Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Size: px
Start display at page:

Download "Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2"

Transcription

1 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb p.1/17

2 Lecture 2, Part 2: Mean Exit Times Statement of Problem Differential Equation Formulation SDE/Monte Carlo Algorithm Convergence Property Montreal, Feb p.2/17

3 dx(t) = f(x(t))dt + g(x(t))dw(t), X(0) = X 0 Suppose X 0 is a constant in (a, b) Define the random variable T exit to be T exit := inf{t : X(t) = a or X(t) = b} In words: T exit is first time solution leaves (a, b) b a Problem: find the mean exit time T mean exit := E [T exit ] Montreal, Feb p.3/17

4 Monte Carlo for Mean Exit Time Choose a stepsize, t Choose a number of paths, M for s = 1 to M Set t n = 0 and X n = X 0 While X n > a and X n < b Compute a N(0,1) sample ξ n Replace X n by X n + tf(x n ) + t ξ n g(x n ) Replace t n by t n + t end set Texit s = t n 1 t 2 end set a M = M 1 M s=1 T exit s set b 2 M = M 1 1 M s=1 (T exit s a M) 2 Montreal, Feb p.4/17

5 Errors Two sources of error Sampling error: sample mean expected value Numerical SDE error: EM SDE paths Third source of error Discrete time: {t i } is monitored, not continuous time b a Montreal, Feb p.5/17

6 Analysis Let X 0 = x. Then T mean exit = u(x), where 1 g(x)2 d2 u 2 dx 2 + f(x)du dx = 1, for a < x < b with b.c. s u(a) = u(b) = 0 We can solve (analytically or numerically) to get exact solution. Then investigate accuracy of SDE/Monte Carlo. SDE/Monte Carlo approach is attractive for high-dimensional problems, e.g. X R 32 complicated geometries, computing u(x) at a single point Montreal, Feb p.6/17

7 u(x) = σ2 µ f(x) = µx and g(x) = σx (log(x/a) 1 (x/a)1 2µ/σ2 1 (b/a) 1 2µ/σ2 log(b/a) ) E.g. µ = 0.1, σ = 0.2, a = 0.5 and b = 2: u(x) Initial data, x Montreal, Feb p.7/17

8 f(x) = µx and g(x) = σx Replace X n by X n + tµx n + t ξ n σx n can be improved: Replace X n by X n exp ( (µ 1σ2 ) t + ) t ξ 2 n σ E.g. µ = 0.1, σ = 0.2, a = 0.5, b = 2 and X 0 = 1 with M = and t = 10 2 : First exit time Montreal, Feb p.8/17

9 Accuracy? T mean exit = With M = and t = 10 2 we get a M = with a 95% conf. int. of [7.7561, ] exact answer well outside conf. int. Monte Carlo method overestimates mean exit time Explanation: error from checking paths only at discrete time points {t i } is dominating the statistical sampling error decrease t rather than increase M t = 10 3 : a M = conf. int. [7.6641, ] t = 10 4 : a M = conf. int. [7.6200, ] Convergence rate... Montreal, Feb p.9/17

10 M = and try t = 10 1, 10 2, 10 3, 10 4 µ = 0.5, σ = 0.2, a = 0.5, b = 2, X 0 = 1.5: Sample mean + conf. interval Error in sample mean t Least-squares fit: power = 0.45, (resid = 0.12) t Montreal, Feb p.10/17

11 Convergence Rate The rate O( t 1 2 ) has been widely reported Overall error is then O( t / M) take M t 1 Montreal, Feb p.11/17

12 M = 10 4, t = 10 4, 40 X 0 values µ = 0.1, σ = 0.2, a = 0.5, b = 2: u(x) x Montreal, Feb p.12/17

13 f(x) = λ(µ x) and g(x) = σ x Safe EM step is Replace X n by X n + tλ(µ X n ) + t ξ n σ X n Take λ = 1, µ = 0.5, σ = 0.3, a = 1 and b = 2, M = 10 3 and t = 10 3 : u(x) Exact solution from bvp4c.m x Montreal, Feb p.13/17

14 Double-Well Potential: V (x) = x 2 (x 2) V(x) x dx(t) = V (X(t))dt + σdw(t) Take a = 3 and b = 1 Measuring expected time to climb over the central hump Montreal, Feb p.14/17

15 1 σ2 d2 u 2 dx 2 V (x) du dx = Mean exit time σ = 4 σ = σ = Initial data, x Montreal, Feb p.15/17

16 Convergence Fix X 0 = 0 and σ = 4 M = and t = 10 2, 10 3, 10 4, 10 5 : Sample mean + conf. interval Error in sample mean t Least-squares fit: power = 0.46, (resid = 0.017) t Montreal, Feb p.16/17

17 Monte Carlo/SDE for Mean Exit Time Research problems: Develop a provably O( t) algorithm. Ideas: Adaptively reduce t near boundary. After each step, calculate probability that exit was missed. Then draw from a uniform (0, 1) random number generator in order to decide whether to record an exit. Use random t n from a suitable exponential distribution. Develop an efficient method for high-dimension/complicated region Montreal, Feb p.17/17

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R,

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 2. Integration For deterministic h : R R, Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Lecture, part : SDEs Ito stochastic integrals Ito SDEs Examples of

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Professor Ingve Simonsen Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 Allowed help: Alternativ D All written material This

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 1. Overview of Lecture 1, Part 1: Background Mater.

Numerical Simulation of Stochastic Differential Equations: Lecture 1, Part 1. Overview of Lecture 1, Part 1: Background Mater. Numerical Simulation of Stochastic Differential Equations: Lecture, Part Des Higham Department of Mathematics University of Strathclyde Course Aim: Give an accessible intro. to SDEs and their numerical

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Computational Finance Least Squares Monte Carlo

Computational Finance Least Squares Monte Carlo Computational Finance Least Squares Monte Carlo School of Mathematics 2019 Monte Carlo and Binomial Methods In the last two lectures we discussed the binomial tree method and convergence problems. One

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Monte Carlo Simulations in the Teaching Process

Monte Carlo Simulations in the Teaching Process Monte Carlo Simulations in the Teaching Process Blanka Šedivá Department of Mathematics, Faculty of Applied Sciences University of West Bohemia, Plzeň, Czech Republic CADGME 2018 Conference on Digital

More information

Ornstein-Uhlenbeck Theory

Ornstein-Uhlenbeck Theory Beatrice Byukusenge Department of Technomathematics Lappeenranta University of technology January 31, 2012 Definition of a stochastic process Let (Ω,F,P) be a probability space. A stochastic process is

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

23 Stochastic Ordinary Differential Equations with Examples from Finance

23 Stochastic Ordinary Differential Equations with Examples from Finance 23 Stochastic Ordinary Differential Equations with Examples from Finance Scraping Financial Data from the Web The MATLAB/Octave yahoo function below returns daily open, high, low, close, and adjusted close

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration.

Overview. Transformation method Rejection method. Monte Carlo vs ordinary methods. 1 Random numbers. 2 Monte Carlo integration. Overview 1 Random numbers Transformation method Rejection method 2 Monte Carlo integration Monte Carlo vs ordinary methods 3 Summary Transformation method Suppose X has probability distribution p X (x),

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

Numerical Methods II

Numerical Methods II Numerical Methods II Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 3 p. 1 Variance Reduction Monte Carlo starts as a very simple method; much of the complexity

More information

PDE Project Course 1. Adaptive finite element methods

PDE Project Course 1. Adaptive finite element methods PDE Project Course 1. Adaptive finite element methods Anders Logg logg@math.chalmers.se Department of Computational Mathematics PDE Project Course 03/04 p. 1 Lecture plan Introduction to FEM FEM for Poisson

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff Finance Stoch 2009 13: 403 413 DOI 10.1007/s00780-009-0092-1 Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff Michael B. Giles Desmond J. Higham Xuerong Mao Received: 1

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

ANALYSIS OF THE BINOMIAL METHOD

ANALYSIS OF THE BINOMIAL METHOD ANALYSIS OF THE BINOMIAL METHOD School of Mathematics 2013 OUTLINE 1 CONVERGENCE AND ERRORS OUTLINE 1 CONVERGENCE AND ERRORS 2 EXOTIC OPTIONS American Options Computational Effort OUTLINE 1 CONVERGENCE

More information

Computational Finance Binomial Trees Analysis

Computational Finance Binomial Trees Analysis Computational Finance Binomial Trees Analysis School of Mathematics 2018 Review - Binomial Trees Developed a multistep binomial lattice which will approximate the value of a European option Extended the

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

Scenario Generation and Sampling Methods

Scenario Generation and Sampling Methods Scenario Generation and Sampling Methods Güzin Bayraksan Tito Homem-de-Mello SVAN 2016 IMPA May 9th, 2016 Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 1 / 30

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Liquidation of a Large Block of Stock

Liquidation of a Large Block of Stock Liquidation of a Large Block of Stock M. Pemy Q. Zhang G. Yin September 21, 2006 Abstract In the financial engineering literature, stock-selling rules are mainly concerned with liquidation of the security

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Module 4: Monte Carlo path simulation

Module 4: Monte Carlo path simulation Module 4: Monte Carlo path simulation Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Module 4: Monte Carlo p. 1 SDE Path Simulation In Module 2, looked at the case

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Stochastic Processes and Brownian Motion

Stochastic Processes and Brownian Motion A stochastic process Stochastic Processes X = { X(t) } Stochastic Processes and Brownian Motion is a time series of random variables. X(t) (or X t ) is a random variable for each time t and is usually

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091)

Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Monte Carlo and Empirical Methods for Stochastic Inference (MASM11/FMS091) Magnus Wiktorsson Centre for Mathematical Sciences Lund University, Sweden Lecture 3 Importance sampling January 27, 2015 M. Wiktorsson

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

MAS3904/MAS8904 Stochastic Financial Modelling

MAS3904/MAS8904 Stochastic Financial Modelling MAS3904/MAS8904 Stochastic Financial Modelling Dr Andrew (Andy) Golightly a.golightly@ncl.ac.uk Semester 1, 2018/19 Administrative Arrangements Lectures on Tuesdays at 14:00 (PERCY G13) and Thursdays at

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN SOLUTIONS Subject CM1A Actuarial Mathematics Institute and Faculty of Actuaries 1 ( 91 ( 91 365 1 0.08 1 i = + 365 ( 91 365 0.980055 = 1+ i 1+

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

1 Rare event simulation and importance sampling

1 Rare event simulation and importance sampling Copyright c 2007 by Karl Sigman 1 Rare event simulation and importance sampling Suppose we wish to use Monte Carlo simulation to estimate a probability p = P (A) when the event A is rare (e.g., when p

More information

Parameter estimation in SDE:s

Parameter estimation in SDE:s Lund University Faculty of Engineering Statistics in Finance Centre for Mathematical Sciences, Mathematical Statistics HT 2011 Parameter estimation in SDE:s This computer exercise concerns some estimation

More information

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Heston Stochastic Local Volatility Model Klaus Spanderen 1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1 Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic

More information

STOR Lecture 15. Jointly distributed Random Variables - III

STOR Lecture 15. Jointly distributed Random Variables - III STOR 435.001 Lecture 15 Jointly distributed Random Variables - III Jan Hannig UNC Chapel Hill 1 / 17 Before we dive in Contents of this lecture 1. Conditional pmf/pdf: definition and simple properties.

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

Financial Engineering with FRONT ARENA

Financial Engineering with FRONT ARENA Introduction The course A typical lecture Concluding remarks Problems and solutions Dmitrii Silvestrov Anatoliy Malyarenko Department of Mathematics and Physics Mälardalen University December 10, 2004/Front

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

Simulating more interesting stochastic processes

Simulating more interesting stochastic processes Chapter 7 Simulating more interesting stochastic processes 7. Generating correlated random variables The lectures contained a lot of motivation and pictures. We'll boil everything down to pure algebra

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Are the Azéma-Yor processes truly remarkable?

Are the Azéma-Yor processes truly remarkable? Are the Azéma-Yor processes truly remarkable? Jan Obłój j.obloj@imperial.ac.uk based on joint works with L. Carraro, N. El Karoui, A. Meziou and M. Yor Welsh Probability Seminar, 17 Jan 28 Are the Azéma-Yor

More information

Optimal Investment with Deferred Capital Gains Taxes

Optimal Investment with Deferred Capital Gains Taxes Optimal Investment with Deferred Capital Gains Taxes A Simple Martingale Method Approach Frank Thomas Seifried University of Kaiserslautern March 20, 2009 F. Seifried (Kaiserslautern) Deferred Capital

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Market interest-rate models

Market interest-rate models Market interest-rate models Marco Marchioro www.marchioro.org November 24 th, 2012 Market interest-rate models 1 Lecture Summary No-arbitrage models Detailed example: Hull-White Monte Carlo simulations

More information

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section is presented the steps to perform the simulation of the main stochastic processes used in real options applications,

More information

Section 8.2: Monte Carlo Estimation

Section 8.2: Monte Carlo Estimation Section 8.2: Monte Carlo Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 1/ 19

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Are the Azéma-Yor processes truly remarkable?

Are the Azéma-Yor processes truly remarkable? Are the Azéma-Yor processes truly remarkable? Jan Obłój j.obloj@imperial.ac.uk based on joint works with L. Carraro, N. El Karoui, A. Meziou and M. Yor Swiss Probability Seminar, 5 Dec 2007 Are the Azéma-Yor

More information

Continous time models and realized variance: Simulations

Continous time models and realized variance: Simulations Continous time models and realized variance: Simulations Asger Lunde Professor Department of Economics and Business Aarhus University September 26, 2016 Continuous-time Stochastic Process: SDEs Building

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Using of stochastic Ito and Stratonovich integrals derived security pricing

Using of stochastic Ito and Stratonovich integrals derived security pricing Using of stochastic Ito and Stratonovich integrals derived security pricing Laura Pânzar and Elena Corina Cipu Abstract We seek for good numerical approximations of solutions for stochastic differential

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets A Worst-Case Approach to Option Pricing in Crash-Threatened Markets Christoph Belak School of Mathematical Sciences Dublin City University Ireland Department of Mathematics University of Kaiserslautern

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information