Control Improvement for Jump-Diffusion Processes with Applications to Finance

Size: px
Start display at page:

Download "Control Improvement for Jump-Diffusion Processes with Applications to Finance"

Transcription

1 Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010

2 Outline Motivation: MDPs Controlled Jump-Diffusion Processes Control Improvement Algorithm Financial Applications

3 Motivation: MDPs Markov Decision Processes Let (X n ) be a controlled Markov process with state space S, action space A, transition kernel Q( x, a). Let f : S A be a decision rule and β (0, 1) a discount factor, r(x, a) a bounded reward function. Consider the infinite-horizon Markov Decision Problem [ ] J(x) := sup J f (x) = sup IE x β n r(x n, f (X n )). f F f F n=0

4 Motivation: MDPs Notation IB := {v : S R : v < }. For v IB and f : S A let T f v(x) := r ( x, f (x) ) + β v(x )Q ( dx x, f (x) ). f is called maximizer of v if T f v = sup T f v. f F It holds that J f = T f J f and J = sup f T f J.

5 Motivation: MDPs Howard s Policy Improvement Algorithm 1. Choose f 0 arbitrary and set k = Compute J fk as solution v IB of the equation v = T fk v. 3. Compute f k+1 as a maximizer of J fk. Then J fk+1 J fk. If f k+1 = f k then J fk = J and (f k, f k,...) is optimal. Else set k := k + 1 and go to step 2.

6 Controlled Jump-Diffusion Processes Controlled Jump-Diffusion Processes W = (W 1,..., W m ) is an m-dimensional Brownian motion, N = (N 1,..., N l ) are indep. Poisson random measures, ν j (B) := IE N j (1, B) are the Lévy measures, Ñ j (dt, dz j ) := N j (dt, dz j ) ν j (dz j )dt. The n-dimensional controlled state process X = (X 1,..., X n ) is m dx i (t) = µ i (t, X t, π t )dt + σ ij (t, X t, π t )dw j (t) + j=1 j=1 l + γ ij (t, X t, π t, z j )Ñj(dt, dz j )

7 Controlled Jump-Diffusion Processes Controlled Jump-Diffusion Processes π = (π t ) is a càdlàg control process with values in D R d, the coefficient functions µ, σ, γ are continuous, g, h are reward functions. Consider the problem [ ] T J π (t, x) := IE t,x g(s, X s, π s )ds + h(x T ). t J(t, x) = sup J π (t, x). π

8 Controlled Jump-Diffusion Processes Generator of the state process Av(t, x, u) = v t (t, x) n v xi (t, x)µ i (t, x, u) + i=1 n (σσ T ) ij (t, x, u)v xi x j (t, x) + i,j=1 l ( v ( t, x + γ (j) (t, x, u, z j ) ) v(t, x) j=1 ) x v(t, x)γ (j) (t, x, u, z j ) ν j (dz j ).

9 Controlled Jump-Diffusion Processes Control Improvement Algorithm 1. Suppose π 0 is an admissible control. 2. Compute the corresponding value function J 0 and suppose J 0 C 1,2. 3. Compute π 1 (t, x) such that it maximizes u g(t, x, u) + AJ 0 (t, x, u), u D and suppose that πt 1 := π 1 (t, Xt 1 ) is an admissible control.

10 Controlled Jump-Diffusion Processes Control Improvement Algorithm Under some technical conditions it holds: Theorem Let I := {(t, x) : g(t, x, π 1 (t, x)) + AJ 0 (t, x, π 1 (t, x)) > 0}. a) If I, then J 1 (t, x) J 0 (t, x) for all (t, x) and J 1 (t, x) > J 0 (t, x) for (t, x) I. b) If I = then π 1 is an optimal control.

11 Controlled Jump-Diffusion Processes Limit Considerations Theorem Suppose that the following assumptions are satisfied: (i) lim k J k =: J C 1,2 and J k t J t, J k x J x, J k xx J xx uniformly. (ii) µ, σ, γ are bounded. Let π be a policy defined by the maximizer of J as in step (b) of the algorithm, then J = J and π is optimal.

12 Application: Portfolio Optimization Financial Market The price process (St 0 ) of the riskless bond is given by S 0 t := e rt, where r 0 denotes the fixed continuous interest rate. The price process (S t ) of the risky asset satisfies: ds t = S t ( µdt + σdwt + 1 where µ R, σ > 0 and 1 zν(dz) <. Øksendal and Sulem (2005) zñ(dt, dz))

13 Application: Portfolio Optimization Portfolio Optimization U : (0, ) R is a (strictly increasing, concave) utility function. (π t ) with π t [0, 1] is the portfolio strategy where π t = fraction of wealth invested in the stock at time t. The dynamics of the wealth process is dx π t = X π t (rdt + π t (µ r)dt + π t σdw t + π t ). zñ(dt, dz) The portfolio problem is J(t, x) := sup IE[U(X T π ) X t π = x]. π 1

14 Application: Portfolio Optimization When is the invest all the money in the bond -strategy optimal? Theorem Let U C 2 (0, ) be an arbitrary utility function. The invest all the money in the bond -strategy is optimal if and only if µ r.

15 Application: Portfolio Optimization Proof Consider π t 0 with J π (t, x) = U(xe r(t t) ). π 0 is again a maximum point of u AJ π (t, x, u) on [0, 1] if and only if u AJπ (t, x, u) u=0 = (µ r)xj π x 0.

16 Application: Portfolio Optimization Special Case: Black-Scholes Model Suppose now we have a Black-Scholes market. In case µ > r, the first improvement of the invest all the money in the bond -strategy is given by U (xe r(t t) ) (µ r) π 1 (t, x) = U (xe r(t t) )xer(t t) σ 2. It relies on the Arrow-Pratt-Relative-Risk-Aversion Coefficient and the Merton-ratio. When the utility function is the power or logarithmic utility function, the first improvement yields already the optimal investment strategy.

17 Application: Portfolio Optimization When is a constant fraction optimal? Suppose ν is concentrated on (0, ), i.e. jumps are only upwards and that 2 xν(dx) < µ r. Under these assumptions it holds: Theorem The logarithm- and the power-utility are the only utility functions U C 2 (0, ) with U C 2 (up to a multiplicative constant) where the optimal portfolio invests a constant positive fraction of the wealth in the stock.

18 Application: Portfolio Optimization Proof J π and π t π are optimal if and only if π is a maximum point of u AJ π (t, x, u), u 0, i.e. (µ r)j π x + J π xxσ 2 xπ + and we must have AJ π (t, x, π) = 0, i.e. 0 0 ( ) Jx π (t, x + πxz)z Jx π (t, x) ν(dz) = 0 Jt π + (r + (µ r)π)xjx π Jπ xxσ 2 x 2 π 2 + ( ) + J π (t, x + πxz) J π (t, x) Jx π (t, x)πxz ν(dz) = 0.

19 References Bäuerle, N., Rieder, U. (2010) : Control improvement for jump-diffusion processes with applications to finance. Preprint. Bäuerle, N., Rieder, U. (2010) : Markov Decision Processes with Applications to Finance. To appear. Fleming, W. H., Rishel, R. (1975) : Deterministic and stochastic optimal control. Springer-Verlag. Howard, R. (1960) : Dynamic programming and Markov processes. The Technology Press of M.I.T., Cambridge, Mass. Øksendal, B,,Sulem, A. (2005) : Applied stochastic control of jump diffusions. Springer-Verlag Thank you very much for your attention!

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou Stochastic Partial Differential Equations and Portfolio Choice Crete, May 2011 Thaleia Zariphopoulou Oxford-Man Institute and Mathematical Institute University of Oxford and Mathematics and IROM, The University

More information

Optimal Investment with Deferred Capital Gains Taxes

Optimal Investment with Deferred Capital Gains Taxes Optimal Investment with Deferred Capital Gains Taxes A Simple Martingale Method Approach Frank Thomas Seifried University of Kaiserslautern March 20, 2009 F. Seifried (Kaiserslautern) Deferred Capital

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

arxiv: v1 [q-fin.pm] 13 Mar 2014

arxiv: v1 [q-fin.pm] 13 Mar 2014 MERTON PORTFOLIO PROBLEM WITH ONE INDIVISIBLE ASSET JAKUB TRYBU LA arxiv:143.3223v1 [q-fin.pm] 13 Mar 214 Abstract. In this paper we consider a modification of the classical Merton portfolio optimization

More information

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1 Topics Utility-based measurement of performance Utilities

More information

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) First Name: Waterloo, April 2013. Last Name: UW ID #:

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

Optimal investments under dynamic performance critria. Lecture IV

Optimal investments under dynamic performance critria. Lecture IV Optimal investments under dynamic performance critria Lecture IV 1 Utility-based measurement of performance 2 Deterministic environment Utility traits u(x, t) : x wealth and t time Monotonicity u x (x,

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Portfolio Variation. da f := f da i + (1 f ) da. If the investment at time t is w t, then wealth at time t + dt is

Portfolio Variation. da f := f da i + (1 f ) da. If the investment at time t is w t, then wealth at time t + dt is Return Working in a small-risk context, we derive a first-order condition for optimum portfolio choice. Let da denote the return on the optimum portfolio the return that maximizes expected utility. A one-dollar

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Ruihua Liu Department of Mathematics University of Dayton, Ohio Joint Work With Cheng Ye and Dan Ren To appear in International

More information

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes FST method Extensions Indifference pricing Fourier Space Time-stepping Method for Option Pricing with Lévy Processes Vladimir Surkov University of Toronto Computational Methods in Finance Conference University

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

On worst-case investment with applications in finance and insurance mathematics

On worst-case investment with applications in finance and insurance mathematics On worst-case investment with applications in finance and insurance mathematics Ralf Korn and Olaf Menkens Fachbereich Mathematik, Universität Kaiserslautern, 67653 Kaiserslautern Summary. We review recent

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Portfolio optimization problem with default risk

Portfolio optimization problem with default risk Portfolio optimization problem with default risk M.Mazidi, A. Delavarkhalafi, A.Mokhtari mazidi.3635@gmail.com delavarkh@yazduni.ac.ir ahmokhtari20@gmail.com Faculty of Mathematics, Yazd University, P.O.

More information

Research Paper Number 921. Transactions Costs and Portfolio Choice in a Discrete-Continuous Time Setting

Research Paper Number 921. Transactions Costs and Portfolio Choice in a Discrete-Continuous Time Setting Research Paper Number 921 Transactions Costs and Portfolio Choice in a Discrete-Continuous Time Setting Darrell Duffie and Tong-sheng Sun Forthcoming: Journal of Economic Dynamics and Control November,

More information

A Controlled Optimal Stochastic Production Planning Model

A Controlled Optimal Stochastic Production Planning Model Theoretical Mathematics & Applications, vol.3, no.3, 2013, 107-120 ISSN: 1792-9687 (print), 1792-9709 (online) Scienpress Ltd, 2013 A Controlled Optimal Stochastic Production Planning Model Godswill U.

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Optimal Securitization via Impulse Control

Optimal Securitization via Impulse Control Optimal Securitization via Impulse Control Rüdiger Frey (joint work with Roland C. Seydel) Mathematisches Institut Universität Leipzig and MPI MIS Leipzig Bachelier Finance Society, June 21 (1) Optimal

More information

High Frequency Trading in a Regime-switching Model. Yoontae Jeon

High Frequency Trading in a Regime-switching Model. Yoontae Jeon High Frequency Trading in a Regime-switching Model by Yoontae Jeon A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics University

More information

Indifference fee rate 1

Indifference fee rate 1 Indifference fee rate 1 for variable annuities Ricardo ROMO ROMERO Etienne CHEVALIER and Thomas LIM Université d Évry Val d Essonne, Laboratoire de Mathématiques et Modélisation d Evry Second Young researchers

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 References Indifference valuation in binomial models (with

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Forward Dynamic Utility

Forward Dynamic Utility Forward Dynamic Utility El Karoui Nicole & M RAD Mohamed UnivParis VI / École Polytechnique,CMAP elkaroui@cmapx.polytechnique.fr with the financial support of the "Fondation du Risque" and the Fédération

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

Real Options and Free-Boundary Problem: A Variational View

Real Options and Free-Boundary Problem: A Variational View Real Options and Free-Boundary Problem: A Variational View Vadim Arkin, Alexander Slastnikov Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow V.Arkin, A.Slastnikov Real

More information

Introduction to Affine Processes. Applications to Mathematical Finance

Introduction to Affine Processes. Applications to Mathematical Finance and Its Applications to Mathematical Finance Department of Mathematical Science, KAIST Workshop for Young Mathematicians in Korea, 2010 Outline Motivation 1 Motivation 2 Preliminary : Stochastic Calculus

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Worst-Case Scenario Portfolio Optimization: A New Stochastic Control Approach

Worst-Case Scenario Portfolio Optimization: A New Stochastic Control Approach Worst-Case Scenario Portfolio Optimization: A New Stochastic Control Approach Ralf Korn Fachbereich Mathematik, Universität Kaiserslautern, 67663 Kaiserslautern, Germany korn@mathematik.uni-kl.de Olaf

More information

On optimal portfolios with derivatives in a regime-switching market

On optimal portfolios with derivatives in a regime-switching market On optimal portfolios with derivatives in a regime-switching market Department of Statistics and Actuarial Science The University of Hong Kong Hong Kong MARC, June 13, 2011 Based on a paper with Jun Fu

More information

Dynamic Portfolio Choice II

Dynamic Portfolio Choice II Dynamic Portfolio Choice II Dynamic Programming Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Dynamic Portfolio Choice II 15.450, Fall 2010 1 / 35 Outline 1 Introduction to Dynamic

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Risk minimizing strategies for tracking a stochastic target

Risk minimizing strategies for tracking a stochastic target Risk minimizing strategies for tracking a stochastic target Andrzej Palczewski Abstract We consider a stochastic control problem of beating a stochastic benchmark. The problem is considered in an incomplete

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Jump-Diffusion Risk-Sensitive Asset Management

Jump-Diffusion Risk-Sensitive Asset Management Jump-Diffusion Risk-Sensitive Asset Management Mark Davis and Sébastien Lleo Department of Mathematics Imperial College London www.ma.ic.ac.uk/ mdavis Bachelier Finance Society, Sixth World Congress Toronto,

More information

On the Optimality of Kelly Strategies

On the Optimality of Kelly Strategies On the Optimality of Kelly Strategies Mark Davis 1 and Sébastien Lleo 2 Workshop on Stochastic Models and Control Bad Herrenalb, April 1, 2011 1 Department of Mathematics, Imperial College London, London

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Risk Minimization Control for Beating the Market Strategies

Risk Minimization Control for Beating the Market Strategies Risk Minimization Control for Beating the Market Strategies Jan Večeř, Columbia University, Department of Statistics, Mingxin Xu, Carnegie Mellon University, Department of Mathematical Sciences, Olympia

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Advanced Financial Economics Homework 2 Due on April 14th before class

Advanced Financial Economics Homework 2 Due on April 14th before class Advanced Financial Economics Homework 2 Due on April 14th before class March 30, 2015 1. (20 points) An agent has Y 0 = 1 to invest. On the market two financial assets exist. The first one is riskless.

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

Dynamic Mean Semi-variance Portfolio Selection

Dynamic Mean Semi-variance Portfolio Selection Dynamic Mean Semi-variance Portfolio Selection Ali Lari-Lavassani and Xun Li The Mathematical and Computational Finance Laboratory Department of Mathematics and Statistics University of Calgary Calgary,

More information

Risk minimization and portfolio diversification

Risk minimization and portfolio diversification Risk minimization and portfolio diversification Farzad Pourbabaee Minsuk Kwak raian A. Pirvu December 16, 2014 arxiv:1411.6657v2 [q-fin.pm] 15 Dec 2014 Abstract We consider the problem of minimizing capital

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Optimization Models in Financial Mathematics

Optimization Models in Financial Mathematics Optimization Models in Financial Mathematics John R. Birge Northwestern University www.iems.northwestern.edu/~jrbirge Illinois Section MAA, April 3, 2004 1 Introduction Trends in financial mathematics

More information

Slides for DN2281, KTH 1

Slides for DN2281, KTH 1 Slides for DN2281, KTH 1 January 28, 2014 1 Based on the lecture notes Stochastic and Partial Differential Equations with Adapted Numerics, by J. Carlsson, K.-S. Moon, A. Szepessy, R. Tempone, G. Zouraris.

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Optimal Acquisition of a Partially Hedgeable House

Optimal Acquisition of a Partially Hedgeable House Optimal Acquisition of a Partially Hedgeable House Coşkun Çetin 1, Fernando Zapatero 2 1 Department of Mathematics and Statistics CSU Sacramento 2 Marshall School of Business USC November 14, 2009 WCMF,

More information

Bandit Problems with Lévy Payoff Processes

Bandit Problems with Lévy Payoff Processes Bandit Problems with Lévy Payoff Processes Eilon Solan Tel Aviv University Joint with Asaf Cohen Multi-Arm Bandits A single player sequential decision making problem. Time is continuous or discrete. The

More information

Rough volatility models: When population processes become a new tool for trading and risk management

Rough volatility models: When population processes become a new tool for trading and risk management Rough volatility models: When population processes become a new tool for trading and risk management Omar El Euch and Mathieu Rosenbaum École Polytechnique 4 October 2017 Omar El Euch and Mathieu Rosenbaum

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Liquidation of a Large Block of Stock

Liquidation of a Large Block of Stock Liquidation of a Large Block of Stock M. Pemy Q. Zhang G. Yin September 21, 2006 Abstract In the financial engineering literature, stock-selling rules are mainly concerned with liquidation of the security

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Credit Risk in Lévy Libor Modeling: Rating Based Approach

Credit Risk in Lévy Libor Modeling: Rating Based Approach Credit Risk in Lévy Libor Modeling: Rating Based Approach Zorana Grbac Department of Math. Stochastics, University of Freiburg Joint work with Ernst Eberlein Croatian Quants Day University of Zagreb, 9th

More information

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets

A Worst-Case Approach to Option Pricing in Crash-Threatened Markets A Worst-Case Approach to Option Pricing in Crash-Threatened Markets Christoph Belak School of Mathematical Sciences Dublin City University Ireland Department of Mathematics University of Kaiserslautern

More information

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints Zongxia Liang Department of Mathematical Sciences Tsinghua University, Beijing 100084, China zliang@math.tsinghua.edu.cn Joint

More information

ON MAXIMIZING DIVIDENDS WITH INVESTMENT AND REINSURANCE

ON MAXIMIZING DIVIDENDS WITH INVESTMENT AND REINSURANCE ON MAXIMIZING DIVIDENDS WITH INVESTMENT AND REINSURANCE George S. Ongkeko, Jr. a, Ricardo C.H. Del Rosario b, Maritina T. Castillo c a Insular Life of the Philippines, Makati City 0725, Philippines b Department

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

Option Pricing Formula for Fuzzy Financial Market

Option Pricing Formula for Fuzzy Financial Market Journal of Uncertain Systems Vol.2, No., pp.7-2, 28 Online at: www.jus.org.uk Option Pricing Formula for Fuzzy Financial Market Zhongfeng Qin, Xiang Li Department of Mathematical Sciences Tsinghua University,

More information

Optimal Investment and Consumption for A Portfolio with Stochastic Dividends

Optimal Investment and Consumption for A Portfolio with Stochastic Dividends Optimal Investment and Consumption for A Portfolio with Stochastic Dividends Tao Pang 1 and Katherine Varga 2 November 12, 215 Abstract: In this paper, we consider a portfolio optimization model in which

More information