which can be used for

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased.

may be of interest. That is, the average difference between the estimator and the truth. Estimators with Bias(ˆθ) = 0 are called unbiased. 1 Evaluating estimators Suppose you observe data X 1,..., X n that are iid observations with distribution F θ indexed by some parameter θ. When trying to estimate θ, one may be interested in determining

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL: Fax: Monte Carlo methods

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL:   Fax: Monte Carlo methods INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 88 63 URL: www.math.auc.dk Fax: 98 15 81 29 E-mail: jm@math.aau.dk Monte Carlo methods Monte Carlo methods

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom

Conjugate priors: Beta and normal Class 15, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Conjugate s: Beta and normal Class 15, 18.05 Jeremy Orloff and Jonathan Bloom 1. Understand the benefits of conjugate s.. Be able to update a beta given a Bernoulli, binomial, or geometric

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions Frequentist Methods: 7.5 Maximum Likelihood Estimators

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Chapter 6. Importance sampling. 6.1 The basics

Chapter 6. Importance sampling. 6.1 The basics Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ E[X]. There is an event E such that P(E) is small but

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased.

Point Estimation. Principle of Unbiased Estimation. When choosing among several different estimators of θ, select one that is unbiased. Point Estimation Point Estimation Definition A point estimate of a parameter θ is a single number that can be regarded as a sensible value for θ. A point estimate is obtained by selecting a suitable statistic

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration.

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration. Overview 1 Random numbers Transformation method Rejection method 2 Monte Carlo integration Monte Carlo vs ordinary methods 3 Summary Transformation method Suppose X has probability distribution p X (x),

More information

Computer Statistics with R

Computer Statistics with R MAREK GAGOLEWSKI KONSTANCJA BOBECKA-WESO LOWSKA PRZEMYS LAW GRZEGORZEWSKI Computer Statistics with R 5. Point Estimation Faculty of Mathematics and Information Science Warsaw University of Technology []

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018

Subject CS1 Actuarial Statistics 1 Core Principles. Syllabus. for the 2019 exams. 1 June 2018 ` Subject CS1 Actuarial Statistics 1 Core Principles Syllabus for the 2019 exams 1 June 2018 Copyright in this Core Reading is the property of the Institute and Faculty of Actuaries who are the sole distributors.

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Calibration of Interest Rates

Calibration of Interest Rates WDS'12 Proceedings of Contributed Papers, Part I, 25 30, 2012. ISBN 978-80-7378-224-5 MATFYZPRESS Calibration of Interest Rates J. Černý Charles University, Faculty of Mathematics and Physics, Prague,

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Dealing with forecast uncertainty in inventory models

Dealing with forecast uncertainty in inventory models Dealing with forecast uncertainty in inventory models 19th IIF workshop on Supply Chain Forecasting for Operations Lancaster University Dennis Prak Supervisor: Prof. R.H. Teunter June 29, 2016 Dennis Prak

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling

Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling Bayesian Hierarchical/ Multilevel and Latent-Variable (Random-Effects) Modeling 1: Formulation of Bayesian models and fitting them with MCMC in WinBUGS David Draper Department of Applied Mathematics and

More information

6. Genetics examples: Hardy-Weinberg Equilibrium

6. Genetics examples: Hardy-Weinberg Equilibrium PBCB 206 (Fall 2006) Instructor: Fei Zou email: fzou@bios.unc.edu office: 3107D McGavran-Greenberg Hall Lecture 4 Topics for Lecture 4 1. Parametric models and estimating parameters from data 2. Method

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior

ST440/550: Applied Bayesian Analysis. (5) Multi-parameter models - Summarizing the posterior (5) Multi-parameter models - Summarizing the posterior Models with more than one parameter Thus far we have studied single-parameter models, but most analyses have several parameters For example, consider

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

Estimation after Model Selection

Estimation after Model Selection Estimation after Model Selection Vanja M. Dukić Department of Health Studies University of Chicago E-Mail: vanja@uchicago.edu Edsel A. Peña* Department of Statistics University of South Carolina E-Mail:

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

A New Hybrid Estimation Method for the Generalized Pareto Distribution

A New Hybrid Estimation Method for the Generalized Pareto Distribution A New Hybrid Estimation Method for the Generalized Pareto Distribution Chunlin Wang Department of Mathematics and Statistics University of Calgary May 18, 2011 A New Hybrid Estimation Method for the GPD

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

STAT 825 Notes Random Number Generation

STAT 825 Notes Random Number Generation STAT 825 Notes Random Number Generation What if R/Splus/SAS doesn t have a function to randomly generate data from a particular distribution? Although R, Splus, SAS and other packages can generate data

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims

A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims International Journal of Business and Economics, 007, Vol. 6, No. 3, 5-36 A Markov Chain Monte Carlo Approach to Estimate the Risks of Extremely Large Insurance Claims Wan-Kai Pang * Department of Applied

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book.

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book. Simulation Methods Chapter 13 of Chris Brook s Book Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 April 26, 2017 Christopher

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Week 1 Quantitative Analysis of Financial Markets Distributions B

Week 1 Quantitative Analysis of Financial Markets Distributions B Week 1 Quantitative Analysis of Financial Markets Distributions B Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

CS340 Machine learning Bayesian model selection

CS340 Machine learning Bayesian model selection CS340 Machine learning Bayesian model selection Bayesian model selection Suppose we have several models, each with potentially different numbers of parameters. Example: M0 = constant, M1 = straight line,

More information

Stochastic Claims Reserving _ Methods in Insurance

Stochastic Claims Reserving _ Methods in Insurance Stochastic Claims Reserving _ Methods in Insurance and John Wiley & Sons, Ltd ! Contents Preface Acknowledgement, xiii r xi» J.. '..- 1 Introduction and Notation : :.... 1 1.1 Claims process.:.-.. : 1

More information

COS 513: Gibbs Sampling

COS 513: Gibbs Sampling COS 513: Gibbs Sampling Matthew Salesi December 6, 2010 1 Overview Concluding the coverage of Markov chain Monte Carlo (MCMC) sampling methods, we look today at Gibbs sampling. Gibbs sampling is a simple

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Extracting Information from the Markets: A Bayesian Approach

Extracting Information from the Markets: A Bayesian Approach Extracting Information from the Markets: A Bayesian Approach Daniel Waggoner The Federal Reserve Bank of Atlanta Florida State University, February 29, 2008 Disclaimer: The views expressed are the author

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

Chapter 8. Introduction to Statistical Inference

Chapter 8. Introduction to Statistical Inference Chapter 8. Introduction to Statistical Inference Point Estimation Statistical inference is to draw some type of conclusion about one or more parameters(population characteristics). Now you know that a

More information

Generating Random Variables and Stochastic Processes

Generating Random Variables and Stochastic Processes IEOR E4703: Monte Carlo Simulation Columbia University c 2017 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm Metropolis-Hastings algorithm Dr. Jarad Niemi STAT 544 - Iowa State University March 27, 2018 Jarad Niemi (STAT544@ISU) Metropolis-Hastings March 27, 2018 1 / 32 Outline Metropolis-Hastings algorithm Independence

More information

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015 Monte Carlo Methods in Option Pricing UiO-STK4510 Autumn 015 The Basics of Monte Carlo Method Goal: Estimate the expectation θ = E[g(X)], where g is a measurable function and X is a random variable such

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Master s in Financial Engineering Foundations of Buy-Side Finance: Quantitative Risk and Portfolio Management. > Teaching > Courses

Master s in Financial Engineering Foundations of Buy-Side Finance: Quantitative Risk and Portfolio Management.  > Teaching > Courses Master s in Financial Engineering Foundations of Buy-Side Finance: Quantitative Risk and Portfolio Management www.symmys.com > Teaching > Courses Spring 2008, Monday 7:10 pm 9:30 pm, Room 303 Attilio Meucci

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation APPM 7400 Lesson 5: Generating (Some) Continuous Random Variables September 12, 2018 esson 5: Generating (Some) Continuous Random Variables Stochastic Simulation September 12, 2018

More information

Learning From Data: MLE. Maximum Likelihood Estimators

Learning From Data: MLE. Maximum Likelihood Estimators Learning From Data: MLE Maximum Likelihood Estimators 1 Parameter Estimation Assuming sample x1, x2,..., xn is from a parametric distribution f(x θ), estimate θ. E.g.: Given sample HHTTTTTHTHTTTHH of (possibly

More information

Much of what appears here comes from ideas presented in the book:

Much of what appears here comes from ideas presented in the book: Chapter 11 Robust statistical methods Much of what appears here comes from ideas presented in the book: Huber, Peter J. (1981), Robust statistics, John Wiley & Sons (New York; Chichester). There are many

More information

Monte Carlo Based Reliability Analysis

Monte Carlo Based Reliability Analysis Monte Carlo Based Reliability Analysis Martin Schwarz 15 May 2014 Martin Schwarz Monte Carlo Based Reliability Analysis 15 May 2014 1 / 19 Plan of Presentation Description of the problem Monte Carlo Simulation

More information

A study of the Surplus Production Model. Université Laval.

A study of the Surplus Production Model. Université Laval. A study of the Surplus Production Model Université Laval Jérôme Lemay jerome.lemay@gmail.com June 28, 2007 Contents 1 Introduction 4 1.1 The Surplus Production Model........................... 5 1.1.1

More information

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS

FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Available Online at ESci Journals Journal of Business and Finance ISSN: 305-185 (Online), 308-7714 (Print) http://www.escijournals.net/jbf FINITE SAMPLE DISTRIBUTIONS OF RISK-RETURN RATIOS Reza Habibi*

More information

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error

Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error South Texas Project Risk- Informed GSI- 191 Evaluation Stratified Sampling in Monte Carlo Simulation: Motivation, Design, and Sampling Error Document: STP- RIGSI191- ARAI.03 Revision: 1 Date: September

More information

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN

PROBABILITY. Wiley. With Applications and R ROBERT P. DOBROW. Department of Mathematics. Carleton College Northfield, MN PROBABILITY With Applications and R ROBERT P. DOBROW Department of Mathematics Carleton College Northfield, MN Wiley CONTENTS Preface Acknowledgments Introduction xi xiv xv 1 First Principles 1 1.1 Random

More information

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB «H Computer Science and Data Analysis Series Computational Statistics Handbook with MATLAB Second Edition Wendy L. Martinez The Office of Naval Research Arlington, Virginia, U.S.A. Angel R. Martinez Naval

More information

STA 114: Statistics. Notes 10. Conjugate Priors

STA 114: Statistics. Notes 10. Conjugate Priors STA 114: Statistics Notes 10. Conjugate Priors Conjugate family Once we get a /pmf ξ(θ x) by combining a model X f(x θ) with a /pmf ξ(θ) on θ Θ, a report can be made by summarizing the. It helps to have

More information

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil]

START HERE: Instructions. 1 Exponential Family [Zhou, Manzil] START HERE: Instructions Thanks a lot to John A.W.B. Constanzo and Shi Zong for providing and allowing to use the latex source files for quick preparation of the HW solution. The homework was due at 9:00am

More information

Adaptive Experiments for Policy Choice. March 8, 2019

Adaptive Experiments for Policy Choice. March 8, 2019 Adaptive Experiments for Policy Choice Maximilian Kasy Anja Sautmann March 8, 2019 Introduction The goal of many experiments is to inform policy choices: 1. Job search assistance for refugees: Treatments:

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Week 7 Quantitative Analysis of Financial Markets Simulation Methods

Week 7 Quantitative Analysis of Financial Markets Simulation Methods Week 7 Quantitative Analysis of Financial Markets Simulation Methods Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November

More information

Unobserved Heterogeneity Revisited

Unobserved Heterogeneity Revisited Unobserved Heterogeneity Revisited Robert A. Miller Dynamic Discrete Choice March 2018 Miller (Dynamic Discrete Choice) cemmap 7 March 2018 1 / 24 Distributional Assumptions about the Unobserved Variables

More information

STRESS-STRENGTH RELIABILITY ESTIMATION

STRESS-STRENGTH RELIABILITY ESTIMATION CHAPTER 5 STRESS-STRENGTH RELIABILITY ESTIMATION 5. Introduction There are appliances (every physical component possess an inherent strength) which survive due to their strength. These appliances receive

More information

1 Residual life for gamma and Weibull distributions

1 Residual life for gamma and Weibull distributions Supplement to Tail Estimation for Window Censored Processes Residual life for gamma and Weibull distributions. Gamma distribution Let Γ(k, x = x yk e y dy be the upper incomplete gamma function, and let

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

Modeling skewness and kurtosis in Stochastic Volatility Models

Modeling skewness and kurtosis in Stochastic Volatility Models Modeling skewness and kurtosis in Stochastic Volatility Models Georgios Tsiotas University of Crete, Department of Economics, GR December 19, 2006 Abstract Stochastic volatility models have been seen as

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 3 Importance sampling January 27, 2015 M. Wiktorsson

More information