Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Size: px
Start display at page:

Download "Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)"

Transcription

1 Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 3 Importance sampling January 27, 2015 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (1)

2 Last time: MC output analysis We used the CLT N (τn τ) d. N (0, σ 2 (φ)) to target τ by the approximate two-sided condence interval ( ) σ(φ) σ(φ) τ N λ α/2, τ N + λ α/2. N N In addition, we discussed how to estimate ϕ(τ) for some function ϕ : R R having at hand an estimator τ N of τ. If ϕ C 1 one may prove the CLT d. N (ϕ(τn ) ϕ(τ)) N (0, ϕ (τ) 2 σ 2 (φ)). Consequently, the natural estimator ϕ(τ N ) works ne, at least asymptotically (but suers in general from bias for nite N's). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (2)

3 Example: Buon's needle Consider a a wooden oor with parallel boards of width d on which we randomly drop a needle of length l, with l d. Let { X = distance from the lower needlepoint to the upper board edge line, θ = angle between the needle and the board edge normal. Then τ = P (needle intersects board edge) = P(X l cos θ) =... = 2l πd. or, equivalently, π = 2l τd. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (3)

4 Example: Buon's needle (cont.) Since τ = P(needle intersects board edge) = E(1 {X l cos θ} ) can be easily estimated by means of MC, an approximation of π = ϕ(τ) = 2l/(τd) can be obtained via the delta method: π Estimate Number of samples N M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (4)

5 Last time: pseudo-random number generation We discussed (briey) how to generate pseudo-random, uniformly distributed numbers (U n ) using the linear congruential generator U n = (a U n 1 + c) mod m. Having at hand such U(0, 1)-distributed numbers U, we also looked at how to generate random numbers X from an arbitrary distribution F by means of the inversion method, i.e., by letting X = F (U) = inf{x R : F (x) U}. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (5)

6 Conditional methods Importance sampling (IS) Let f be a multivariate density on R d. By decomposing f into conditional densities according to f(x 1,..., x d ) = f(x 1 ) d f(x l x 1,..., x l 1 ), the problem of sampling from a multivariate density can be reduced to that of sampling from several univariate densities: draw X 1 f(x 1 ) for l = 2 d do draw X l f(x l X 1,..., X l 1 ) end for return X = (X 1,..., X d ) Trivially, the resulting draw X has the correct distribution f. This method presumes that the conditional densities are easily obtained, which is not always the case. l=2 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (6)

7 Last time: pseudo-random number generation In many cases we do not know the inverse of F or not even the normalizing constant of the density f. However, if g is another density such that f(x) Kg(x) for all x R d and some constant K <, we may use rejection sampling: repeat draw X g draw U U(0, 1) until U f(x ) Kg(X ) X X return X M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (7)

8 Last time: pseudo-random number generation Theorem (Rejection sampling) The output X of the rejection sampling algorithm is a random variable with density function f. Moreover, the expected number of trials needed before acceptance is K. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (8)

9 Example Importance sampling (IS) We wish to simulate f(x) = exp(cos 2 (x))/c, x ( π/2, π/2), where c = π/2 π/2 exp(cos2 (z)) dz = πe 1/2 I o (1/2) is the normalizing constant. However, since for all x ( π/2, π/2), f(x) = exp(cos2 (x)) c e c = eπ 1, }{{} c }{{} π K g where g is the density of U( π/2, π/2), we may use rejection sampling where a candidate X U( π/2, π/2) is accepted if U f(x ) Kg(X ) = exp(cos2 (X ))/c = exp(cos 2 (X ) 1). e/c M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (9)

10 prob exp((cos(x))^2 1); trial = 1; accepted = false; while ~accepted, Xcand = pi/2 + pi*rand; if rand < prob(xcand), accepted = true; X = Xcand; else trial = trial + 1; end end Histogram of accept reject draws f(x) = exp(cos 2 (x))/c Figure : Plot of a histogram of 20,000 accept-reject draws together with the true density. The average number of trials was ( K = e 1/2 /I 0 (1/2) ). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (10)

11 Plan of today's lecture Importance sampling (IS) 1 Importance sampling (IS) 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (11)

12 We are here Importance sampling (IS) 1 Importance sampling (IS) 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (12)

13 Advantages of the MC method The MC method is more ecient than deterministic methods in high dimensions, does in general not require knowledge of the normalizing constant of a density for computing expectations, and handles eciently strange integrands that may cause problems for deterministic methods. 1 h(x) = sin 2 (1/cos(log(1 + 2πx))) y = h(x) x M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (13)

14 Problems with MC integration OK, MC integration looks promising. We may however run into problems if it is hard to sample from f or if the integrand φ and the density f are dissimilar; in this case we will end of with a lot of draws where the integrand is small, and consequently only a few draws will contribute to the estimate. This gives a large variance φ(x) f(x) These problems can often be solved using importance sampling. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (14)

15 Importance sampling (IS, Ch ) The basis of importance sampling is to take an instrumental density g on X such that g(x) = 0 f(x) = 0 and rewrite the integral as τ = E f (φ(x)) = = where g(x)>0 X φ(x)f(x) dx = φ(x) f(x) g(x) g(x) dx = E g f(x)>0 ( φ(x) f(x) g(x) φ(x)f(x) dx ω : {x X : g(x) > 0} x f(x) g(x) is the so-called importance weight function. ) = E g (φ(x)ω(x)), M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (15)

16 Importance sampling (cont.) We may now estimate τ = E g (φ(x)ω(x)) using standard MC: for i = 1 N do draw X i g end for set τ N N i=1 φ(x i )ω(x i )/N return τ N Here, trivially, V(τ N ) = 1 N V g(φ(x)ω(x)) and we should thus aim at choosing g so that the function x φ(x)ω(x) is close to constant in the support of g. This gives a minimal variance. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (16)

17 Example: A tricky normal expectation Let X have N (2, 1) distribution and try to compute ( ) τ = E 1 X 0 X exp( X 3 ) = 1 x 0 x exp( x 3 ) N (x; 2, 1) dx, }{{}}{{} =φ(x) =f(x) where N (x; µ, σ 2 ) denotes the density of the normal distribution φ(x) f(x) Here the support of f is signicantly larger than that of φ. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (17)

18 Example: A tricky normal expectation (cont.) Thus, standard MC will lead to a waste of computational power. Better is to use IS with g being a scale-location-transformed normal-distribution: g(x) φ(x) f(x) φ(x)f(x) Lecture Importance 4.5 sampling 5 January 27, 2 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (18)

19 Example: A tricky normal expectation (cont.) phi (x >= 0).*sqrt(x).*exp( x.^3); mu = 0.8; sigma = 0.4; omega normpdf(x,2,1)./normpdf(x,mu,sigma); X = sigma*randn(1,n)+mu; tau = mean(f(x).*omega(x)); Importance Sampling Standard MC M. Wiktorsson Sample size N Monte Carlo and Empirical Methods for Stochastic Inference, L3 (19)

20 We are here Importance sampling (IS) 1 Importance sampling (IS) 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (20)

21 (Ch ) Often f(x) is known only up to a normalizing constant c > 0, i.e. f(x) = z(x)/c, where we can evaluate z(x) = cf(x) but not f(x). Then, as before, τ = E f (φ(x)) = = X cf(x) g(x)>0 φ(x) g(x) g(x)>0 where we are able to evaluate φ(x)f(x) dx = c f(x)>0 φ(x)f(x) dx c f(x)>0 f(x) dx g(x) dx cf(x) g(x) g(x) dx = g(x)>0 g(x)>0 ω : {x X : g(x) > 0} x z(x) g(x). φ(x)ω(x)g(x) dx ω(x)g(x) dx = E g(φ(x)ω(x)), E g (ω(x)) M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (21)

22 (cont.) Thus, having generated a sample X 1,..., X N from g we may estimate the numerator E g (φ(x)ω(x)) as well as the dominator E g (ω(x)) using standard MC: τ = E g(φ(x)ω(x)) E g (ω(x)) 1 N N i=1 φ(x i )ω(x i ) N l=1 ω(x l ) = 1 N N ω(x i ) N l=1 ω(x l }{{ ) φ(x i ). } normalized weight i=1 Note that the denominator yields an estimate of the normalizing constant c: c = E g (ω(x)) 1 N N ω(x l ). l=1 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (22)

23 Example Importance sampling (IS) We reconsider the density f(x) = exp(cos 2 (x))/c, x ( π/2, π/2), treated last time and estimate its variance as well as the normalizing constant c > 0 using self-normalized IS. Let the instrumental distribution g be the uniform distribution U( π/2, π/2). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (23)

24 Example (cont.) Importance sampling (IS) z exp(cos(x).^2); X = pi/2 + pi*rand(1,n); omega pi*z(x); tau = cumsum(x.^2.*omega(x))./cumsum(omega(x)); c = cumsum(omega(x))./(1:n); subplot(2,1,1); plot(1:n,c); Estimated normalizing constant 6 subplot(2,1,2); 5.5 plot(1:n,tau); Sample size N 1.4 Estimated variance Sample size N M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (24)

25 The weighted sample (X i, ω(x i )) can be viewed as a MC representation of the target distribution f. 0.5 f(x) = exp(cos 2 (x))/c, π/2 < x < π/ MC representation 0.45 f(x) g(x) f(x) IS (X i, ω(x i )) M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (25)

26 We are here Importance sampling (IS) 1 Importance sampling (IS) 2 3 M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (26)

27 HA1: Simulation and Monte Carlo integration HA1 comprises one question on random number generation and two larger questions on IS (one- and two-dimensional problems) containing one subquestion (2(c)) on variance reduction (which we will discuss next time). M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (27)

28 Submission: A written report in PDF format (No MS Word-les). The pair Errol Norqvist and Lillemor Dahlstedt name their report le proj1-dlne.pdf. A printed and stitched copy of the report is given to the lecturer at the very beginning of the lecture on Tuesday 10 Feb. An containing the report le as well as all your m-les with a le proj1.m that runs your analysis. This has to be sent to fms091@matstat.lu.se before Tuesday 10 Feb, 15:00:00 (that is, 15 minutes before the beginning of the lecture). Use your STIL-IDs in the subject line of the . Set the subject line to: Project 1 by STILID1 and STILID2 Late submissions do not qualify for marks higher than 3. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (28)

29 Instructions on report writing Explain carefully all introduced notation: X =?. Describe/explain the model. The text should be readable without access to the Matlab code; write plain text instead of including Matlab code in the report. Include your solutions in the text; do not write calculations of? can be found in the matlab code, or similar. When referring to the lecture notes or the book, be specic (i.e. refer to Chapter/which lecture). Refer to your gures in the text. Explain colors etc. in the gure captions (a gure caption is almost never to long). Write clear motivations and reasonings when it concerns choice of instrumental distributions etc. M. Wiktorsson Monte Carlo and Empirical Methods for Stochastic Inference, L3 (29)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 2 Random number generation January 18, 2018

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 5 Sequential Monte Carlo methods I January

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 1 Introduction January 16, 2018 M. Wiktorsson

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMSN50) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 6 Sequential Monte Carlo methods II February

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Monte Carlo Simulations in the Teaching Process

Monte Carlo Simulations in the Teaching Process Monte Carlo Simulations in the Teaching Process Blanka Šedivá Department of Mathematics, Faculty of Applied Sciences University of West Bohemia, Plzeň, Czech Republic CADGME 2018 Conference on Digital

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

10. Monte Carlo Methods

10. Monte Carlo Methods 10. Monte Carlo Methods 1. Introduction. Monte Carlo simulation is an important tool in computational finance. It may be used to evaluate portfolio management rules, to price options, to simulate hedging

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

Statistical Computing (36-350)

Statistical Computing (36-350) Statistical Computing (36-350) Lecture 16: Simulation III: Monte Carlo Cosma Shalizi 21 October 2013 Agenda Monte Carlo Monte Carlo approximation of integrals and expectations The rejection method and

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh F19: Introduction to Monte Carlo simulations Ebrahim Shayesteh Introduction and repetition Agenda Monte Carlo methods: Background, Introduction, Motivation Example 1: Buffon s needle Simple Sampling Example

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration.

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration. Overview 1 Random numbers Transformation method Rejection method 2 Monte Carlo integration Monte Carlo vs ordinary methods 3 Summary Transformation method Suppose X has probability distribution p X (x),

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices

ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices ROM SIMULATION Exact Moment Simulation using Random Orthogonal Matrices Bachelier Finance Society Meeting Toronto 2010 Henley Business School at Reading Contact Author : d.ledermann@icmacentre.ac.uk Alexander

More information

Slides for Risk Management

Slides for Risk Management Slides for Risk Management Introduction to the modeling of assets Groll Seminar für Finanzökonometrie Prof. Mittnik, PhD Groll (Seminar für Finanzökonometrie) Slides for Risk Management Prof. Mittnik,

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Chapter 6. Importance sampling. 6.1 The basics

Chapter 6. Importance sampling. 6.1 The basics Chapter 6 Importance sampling 6.1 The basics To movtivate our discussion consider the following situation. We want to use Monte Carlo to compute µ E[X]. There is an event E such that P(E) is small but

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 10 91. * A random sample, X1, X2,, Xn, is drawn from a distribution with a mean of 2/3 and a variance of 1/18. ˆ = (X1 + X2 + + Xn)/(n-1) is the estimator of the distribution mean θ. Find MSE(

More information

Hand and Spreadsheet Simulations

Hand and Spreadsheet Simulations 1 / 34 Hand and Spreadsheet Simulations Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 9/8/16 2 / 34 Outline 1 Stepping Through a Differential Equation 2 Monte

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Math Option pricing using Quasi Monte Carlo simulation

Math Option pricing using Quasi Monte Carlo simulation . Math 623 - Option pricing using Quasi Monte Carlo simulation Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics, Rutgers University This paper

More information

Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds

Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds Financial Risk Forecasting Chapter 7 Simulation methods for VaR for options and bonds Jon Danielsson 2017 London School of Economics To accompany Financial Risk Forecasting www.financialriskforecasting.com

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Monte Carlo Methods. Matt Davison May University of Verona Italy

Monte Carlo Methods. Matt Davison May University of Verona Italy Monte Carlo Methods Matt Davison May 22 2017 University of Verona Italy Big question 1 How can I convince myself that Delta Hedging a Geometric Brownian Motion stock really works with no transaction costs?

More information

MAS3904/MAS8904 Stochastic Financial Modelling

MAS3904/MAS8904 Stochastic Financial Modelling MAS3904/MAS8904 Stochastic Financial Modelling Dr Andrew (Andy) Golightly a.golightly@ncl.ac.uk Semester 1, 2018/19 Administrative Arrangements Lectures on Tuesdays at 14:00 (PERCY G13) and Thursdays at

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy

GENERATION OF STANDARD NORMAL RANDOM NUMBERS. Naveen Kumar Boiroju and M. Krishna Reddy GENERATION OF STANDARD NORMAL RANDOM NUMBERS Naveen Kumar Boiroju and M. Krishna Reddy Department of Statistics, Osmania University, Hyderabad- 500 007, INDIA Email: nanibyrozu@gmail.com, reddymk54@gmail.com

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Professor Ingve Simonsen Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 Allowed help: Alternativ D All written material This

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation APPM 7400 Lesson 5: Generating (Some) Continuous Random Variables September 12, 2018 esson 5: Generating (Some) Continuous Random Variables Stochastic Simulation September 12, 2018

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Further Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Outline

More information

History of Monte Carlo Method

History of Monte Carlo Method Monte Carlo Methods History of Monte Carlo Method Errors in Estimation and Two Important Questions for Monte Carlo Controlling Error A simple Monte Carlo simulation to approximate the value of pi could

More information

STOR Lecture 15. Jointly distributed Random Variables - III

STOR Lecture 15. Jointly distributed Random Variables - III STOR 435.001 Lecture 15 Jointly distributed Random Variables - III Jan Hannig UNC Chapel Hill 1 / 17 Before we dive in Contents of this lecture 1. Conditional pmf/pdf: definition and simple properties.

More information

Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method

Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method Meng-Jie Lu 1 / Wei-Hua Zhong 1 / Yu-Xiu Liu 1 / Hua-Zhang Miao 1 / Yong-Chang Li 1 / Mu-Huo Ji 2 Sample Size for Assessing Agreement between Two Methods of Measurement by Bland Altman Method Abstract:

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Strategies for High Frequency FX Trading

Strategies for High Frequency FX Trading Strategies for High Frequency FX Trading - The choice of bucket size Malin Lunsjö and Malin Riddarström Department of Mathematical Statistics Faculty of Engineering at Lund University June 2017 Abstract

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

Generating Random Numbers

Generating Random Numbers Generating Random Numbers Aim: produce random variables for given distribution Inverse Method Let F be the distribution function of an univariate distribution and let F 1 (y) = inf{x F (x) y} (generalized

More information

Hints on Some of the Exercises

Hints on Some of the Exercises Hints on Some of the Exercises of the book R. Seydel: Tools for Computational Finance. Springer, 00/004/006/009/01. Preparatory Remarks: Some of the hints suggest ideas that may simplify solving the exercises

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

SAQ KONTROLL AB Box 49306, STOCKHOLM, Sweden Tel: ; Fax:

SAQ KONTROLL AB Box 49306, STOCKHOLM, Sweden Tel: ; Fax: ProSINTAP - A Probabilistic Program for Safety Evaluation Peter Dillström SAQ / SINTAP / 09 SAQ KONTROLL AB Box 49306, 100 29 STOCKHOLM, Sweden Tel: +46 8 617 40 00; Fax: +46 8 651 70 43 June 1999 Page

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Sublinear Time Algorithms Oct 19, Lecture 1

Sublinear Time Algorithms Oct 19, Lecture 1 0368.416701 Sublinear Time Algorithms Oct 19, 2009 Lecturer: Ronitt Rubinfeld Lecture 1 Scribe: Daniel Shahaf 1 Sublinear-time algorithms: motivation Twenty years ago, there was practically no investigation

More information

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods . Math 623 - Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification May 30 31, 2013 Mike Giles (Oxford) Monte

More information

Loss Simulation Model Testing and Enhancement

Loss Simulation Model Testing and Enhancement Loss Simulation Model Testing and Enhancement Casualty Loss Reserve Seminar By Kailan Shang Sept. 2011 Agenda Research Overview Model Testing Real Data Model Enhancement Further Development Enterprise

More information

Central Limit Theorem (CLT) RLS

Central Limit Theorem (CLT) RLS Central Limit Theorem (CLT) RLS Central Limit Theorem (CLT) Definition The sampling distribution of the sample mean is approximately normal with mean µ and standard deviation (of the sampling distribution

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

Final Exam Key, JDEP 384H, Spring 2006

Final Exam Key, JDEP 384H, Spring 2006 Final Exam Key, JDEP 384H, Spring 2006 Due Date for Exam: Thursday, May 4, 12:00 noon. Instructions: Show your work and give reasons for your answers. Write out your solutions neatly and completely. There

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL: Fax: Monte Carlo methods

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL:   Fax: Monte Carlo methods INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 88 63 URL: www.math.auc.dk Fax: 98 15 81 29 E-mail: jm@math.aau.dk Monte Carlo methods Monte Carlo methods

More information