PDE Project Course 1. Adaptive finite element methods

Size: px
Start display at page:

Download "PDE Project Course 1. Adaptive finite element methods"

Transcription

1 PDE Project Course 1. Adaptive finite element methods Anders Logg Department of Computational Mathematics PDE Project Course 03/04 p. 1

2 Lecture plan Introduction to FEM FEM for Poisson s equation Adaptivity for Poisson s equation FEM for u = f Adaptivity for u = f PDE Project Course 03/04 p. 2

3 Introduction to FEM PDE Project Course 03/04 p. 3

4 A method for solving PDEs The finite element method (FEM), also known as Galerkin s method, is a general method for solving PDEs (or ODEs) of the form A(u) = f, where A is a differential operator, f is a given force term and u is the solution. PDE Project Course 03/04 p. 4

5 Solving PDEs Analytic solutions can be obtained only for simple geometries in special cases: PSfrag replacements u = 0 Using the computer, we can obtain solutions to general problems with complex geometries: u + u u ν u + p = f u = 0 PDE Project Course 03/04 p. 5

6 The finite element method Find an approximate solution U of the form U(x) = N j=1 ξ j ϕ j (x). Here U is linear linear combination of (a finite number of) basis functions with local support: {ϕ j } N j=1. PDE Project Course 03/04 p. 6

7 Some notation from functional analysis Scalar product for functions v, w: (v, w) = v(x)w(x) dx L 2 (Ω)-norm of a function v: ( 1/2 v L2 (Ω) = v dx) 2 = (v, v) Ω Ω PDE Project Course 03/04 p. 7

8 Some notation from functional analysis Cauchy s inequality: (v, w) v w v and w are orthogonal iff (v, w) = 0 w PSfrag replacements v PDE Project Course 03/04 p. 8

9 Galerkin s method The finite element method is based on Galerkin s method: Let V h denote a finite dimensional trial space. Let ˆV h denote a finite dimensional test space. Find U V h such that the residual R(U) = A(U) f is orthogonal to ˆV h : (R(U), v) = 0 v ˆV h. PDE Project Course 03/04 p. 9

10 Galerkin s method For A linear with V h = ˆV h = span{ϕ j } N j=1 we have or (R(U), v) = 0, v ˆV h, (A(U) f, v) = 0, v ˆV h, (A( N j=1 ξ jϕ j ), v) = (f, v), v ˆV h, N j=1 ξ j(a(ϕ j ), ˆϕ i ) = (f, ˆϕ i ), i = 1,..., N, A h ξ = b, where A h = (A(ϕ j ), ˆϕ i ), b = (f, ˆϕ i ). PDE Project Course 03/04 p. 10

11 Galerkin s method It is often advisable to rewrite the differential equation A(u) = f from operator form to variational form: a(u, v) = (f, v) v V, where a(, ) = (A( ), ) is a bilinear form, and V is a suitable function space. PDE Project Course 03/04 p. 11

12 Galerkin s method Starting from the variational formulation, we have or a(u, v) (f, v) = 0, v ˆV h, a( N j=1 ξ jϕ j, v) = (f, v), v ˆV h, N j=1 ξ ja(ϕ j, ˆϕ i ) = (f, ˆϕ i ), i = 1,..., N, A h ξ = b, where A h = a(ϕ j, ˆϕ i ), b = (f, ˆϕ i ). PDE Project Course 03/04 p. 12

13 FEM for Poisson s equation PDE Project Course 03/04 p. 13

14 Poisson in three different forms Equation: u = f Variational formulation: u v dx = Ω Ω fv dx Linear system: A h = ϕ j ˆϕ i dx, b = Ω v V f ˆϕ i dx Ω PDE Project Course 03/04 p. 14

15 Details Let s do this on the black board... PDE Project Course 03/04 p. 15

16 Adaptivity for Poisson PDE Project Course 03/04 p. 16

17 How large is the error? We expect the error e = U u to decrease if we increase the dimension N of V h and ˆV h. This can be done in different ways: h-adaptivity: decrease the mesh size h p-adaptivity: increase the polynomial order p hp-adaptivity: a combination of the h and p methods We will only consider h-adaptivity. PDE Project Course 03/04 p. 17

18 An a posteriori error estimate Let E denote the energy-norm given by v E = v. Then the (piecewise linear) finite element solution U = U(x) satisfies the error estimate e E = U u E C h(r 1 (U) + R 2 (U)), where R 1 (U) = f + U = f and R 2 (U) = 1 2 max S K h 1 K [ SU]. PDE Project Course 03/04 p. 18

19 Adaptive error control Find V h, given by a triangulation T h, such that e E TOL, where TOL is a given tolerance for the error. This is satisfied if C h(r 1 (U) + R 2 (U)) TOL. PDE Project Course 03/04 p. 19

20 An adaptive algorithm 1. Choose an initial triangulation T 0 h. 2. Compute the solution U on the current triangulation. 3. Compute the residuals R 1, R 2, and the error estimate. 4. If the error estimate is below the tolerance we stop. Otherwise, we refine the elements where R 1 + R 2 is large and start again at 2. PDE Project Course 03/04 p. 20

21 FEM for u = f PDE Project Course 03/04 p. 21

22 u = f in three different forms Equation: Variational formulation: u(t) = f(u(t), t) tn t n 1 ( u, v) dt = Step method: tn t n 1 (f, v) dt v V u(t n ) = u(t n 1 ) + tn t n 1 f(u(t), t) dt PDE Project Course 03/04 p. 22

23 Details Let s do this on the black board... PDE Project Course 03/04 p. 23

24 Adaptivity for u = f PDE Project Course 03/04 p. 24

25 An a posteriori error estimate We expect the error to decrease if we decrease the time step k. The (piecewise linear) finite element solution U = U(t) satisfies the a posteriori error estimate e(t ) = S(T ) max [0,T ] {k(t) R(U, t) }, where S(T ) is a stability factor and R(U, t) = U(t) f(u(t), t) is the residual. PDE Project Course 03/04 p. 25

26 An adaptive algorithm 1. Make a preliminary estimate of S(T ). 2. Compute the solution U with time steps based on the error estimate. 3. Compute the dual solution φ. (See Chapter 9 in CDE.) 4. Compute an error estimate. 5. If the error estimate is below the tolerance we stop. Otherwise start again at 2. PDE Project Course 03/04 p. 26

PDE Project Course 4. An Introduction to DOLFIN and Puffin

PDE Project Course 4. An Introduction to DOLFIN and Puffin PDE Project Course 4. An Introduction to DOLFIN and Puffin Anders Logg logg@math.chalmers.se Department of Computational Mathematics PDE Project Course 03/04 p. 1 Lecture plan DOLFIN Overview Input / output

More information

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Norbert Hilber Seminar of Applied Mathematics ETH Zürich Workshop on Financial Modeling with Jump Processes p. 1/18 Outline

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Program Advisor: Howard Elman Department of Computer Science May 5, 2016 Tengfei

More information

Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas

Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas Christoph Winter, ETH Zurich, Seminar for Applied Mathematics École Polytechnique, Paris, September 6 8, 26 Introduction

More information

Introduction to Numerical PDEs

Introduction to Numerical PDEs Introduction to Numerical PDEs Varun Shankar February 16, 2016 1 Introduction In this chapter, we will introduce a general classification scheme for linear second-order PDEs, and discuss when they have

More information

Finite Element Method

Finite Element Method In Finite Difference Methods: the solution domain is divided into a grid of discrete points or nodes the PDE is then written for each node and its derivatives replaced by finite-divided differences In

More information

Galerkin Least Square FEM for the European option price with CEV model

Galerkin Least Square FEM for the European option price with CEV model Galerkin Least Square FEM for the European option price with CEV model A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of requirements for

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004 HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR D PARABOLIC EQUATIONS by Ahmet İzmirlioğlu BS, University of Pittsburgh, 24 Submitted to the Graduate Faculty of Art and Sciences in partial fulfillment of

More information

Exact shape-reconstruction by one-step linearization in EIT

Exact shape-reconstruction by one-step linearization in EIT Exact shape-reconstruction by one-step linearization in EIT Bastian von Harrach harrach@ma.tum.de Department of Mathematics - M1, Technische Universität München, Germany Joint work with Jin Keun Seo, Yonsei

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

DISCONTINUOUS GALERKIN METHODS FOR ADVECTION DIFFUSION REACTION PROBLEMS ON ANISOTROPICALLY REFINED MESHES

DISCONTINUOUS GALERKIN METHODS FOR ADVECTION DIFFUSION REACTION PROBLEMS ON ANISOTROPICALLY REFINED MESHES DISCONTINUOUS GALERKIN METHODS FOR ADVECTION DIFFUSION REACTION PROBLEMS ON ANISOTROPICALLY REFINED MESHES EMMANUIL H. GEORGOULIS, EDWARD HALL, AND PAUL HOUSTON Abstract. In this paper we consider the

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

hp-version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

hp-version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes hp-version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes Andrea Cangiani Department of Mathematics University of Leicester Joint work with: E. Georgoulis & P. Dong (Leicester), P. Houston

More information

Pricing of European- and American-style Asian Options using the Finite Element Method. Jesper Karlsson

Pricing of European- and American-style Asian Options using the Finite Element Method. Jesper Karlsson Pricing of European- and American-style Asian Options using the Finite Element Method Jesper Karlsson Pricing of European- and American-style Asian Options using the Finite Element Method June 2018 Supervisors

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Exact shape-reconstruction by one-step linearization in EIT

Exact shape-reconstruction by one-step linearization in EIT Exact shape-reconstruction by one-step linearization in EIT Bastian von Harrach harrach@math.uni-mainz.de Zentrum Mathematik, M1, Technische Universität München, Germany Joint work with Jin Keun Seo, Yonsei

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

ERROR ESTIMATES FOR LINEAR-QUADRATIC ELLIPTIC CONTROL PROBLEMS

ERROR ESTIMATES FOR LINEAR-QUADRATIC ELLIPTIC CONTROL PROBLEMS ERROR ESTIMATES FOR LINEAR-QUADRATIC ELLIPTIC CONTROL PROBLEMS Eduardo Casas Departamento de Matemática Aplicada y Ciencias de la Computación Universidad de Cantabria 39005 Santander, Spain. eduardo.casas@unican.es

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2017 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2016/m2mo/m2mo.html We look for a numerical approximation

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2018 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2017/m2mo/m2mo.html We look for a numerical approximation

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016 Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1 Co-Authors Chris Oates Tim Sullivan Mark Girolami 2 What is PN? Many problems in mathematics have no analytical

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

The Forward Kolmogorov Equation for Two Dimensional Options

The Forward Kolmogorov Equation for Two Dimensional Options The Forward Kolmogorov Equation for Two Dimensional Options Antoine Conze (Nexgenfs bank), Nicolas Lantos (Nexgenfs bank and UPMC), Olivier Pironneau (LJLL, University of Paris VI) March, 04 Abstract Pricing

More information

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Valuing Path-Dependent Options using the Finite Element Method, Duality Techniques, and Model Reduction

Valuing Path-Dependent Options using the Finite Element Method, Duality Techniques, and Model Reduction THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Valuing Path-Dependent Options using the Finite Element Method, Duality Techniques, and Model Reduction Georgios Foufas Department of Mathematical Sciences

More information

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions

Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Forward Monte-Carlo Scheme for PDEs: Multi-Type Marked Branching Diffusions Pierre Henry-Labordère 1 1 Global markets Quantitative Research, SOCIÉTÉ GÉNÉRALE Outline 1 Introduction 2 Semi-linear PDEs 3

More information

Financial Computing with Python

Financial Computing with Python Introduction to Financial Computing with Python Matthieu Mariapragassam Why coding seems so easy? But is actually not Sprezzatura : «It s an art that doesn t seem to be an art» - The Book of the Courtier

More information

About Weak Form Modeling

About Weak Form Modeling Weak Form Modeling About Weak Form Modeling Do not be misled by the term weak; the weak form is very powerful and flexible. The term weak form is borrowed from mathematics. The distinguishing characteristics

More information

Infinite Reload Options: Pricing and Analysis

Infinite Reload Options: Pricing and Analysis Infinite Reload Options: Pricing and Analysis A. C. Bélanger P. A. Forsyth April 27, 2006 Abstract Infinite reload options allow the user to exercise his reload right as often as he chooses during the

More information

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model CIRJE-F-873 An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Osaka University Akihiko Takahashi University of Tokyo Toshihiro Yamada Graduate School

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Using radial basis functions for option pricing

Using radial basis functions for option pricing Using radial basis functions for option pricing Elisabeth Larsson Division of Scientific Computing Department of Information Technology Uppsala University Actuarial Mathematics Workshop, March 19, 2013,

More information

Fundamentals of Stochastic Filtering

Fundamentals of Stochastic Filtering Alan Bain Dan Crisan Fundamentals of Stochastic Filtering Sprin ger Contents Preface Notation v xi 1 Introduction 1 1.1 Foreword 1 1.2 The Contents of the Book 3 1.3 Historical Account 5 Part I Filtering

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Optimal investments under dynamic performance critria. Lecture IV

Optimal investments under dynamic performance critria. Lecture IV Optimal investments under dynamic performance critria Lecture IV 1 Utility-based measurement of performance 2 Deterministic environment Utility traits u(x, t) : x wealth and t time Monotonicity u x (x,

More information

Hedging under arbitrage

Hedging under arbitrage Hedging under arbitrage Johannes Ruf Columbia University, Department of Statistics AnStAp10 August 12, 2010 Motivation Usually, there are several trading strategies at one s disposal to obtain a given

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 2014 Quiz #1 March 3, 2014 Name: SOLUTION ID#: PS.:

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 2, Mikhail Zaslavsky 2 University of Michigan, Ann

More information

Monte Carlo Based Numerical Pricing of Multiple Strike-Reset Options

Monte Carlo Based Numerical Pricing of Multiple Strike-Reset Options Monte Carlo Based Numerical Pricing of Multiple Strike-Reset Options Stavros Christodoulou Linacre College University of Oxford MSc Thesis Trinity 2011 Contents List of figures ii Introduction 2 1 Strike

More information

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION J. KSIAM Vol.14, No.3, 175 187, 21 AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION DARAE JEONG, IN-SUK WEE, AND JUNSEOK KIM DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-71, KOREA E-mail

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Analysis of pricing American options on the maximum (minimum) of two risk assets

Analysis of pricing American options on the maximum (minimum) of two risk assets Interfaces Free Boundaries 4, (00) 7 46 Analysis of pricing American options on the maximum (minimum) of two risk assets LISHANG JIANG Institute of Mathematics, Tongji University, People s Republic of

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Econ 582 Nonlinear Regression

Econ 582 Nonlinear Regression Econ 582 Nonlinear Regression Eric Zivot June 3, 2013 Nonlinear Regression In linear regression models = x 0 β (1 )( 1) + [ x ]=0 [ x = x] =x 0 β = [ x = x] [ x = x] x = β it is assumed that the regression

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 3, Mikhail Zaslavsky 3 University of Michigan, Ann

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Pricing with a Smile. Bruno Dupire. Bloomberg

Pricing with a Smile. Bruno Dupire. Bloomberg CP-Bruno Dupire.qxd 10/08/04 6:38 PM Page 1 11 Pricing with a Smile Bruno Dupire Bloomberg The Black Scholes model (see Black and Scholes, 1973) gives options prices as a function of volatility. If an

More information

PAijpam.eu ANALYTIC SOLUTION OF A NONLINEAR BLACK-SCHOLES EQUATION

PAijpam.eu ANALYTIC SOLUTION OF A NONLINEAR BLACK-SCHOLES EQUATION International Journal of Pure and Applied Mathematics Volume 8 No. 4 013, 547-555 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.173/ijpam.v8i4.4

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) Vol. 33 (2013) 103-115 A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL Md. Kazi Salah Uddin 1*, Mostak Ahmed 2 and Samir Kumar Bhowmik 1,3 1

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Chapter 20: An Introduction to ADI and Splitting Schemes

Chapter 20: An Introduction to ADI and Splitting Schemes Chapter 20: An Introduction to ADI and Splitting Schemes 20.1INTRODUCTION AND OBJECTIVES In this chapter we discuss how to apply finite difference schemes to approximate the solution of multidimensional

More information

Evaluation of Asian option by using RBF approximation

Evaluation of Asian option by using RBF approximation Boundary Elements and Other Mesh Reduction Methods XXVIII 33 Evaluation of Asian option by using RBF approximation E. Kita, Y. Goto, F. Zhai & K. Shen Graduate School of Information Sciences, Nagoya University,

More information

Functional Ito calculus. hedging of path-dependent options

Functional Ito calculus. hedging of path-dependent options and hedging of path-dependent options Laboratoire de Probabilités et Modèles Aléatoires CNRS - Université de Paris VI-VII and Columbia University, New York Background Hans Föllmer (1979) Calcul d Itô sans

More information

Partial Differential Equations of Fluid Dynamics

Partial Differential Equations of Fluid Dynamics Partial Differential Equations of Fluid Dynamics Ville Vuorinen,D.Sc.(Tech.) 1 1 Department of Energy Technology, Internal Combustion Engine Research Group Department of Energy Technology Outline Introduction

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Valuation of performance-dependent options in a Black- Scholes framework

Valuation of performance-dependent options in a Black- Scholes framework Valuation of performance-dependent options in a Black- Scholes framework Thomas Gerstner, Markus Holtz Institut für Numerische Simulation, Universität Bonn, Germany Ralf Korn Fachbereich Mathematik, TU

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy

Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy Continuous Time Mean Variance Asset Allocation: A Time-consistent Strategy J. Wang, P.A. Forsyth October 24, 2009 Abstract We develop a numerical scheme for determining the optimal asset allocation strategy

More information

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Akihiko Takahashi Toshihiro Yamada arxiv:32.336v [q-fin.cp] 4 Feb 23 December 3, 22 Abstract This

More information

On Complexity of Multistage Stochastic Programs

On Complexity of Multistage Stochastic Programs On Complexity of Multistage Stochastic Programs Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205, USA e-mail: ashapiro@isye.gatech.edu

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5.

Last Time. Martingale inequalities Martingale convergence theorem Uniformly integrable martingales. Today s lecture: Sections 4.4.1, 5. MATH136/STAT219 Lecture 21, November 12, 2008 p. 1/11 Last Time Martingale inequalities Martingale convergence theorem Uniformly integrable martingales Today s lecture: Sections 4.4.1, 5.3 MATH136/STAT219

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

3. The Dynamic Programming Algorithm (cont d)

3. The Dynamic Programming Algorithm (cont d) 3. The Dynamic Programming Algorithm (cont d) Last lecture e introduced the DPA. In this lecture, e first apply the DPA to the chess match example, and then sho ho to deal ith problems that do not match

More information

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming

Stochastic Dual Dynamic Programming Algorithm for Multistage Stochastic Programming Stochastic Dual Dynamic Programg Algorithm for Multistage Stochastic Programg Final presentation ISyE 8813 Fall 2011 Guido Lagos Wajdi Tekaya Georgia Institute of Technology November 30, 2011 Multistage

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

A Note on the No Arbitrage Condition for International Financial Markets

A Note on the No Arbitrage Condition for International Financial Markets A Note on the No Arbitrage Condition for International Financial Markets FREDDY DELBAEN 1 Department of Mathematics Vrije Universiteit Brussel and HIROSHI SHIRAKAWA 2 Department of Industrial and Systems

More information

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015 Optimization for Chemical Engineers, 4G3 Written midterm, 23 February 2015 Kevin Dunn, kevin.dunn@mcmaster.ca McMaster University Note: No papers, other than this test and the answer booklet are allowed

More information

Infinitely Many Solutions to the Black-Scholes PDE; Physics Point of View

Infinitely Many Solutions to the Black-Scholes PDE; Physics Point of View CBS 2018-05-23 1 Infinitely Many Solutions to the Black-Scholes PDE; Physics Point of View 서울대학교물리학과 2018. 05. 23. 16:00 (56 동 106 호 ) 최병선 ( 경제학부 ) 최무영 ( 물리천문학부 ) CBS 2018-05-23 2 Featuring: 최병선 Pictures

More information

Operator Splitting Techniques for American Type of Floating Strike Asian Option

Operator Splitting Techniques for American Type of Floating Strike Asian Option Technical report, IDE1151, September 20, 2011 Operator Splitting Techniques for American Type of Floating Strike Asian Option Master s Thesis in Financial Mathematics Michal Takáč School of Information

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Single-Parameter Mechanisms

Single-Parameter Mechanisms Algorithmic Game Theory, Summer 25 Single-Parameter Mechanisms Lecture 9 (6 pages) Instructor: Xiaohui Bei In the previous lecture, we learned basic concepts about mechanism design. The goal in this area

More information