Optimal investments under dynamic performance critria. Lecture IV

Size: px
Start display at page:

Download "Optimal investments under dynamic performance critria. Lecture IV"

Transcription

1 Optimal investments under dynamic performance critria Lecture IV 1

2 Utility-based measurement of performance 2

3 Deterministic environment Utility traits u(x, t) : x wealth and t time Monotonicity u x (x, t) > Risk aversion u xx (x, t) < Impatience u t (x, t) < Fisher (1913, 1918), Koopmans (1951), Koopmans-Diamond-Williamson (1964)... 3

4 Stochastic environment Important ingredients Time evolution concurrent with the one of the investment universe Consistency with up to date information Incorporation of available opportunities and constraints Meaningful optimal utility volume 4

5 Dynamic utility U(x, t) is an F t -adapted process As a function of x, U is increasing and concave For each self-financing strategy, represented by π, the associated (discounted) wealth X t satisfies E P (U(X π t,t) F s ) U(X π s,s) s t There exists a self-financing strategy, represented by π,forwhich the associated (discounted) wealth Xt π satisfies E P (U(Xt π,t) F s ) = U(Xs π,s) s t 5

6 Traditional framework A deterministic utility datum u T (x) is assigned at the end of a fixed investment horizon U(x, T )=u T (x) Backwards in time generation of optimal utility volume V (x, t) =sup π E P (u(x π T,T) F t; X π t = x) V (x, t) =sup π E P (V (X π s,s) F t ; X π t = x) (DPP) V (x, t) =E P (V (Xs π,s) F t ; Xt π = x) U(x, t) V (x, t) t<t The dynamic utility coincides with the traditional value function 6

7 A deterministic utility datum u (x) is assigned at the beginning of the trading horizon, t = U(x, ) = u (x) Forward in time generation of optimal utility volume U(X π s,s)=e P (U(X π t,t) F s ) s t Dynamic utility can be defined for all trading horizons Utility and allocations take a very intuitive form Difficulties due to the inverse in time nature of the problem Utility is not exogeneously given but is implied/calibrated w.r.t. investment opportunities 7

8 Motivational examples 8

9 An incomplete multiperiod binomial example Exponential utility datum Traded security: S t,t=, 1,... ξ t+1 = S t+1 S t,ξ t+1 = ξ d t+1,ξu t+1 with <ξ d t+1 < 1 <ξu t+1 Second traded asset is riskless yielding zero interest rate Stochastic factor: Y t,t=, 1,... η t+1 = Y t+1 Y t,η t+1 = η d t+1,ηu t+1 with η d t <η u t Probability space (Ω, (F t ), P) {S t,y t : t =, 1,...} : a two-dimensional stochastic process 9

10 State wealth process: X t, t = s +1,s+2,...,... α i : the number of shares of the traded security held in this portfolio over thetimeperiod[i 1,i] X t = X s + t i=s+1 α i S i Forward dynamic exponential utility U(X α s,s)=e P (U(X α t,t) F s ) U(x, ) = e γx, γ > 1

11 A forward dynamic utility U(x, t) = e γx if t = e γx+ t i=1 h i if t 1 Auxiliary quantities : local entropies h i with h i = q i log q i P (A i F i 1 ) +(1 q i)log 1 q i 1 P (A i F i 1 ) A i = {ξ i = ξ u i } and q i = Q (A i F i 1 ) for i =, 1,.. and Q being the minimal relative entropy measure 11

12 Important insights The forward utility process U(x, t) = e γx+ t i=1 h i is of the form U(x, t) =u(x, A t ) where u(x, t) is the deterministic utility function u(x, t) = e γx+1 2 t and A t corresponds to a time change depending on the market input A t =2 t h i i=1 12

13 Important insights (continued) The variational utility input u(x, t) = e γx+1 2 t solves the partial differential equation u t u xx = 1 2 u2 x u(x, ) = e γx The stochastic market input A t =2 t h i i=1 plays now the role of time. It depends exclusively on the market parameters. 13

14 A continuous-time example Investment opportunities Riskless bond : r = Risky security : ds t = σ t S t (λ t dt + dw t ) Utility datum at t =: u (x) Wealth process dx t = σ t π t (λ t dt + dw t ) X = x Market input : λ t, A t da t = λ 2 t dt A = 14

15 Building the martingale U(Xt π,t) Assume that we can construct U(x, t) via U(Xt π,t)=u(xt π,a t ) U(x, ) = u(x, ) = u (x) where u(x, t) is the variational utility input and A t the stochastic market input du(xt π,t)=u x(x t,a t )σ t π t dw t +(u t (Xt π,a t)λ 2 t + u x(xt π,a t)σ t π t λ t u xx(xt π,a t)σt 2π2 t )dt }{{} 15

16 Variational utility input condition u t u xx = 1 2 u2 x u(x, ) = u (x) The optimal allocations in stock, π t π t = σ 1 t π, t = X π t, and in bond, π, t, u x (X λ t π,a t ) t u xx (X π,a t ) = σ 1 t λ t R t t σt 1 λ t R t R t = r(x π t,a t ) ; r(x, t) = u x(x, t) u xx (x, t) The local risk tolerance r(x, t) and the subordinated risk tolerance process R t emerge as important quantities 18

17 Dynamic utility measurement time t 1,informationF t1 asset returns 11 constraints 19.8 market view away from equilibrium benchmark calendar time numeraire subordination u(x,t 1 ) Time Wealth.8 1 MI(t 1 ) + u(x, t 1 ) U(x, t 1 ; MI) F t1 π(x, t 1 ; MI) F t1 19

18 Dynamic utility measurement time t 2,informationF t2 asset returns constraints market view away from equilibrium benchmark numeraire u(x,t 2 ) calendar time subordination Time Wealth.8 1 MI(t 2 ) + u(x, t 2 ) U(x, t 2 ; MI) F t2 π(x, t 2 ; MI) F t2 2

19 Dynamic utility measurement time t 3,informationF t3 asset returns 11 constraints market view away from equilibrium benchmark calendar time numeraire subordination u(x,t 3 ) Time Wealth.8 1 MI(t 3 ) + u(x, t 3 ) U(x, t 3 ; MI) F t3 π(x, t 3 ; MI) F t3 21

20 Dynamic utility measurement time t, informationf t u(x,t) asset returns additional market input Time Wealth MI(t) + u(x, t) U(X t,t) F t π (X t,t) F t 22

21 Dynamic utility measurement time t 1,informationF t1 u(x,t) asset returns additional market input Time Wealth MI(t 1 ) + u(x, t 1 ) U(X t 1,t 1 ) F t1 π (X t 1,t 1 ) F t1 23

22 Dynamic utility measurement time t 2,informationF t2 u(x,t) asset returns additional market input Time Wealth MI(t 2 ) + u(x, t 2 ) U(X t 2,t 2 ) F t2 π (X t 2,t 2 ) F t2 24

23 Dynamic utility measurement time t 3,informationF t3 u(x,t) asset returns additional market input Time Wealth MI(t 3 ) + u(x, t 3 ) U(X t 3,t 3 ) F t3 π (X t 3,t 3 ) F t3 25

24 Construction of a class of forward dynamic utilities 24

25 Creating the martingale that yields the optimal utility volume Minimal model assumptions Stochastic optimization problem inverse in time Key idea Stochastic input Market Variational input Individual Maximal utility Optimal allocation 25

26 Variational input utility surfaces 26

27 Utility surface A model independent variational constraint on impatience, risk aversion and monotonicity Initial utility datum u (x) =u(x, ) Fully non-linear pde u t u xx = 1 2 u2 x u(x, ) = u (x) 27

28 Utility transport equation The utility equation can be alternatively viewed as a transport equation with slope of its characteristics equal to (half of) the risk tolerance r(x, t) = u x(x, t) u xx (x, t) u t r(x, t)u x = u(x, ) = u (x) Characteristic curves: dx(t) dt = 1 2 r(x(t),t) 28

29 Construction of utility surface u(x, t) using characteristics dx(t) dt = 1 2 r(x(t),t) Utility datum u (x) 29

30 Construction of characteristics dx(t) dt = 1 2 r(x(t),t) Utility datum u(x, ) Characteristic curves 3

31 Propagation of utility datum along characteristics 31

32 Propagation of utility datum along characteristics 32

33 Utility surface u(x, t) 33

34 Two related pdes Fast diffusion equation for risk tolerance r t r2 r xx = r(x, ) = r (x) (FDE) Conductivity : r 2 Porous medium equation for risk aversion γ t = γ(x, t) = 1 r(x, t) ( ) 1 γ xx γ(x, ) = 1 r (x) (PME) Pressure : r 2 and (PME) exponent: m = 1 34

35 Difficulties Utility equation: u t u xx = 1 2 u2 x Inverse problem and fully nonlinear Utility transport equation: u t r(x, t)u x = Shocks, solutions past singularities Fast diffusion equation: r t r2 r xx = Inverse problem and backward parabolic, solutions might not exist, locally integrable data might not produce locally bounded slns in finite time Porous medium equation: γ t =( γ 1) xx Majority of results for (PME), γ t =(γ m ) xx, are for m>1, partialresultsfor 1 <m< 35

36 A rich class of risk tolerance inputs Addititively separable risk tolerance r 2 (x, t; α, β) =m(x; α, β)+n(t; α, β) m(x; α, β) =αx 2 r(x, t; α, β) = Example n(x; α, β) =βe αt αx 2 + βe αt α, β > (Very) special cases r(x, t;,β)= β u(x, t) = e x β + t 2 r(x, t;1, ) = x u(x, t) =log x t 2 r(x, t; α, ) = α x u(x, t) = γ 1xγ e 2(1 γ) t, γ = α 1 γ α 36

37 Risk tolerance r(x, t) =.5x e.5t Time Wealth

38 Utility surface u(x, t) generated by risk tolerance r(x, t) =.5x e.5t Time Wealth Characteristics: dx(t) dt = 1 2.5x(t) e.5t 38

39 Risk tolerance r(x, t) = 1x 2 + e 1t Time Wealth

40 Utility surface u(x, t) generated by risk tolerance r(x, t) = 1x 2 + e 1t Time Wealth Characteristics: dx(t) dt = 1 2 1x(t) 2 + e 1t 4

41 Risk tolerance r(x, t;, 1) = x 2 +1= Time Wealth

42 Utility surface u(x, t) = e x+ t 2 generated by risk tolerance r(x, t) = Time Wealth Characteristics: dx(t) dt =

43 Risk tolerance r(x, t;1, ) = x 2 +e t = x Time Wealth

44 Utility surface u(x, t) =logx 2 t, x> generated by risk tolerance r(x) =x Time Wealth 15 2 Characteristics: dx(t) dt = 1 2 x(t) 44

45 Risk tolerance r(x, t;4, ) = 4x 2 +e 4t =2 x Time Wealth

46 Utility surface u(x, t) =2 xe t 2, x> generated by risk tolerance r(x, t) =2x Time Wealth 15 2 Characteristics: dx(t) dt = x(t) 46

47 Multiplicatively separable risk tolerance r(x, t; α, β) =m(x; α)n(t; β) Example m(x; α) =ϕ(φ 1 (x; α)) n(t; β) = 1 t + β, β > Φ(x; α) = x α ez2 /2 dz ϕ =Φ r(x, t; α, β) =ϕ(φ 1 (x; α)) (Very) special cases m(x; α) =α, n(t; β) =1 u(x, t) = e x α + 2 t m(x; α) =x, n(t; β) =1 u(x, t) =log x 2 t m(x; α) =αx, n(t; β) =1 u(x, t) = 1 γ xγ e γ 2(1 γ) t, γ = α 1 α

48 Risk tolerance r(x, t) = ϕ(φ 1 (x;.5) t Time Wealth

49 Utility surface u(x, t) =Φ(Φ 1 (x;.5) t +5) generated by risk tolerance r(x, t) = ϕ(φ 1 (x;.5)) t Time Wealth 15 2 Characteristics: dx(t) dt = ϕ(φ 1 (x(t);.5)) t +5 49

50 Utility function u(x, t ) (fixed time) t = Utility Wealth 5

51 Utility function u(x,t) (fixed wealth level) x = Utility Time 51

52 Summary on variational utility input Key state variables: wealth and risk tolerance Risk tolerance solves a fast diffusion equation posed inversely in time r t r2 r xx = r(x, ) = u (x) u (x) Utility surface generated by a transport equation u t r(x, t)u x = u(x, ) = u (x) Forward dynamic utility process constructed by compiling variational utility input and stochastic market input 52

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1 Topics Utility-based measurement of performance Utilities

More information

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 References Indifference valuation in binomial models (with

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou Stochastic Partial Differential Equations and Portfolio Choice Crete, May 2011 Thaleia Zariphopoulou Oxford-Man Institute and Mathematical Institute University of Oxford and Mathematics and IROM, The University

More information

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin Spot and forward dynamic utilities and their associated pricing systems Thaleia Zariphopoulou UT, Austin 1 Joint work with Marek Musiela (BNP Paribas, London) References A valuation algorithm for indifference

More information

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes FST method Extensions Indifference pricing Fourier Space Time-stepping Method for Option Pricing with Lévy Processes Vladimir Surkov University of Toronto Computational Methods in Finance Conference University

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Optimal liquidation with market parameter shift: a forward approach

Optimal liquidation with market parameter shift: a forward approach Optimal liquidation with market parameter shift: a forward approach (with S. Nadtochiy and T. Zariphopoulou) Haoran Wang Ph.D. candidate University of Texas at Austin ICERM June, 2017 Problem Setup and

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Forward Dynamic Utility

Forward Dynamic Utility Forward Dynamic Utility El Karoui Nicole & M RAD Mohamed UnivParis VI / École Polytechnique,CMAP elkaroui@cmapx.polytechnique.fr with the financial support of the "Fondation du Risque" and the Fédération

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Optimal Execution: II. Trade Optimal Execution

Optimal Execution: II. Trade Optimal Execution Optimal Execution: II. Trade Optimal Execution René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Purdue June 21, 212 Optimal Execution

More information

Non-Time-Separable Utility: Habit Formation

Non-Time-Separable Utility: Habit Formation Finance 400 A. Penati - G. Pennacchi Non-Time-Separable Utility: Habit Formation I. Introduction Thus far, we have considered time-separable lifetime utility specifications such as E t Z T t U[C(s), s]

More information

Time-Consistent and Market-Consistent Actuarial Valuations

Time-Consistent and Market-Consistent Actuarial Valuations Time-Consistent and Market-Consistent Actuarial Valuations Antoon Pelsser 1 Mitja Stadje 2 1 Maastricht University & Kleynen Consultants & Netspar Email: a.pelsser@maastrichtuniversity.nl 2 Tilburg University

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Expected utility models. and optimal investments. Lecture III

Expected utility models. and optimal investments. Lecture III Expected utility models and optimal investments Lecture III 1 Market uncertainty, risk preferences and investments 2 Portfolio choice and stochastic optimization Maximal expected utility models Preferences

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Optimal Investment with Deferred Capital Gains Taxes

Optimal Investment with Deferred Capital Gains Taxes Optimal Investment with Deferred Capital Gains Taxes A Simple Martingale Method Approach Frank Thomas Seifried University of Kaiserslautern March 20, 2009 F. Seifried (Kaiserslautern) Deferred Capital

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) First Name: Waterloo, April 2013. Last Name: UW ID #:

More information

A note on the term structure of risk aversion in utility-based pricing systems

A note on the term structure of risk aversion in utility-based pricing systems A note on the term structure of risk aversion in utility-based pricing systems Marek Musiela and Thaleia ariphopoulou BNP Paribas and The University of Texas in Austin November 5, 00 Abstract We study

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Prospect Theory: A New Paradigm for Portfolio Choice

Prospect Theory: A New Paradigm for Portfolio Choice Prospect Theory: A New Paradigm for Portfolio Choice 1 Prospect Theory Expected Utility Theory and Its Paradoxes Prospect Theory 2 Portfolio Selection Model and Solution Continuous-Time Market Setting

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Ruihua Liu Department of Mathematics University of Dayton, Ohio Joint Work With Cheng Ye and Dan Ren To appear in International

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution.

The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution. The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution. Knut K. Aase Norwegian School of Economics 5045 Bergen, Norway IACA/PBSS Colloquium Cancun 2017 June 6-7, 2017 1. Papers

More information

Household income risk, nominal frictions, and incomplete markets 1

Household income risk, nominal frictions, and incomplete markets 1 Household income risk, nominal frictions, and incomplete markets 1 2013 North American Summer Meeting Ralph Lütticke 13.06.2013 1 Joint-work with Christian Bayer, Lien Pham, and Volker Tjaden 1 / 30 Research

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

A Quadratic Gradient Equation for pricing Mortgage-Backed Securities

A Quadratic Gradient Equation for pricing Mortgage-Backed Securities A Quadratic Gradient Equation for pricing Mortgage-Backed Securities Marco Papi Institute for Applied Computing - CNR Rome (Italy) A Quadratic Gradient Equation for pricing Mortgage-Backed Securities p.1

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

ECON 4325 Monetary Policy and Business Fluctuations

ECON 4325 Monetary Policy and Business Fluctuations ECON 4325 Monetary Policy and Business Fluctuations Tommy Sveen Norges Bank January 28, 2009 TS (NB) ECON 4325 January 28, 2009 / 35 Introduction A simple model of a classical monetary economy. Perfect

More information

Part 1: q Theory and Irreversible Investment

Part 1: q Theory and Irreversible Investment Part 1: q Theory and Irreversible Investment Goal: Endogenize firm characteristics and risk. Value/growth Size Leverage New issues,... This lecture: q theory of investment Irreversible investment and real

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Effectiveness of CPPI Strategies under Discrete Time Trading

Effectiveness of CPPI Strategies under Discrete Time Trading Effectiveness of CPPI Strategies under Discrete Time Trading S. Balder, M. Brandl 1, Antje Mahayni 2 1 Department of Banking and Finance, University of Bonn 2 Department of Accounting and Finance, Mercator

More information

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics t r t r2 r t SCHOOL OF MATHEMATICS AND STATISTICS Stochastic Processes and Financial Mathematics Spring Semester 2017 2018 3 hours t s s tt t q st s 1 r s r t r s rts t q st s r t r r t Please leave this

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations?

What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations? What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations? Bernard Dumas INSEAD, Wharton, CEPR, NBER Alexander Kurshev London Business School Raman Uppal London Business School,

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Exponential utility maximization under partial information and sufficiency of information

Exponential utility maximization under partial information and sufficiency of information Exponential utility maximization under partial information and sufficiency of information Marina Santacroce Politecnico di Torino Joint work with M. Mania WORKSHOP FINANCE and INSURANCE March 16-2, Jena

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Martingale representation theorem

Martingale representation theorem Martingale representation theorem Ω = C[, T ], F T = smallest σ-field with respect to which B s are all measurable, s T, P the Wiener measure, B t = Brownian motion M t square integrable martingale with

More information

A model for a large investor trading at market indifference prices

A model for a large investor trading at market indifference prices A model for a large investor trading at market indifference prices Dmitry Kramkov (joint work with Peter Bank) Carnegie Mellon University and University of Oxford 5th Oxford-Princeton Workshop on Financial

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

Robust Portfolio Decisions for Financial Institutions

Robust Portfolio Decisions for Financial Institutions Robust Portfolio Decisions for Financial Institutions Ioannis Baltas 1,3, Athanasios N. Yannacopoulos 2,3 & Anastasios Xepapadeas 4 1 Department of Financial and Management Engineering University of the

More information

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Norbert Hilber Seminar of Applied Mathematics ETH Zürich Workshop on Financial Modeling with Jump Processes p. 1/18 Outline

More information

Microeconomics of Banking: Lecture 2

Microeconomics of Banking: Lecture 2 Microeconomics of Banking: Lecture 2 Prof. Ronaldo CARPIO September 25, 2015 A Brief Look at General Equilibrium Asset Pricing Last week, we saw a general equilibrium model in which banks were irrelevant.

More information

An Intertemporal Capital Asset Pricing Model

An Intertemporal Capital Asset Pricing Model I. Assumptions Finance 400 A. Penati - G. Pennacchi Notes on An Intertemporal Capital Asset Pricing Model These notes are based on the article Robert C. Merton (1973) An Intertemporal Capital Asset Pricing

More information

Slides for DN2281, KTH 1

Slides for DN2281, KTH 1 Slides for DN2281, KTH 1 January 28, 2014 1 Based on the lecture notes Stochastic and Partial Differential Equations with Adapted Numerics, by J. Carlsson, K.-S. Moon, A. Szepessy, R. Tempone, G. Zouraris.

More information

A Model with Costly-State Verification

A Model with Costly-State Verification A Model with Costly-State Verification Jesús Fernández-Villaverde University of Pennsylvania December 19, 2012 Jesús Fernández-Villaverde (PENN) Costly-State December 19, 2012 1 / 47 A Model with Costly-State

More information

Multiple Defaults and Counterparty Risks by Density Approach

Multiple Defaults and Counterparty Risks by Density Approach Multiple Defaults and Counterparty Risks by Density Approach Ying JIAO Université Paris 7 This presentation is based on joint works with N. El Karoui, M. Jeanblanc and H. Pham Introduction Motivation :

More information

Utility indifference valuation for non-smooth payoffs on a market with some non tradable assets

Utility indifference valuation for non-smooth payoffs on a market with some non tradable assets Utility indifference valuation for non-smooth payoffs on a market with some non tradable assets - Joint work with G. Benedetti (Paris-Dauphine, CREST) - Luciano Campi Université Paris 13, FiME and CREST

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Menu Costs and Phillips Curve by Mikhail Golosov and Robert Lucas. JPE (2007)

Menu Costs and Phillips Curve by Mikhail Golosov and Robert Lucas. JPE (2007) Menu Costs and Phillips Curve by Mikhail Golosov and Robert Lucas. JPE (2007) Virginia Olivella and Jose Ignacio Lopez October 2008 Motivation Menu costs and repricing decisions Micro foundation of sticky

More information

Exercises on the New-Keynesian Model

Exercises on the New-Keynesian Model Advanced Macroeconomics II Professor Lorenza Rossi/Jordi Gali T.A. Daniël van Schoot, daniel.vanschoot@upf.edu Exercises on the New-Keynesian Model Schedule: 28th of May (seminar 4): Exercises 1, 2 and

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

Indifference fee rate 1

Indifference fee rate 1 Indifference fee rate 1 for variable annuities Ricardo ROMO ROMERO Etienne CHEVALIER and Thomas LIM Université d Évry Val d Essonne, Laboratoire de Mathématiques et Modélisation d Evry Second Young researchers

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

VII. Incomplete Markets. Tomas Björk

VII. Incomplete Markets. Tomas Björk VII Incomplete Markets Tomas Björk 1 Typical Factor Model Setup Given: An underlying factor process X, which is not the price process of a traded asset, with P -dynamics dx t = µ (t, X t ) dt + σ (t, X

More information

Homework 3: Asset Pricing

Homework 3: Asset Pricing Homework 3: Asset Pricing Mohammad Hossein Rahmati November 1, 2018 1. Consider an economy with a single representative consumer who maximize E β t u(c t ) 0 < β < 1, u(c t ) = ln(c t + α) t= The sole

More information

Convexity Theory for the Term Structure Equation

Convexity Theory for the Term Structure Equation Convexity Theory for the Term Structure Equation Erik Ekström Joint work with Johan Tysk Department of Mathematics, Uppsala University October 15, 2007, Paris Convexity Theory for the Black-Scholes Equation

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Optimal Securitization via Impulse Control

Optimal Securitization via Impulse Control Optimal Securitization via Impulse Control Rüdiger Frey (joint work with Roland C. Seydel) Mathematisches Institut Universität Leipzig and MPI MIS Leipzig Bachelier Finance Society, June 21 (1) Optimal

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Life-Cycle Models with Stock and Labor Market. Cointegration: Insights from Analytical Solutions

Life-Cycle Models with Stock and Labor Market. Cointegration: Insights from Analytical Solutions Life-Cycle Models with Stock and Labor Market Cointegration: Insights from Analytical Solutions Daniel Moos University of St. Gallen This Version: November 24, 211 First Version: November 24, 211 Comments

More information

Optimal Acquisition of a Partially Hedgeable House

Optimal Acquisition of a Partially Hedgeable House Optimal Acquisition of a Partially Hedgeable House Coşkun Çetin 1, Fernando Zapatero 2 1 Department of Mathematics and Statistics CSU Sacramento 2 Marshall School of Business USC November 14, 2009 WCMF,

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Real Options and Free-Boundary Problem: A Variational View

Real Options and Free-Boundary Problem: A Variational View Real Options and Free-Boundary Problem: A Variational View Vadim Arkin, Alexander Slastnikov Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow V.Arkin, A.Slastnikov Real

More information

Satya P. Das NIPFP) Open Economy Keynesian Macro: CGG (2001, 2002), Obstfeld-Rogoff Redux Model 1 / 18

Satya P. Das NIPFP) Open Economy Keynesian Macro: CGG (2001, 2002), Obstfeld-Rogoff Redux Model 1 / 18 Open Economy Keynesian Macro: CGG (2001, 2002), Obstfeld-Rogoff Redux Model Satya P. Das @ NIPFP Open Economy Keynesian Macro: CGG (2001, 2002), Obstfeld-Rogoff Redux Model 1 / 18 1 CGG (2001) 2 CGG (2002)

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Equilibrium Models with Transaction Costs I

Equilibrium Models with Transaction Costs I Equilibrium Models with Transaction Costs I Johannes Muhle-Karbe University of Michigan Carnegie Mellon University Dresden, August 28, 217 Introduction Outline Introduction Partial Equilibrium General

More information