Mgr. Jakub Petrásek 1. May 4, 2009

Size: px
Start display at page:

Download "Mgr. Jakub Petrásek 1. May 4, 2009"

Transcription

1 Dissertation Report - First Steps Petrásek Department of Probability and Mathematical Statistics, Charles University petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability and Mathematical Statistics, Charles University, karel.janecek@rsj.cz May 4, 2009

2 Outline

3 1

4 Are continuous type models satisfactory facts of financial time series and how Diffusion models (DM) and s (JM) can capture these facts Sudden movements, Heavy tails DM: extremely large volatility term need to be added JM: generic property DeltaFP Brownian Motion Figure 1.1: Left picture: Changes of Price of Futures contract observed every 6 seconds. In the right one, Brownian Motion with the same mean and variance. 2

5 3 Glance at history (1900) L. Bachelier: probabilistic modelling of financial markets using Brownian Motion. (1st half of 20th cent.) P. : processes introduced. (1963) B. B. Mandelbrot: α-stable distribution to model cotton prices. (1973) Black and Scholes: geometric Brownian motion. (1976) R.C. Merton: (Poisson) Jump-Diffusion model. (1998) O.E. Barndorff-Nielsen: Normal Inverse Gaussian process. ( ) Boom in Jump processes.

6 4

7 5 What are processes Assume a given probability space (Ω, F, (F t ), P), with usual conditions. Definition We say that the process L = (L t, t 0), L 0 = 0 is a process if (i) L has stationary increments: L(L t L s ) = L(L t s ), 0 s < t <, (ii) L has independent increments: L t L s F s, 0 s < t <, (iii) L is continuous in probability: L t P Ls, t s.

8 Examples Poisson process L t Po(λt), λ > 0. Density Characteristic function Brownian motion Remark Characteristic function P(L t = k) = (λt)k e λt, k! ψ Lt (u) = exp ( λt ( e iu 1 )). ψ Lt (u) = exp (µtu 12 σ2 tu 2 ). L is if and only if the distribution of L t is infinitely divisible for all t 0. 6

9 7 Notation We denote a jump size at time t L(t) = L(t) L(t ), 0 t <. For A B(R) bounded below we define N(t, A) = # {0 s t, L(s) A}, 0 t <, which is a Poisson process with intensity ν(a) = E (N(1, A)). We introduce a Poisson integral L t = L s = zn(ds, dz). 0 s t [0,t] R We define a compensated poisson random measure Ñ(t, A) = N(t, A) tν(a).

10 Basic theorem I. Theorem (-Itô Decomposition) If L is a process then there is b R, σ 0 and a Poisson random measure N with a measure ν satisfying (1 z 2 )ν(dz) <, such that L t = bt+σw t + z 1 R zñ(t, dz)+ z >1 zn(t, dz), 0 t <. (2.1) The small jumps part z 1 zñ(t, dz) is an L2 -martingale Large jumps part z >1 zn(t, dz) is of finite variation, but may have no finite moments 8

11 9 Basic theorem II. Theorem (Levy-Khintchine formula) Let L be a process, then u R, t 0 and ψ(u) = ibu 1 2 σ2 u 2 + E e iult = e tψ(u), R\{0} ( e iuz 1 iuzi [ z <1] ) ν(dz). As an immediate result we can see that the law of a process L is uniquely determined by the law of L 1.

12 10 Pathwise properties Essentially driven by jumps, càdlàg paths. As an immediate result of -Itô decomposition we see that for every process L s 2 I [ Ls <1] <, t 0, a.s. 0 s t but we allow 0 s t L s I [ Ls <1] =, in which case L is of infinite variaton. t 0, a.s.

13 11

14 12 Outline of modelling phase 1 Making the series stationary we assume that the nonstationarity is basically caused by variable intensity of trading, overcome by appropriate time change. 2 Selecting a model based on empirical facts (moments, variation, tail behavior). 3 Choosing a fitting procedure and get the parameters if analytical density is known, MLE method is used, otherwise GMM method based on characteristic function can be applied.

15 Variation Remark Let L be a process of the form (2.1), n t = {t 0,..., t n } arbitrary partition of interval [0, t] ( 2 P Lti L ti 1) σ 2 t + ( (L s )) 2, n t 0. n t s [0,t] In other words, our estimator of volatility may be deformed by big jumps. Alternatives BiPower Variation ([4]) L ti L ti 1 L ti 1 L ti 2. n t Truncated Quadratic Variation ([7]) ( ) 2 Lti L I Lti ti 1 Lti 1 <g ti. n t are both consistent estimators of σ 2 t. 13

16 14 Comparison of different estimates of standard deviations :30 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 Figure 3.1: Transformed time: green line = Quadratic variation, red = truncated QV, blue = BiPower variation.

17 15 Normal Inverse Gaussian Process can be expressed as L t = B(T t ), where T t = inf {s > 0; W s + αs = δt}, and B t is a Brownian motion with drift θ and volatility σ. Pure jump model with infinite variation. Exponential tail decay. Probability density in a closed (analytical) form (Bessel function), i.e. MLE possible.

18 16 Merton Jump-Diffusion Process can be expressed as N t L t = αt + σw t + Y i, t 0, i=1 i.e. Brownian motion with big gaussian jumps. Tails a little heavier than gaussian. Probability density function can be expressed in a series expansion. We use first order approximation f L t (x) = (1 λ t)f W t (x) + λ t (f W t +Y 1 ) (x).

19 17 Estimation method Maximum Likelihood method performed (used software R with quasi-newton optimization method, which allows constraints of parameters.) NIG model scale ᾱ µ σ θ T T Merton model µ σ γ δ λ T T Table 1: Comparison of maximum likelihood estimates.

20 Graphical inference Figure 3.2: Estimated probability density function: green (solid) line = NIG, red (dashed) = Merton Jump, blue (dotted) = Gaussian. 18

21 19

22 Model set-up I. Consider an investor placing his money into two assets riskfree, paying interest rate r risky asset with dynamics An investor controls df t = αdt + σdw t + the number of F t, t 0 in his portfolio by t, consumption C t 0. i.e. the dynamics of his portfolio is of the form dx t = t (αdt + σdw t + with X (0) = x, t F t (predictable), C t F t. zñ(dt, dz). (4.1) ) zñ(dt, dz) + rx t dt C t (4.2) dt. 20

23 21 Model Set-up II. The objective of an investor is v(x) = sup ( t,c t) A(x) 0 e βt E U(C t )dt, (4.3) where A(x) is the set of admissible strategies, β a discount factor and U denotes a power utility function of the form Notation U(x) = x 1 p 1 p, p > 1. θ p (t) = t X t is the number of assets in the portfolio per one money unit at time t and let c t = Ct X t denotes the proportional consumption.

24 22 Theorem ( Proportion and Consumption) Assume the portfolio (4.2) and the objective (4.3). Let { θp = argmax h(θ p ) = argmax αθ p (1 p) 1 2 σ2 θpp(1 2 p) ( + (1 + θp z) 1 p 1 θ p z(1 p) ) } ν(dz). Assume also that Then β (r c )(1 p) h(θ p) > 0. (4.4) θ p is the optimal proportion, c = (K(1 p)) 1/p is the optimal consumption, v(z) = Kz 1 p is the value function, where K = 1 1 p ( β r(1 p) h(θ ) p p. ) p

25 23 A short comment on the theorem A similar theorem presented for geometric process with ν(dz) <, which is extremely restrictive, see [6]. R Assumption (4.4) grants that agent s consumption is positive and that his discounted well-being tends to zero as t.

26 consumption and portfolio - preparation It is known that 1 θ J p θ C p, 2 c J c C for p > 1, c J c C for p < 1 but how significant is the difference? An empirical study was performed. 1 Futures is a martingale with respect to the risk neutral measure. To compare optimal portfolios based on different models we: standardized the data, so that σ 30%, α is set as 7%. Assume that our (Futures) returns behave like stock log-returns but with different volatility and drift. 1 Computation performed in software R. Integrals numerically evaluated, adaptive quadrature applied. Nonlinear equation solved by Newton method. 24

27 25 consumption and portfolio - results Model Naive Merton NIG Merton Jump p = 2 θp cp p = 4 θp cp p = 6 θp cp Table 2: Comparison of optimal proportion and consumption for Merton and Jump models. β = 10 %, r = 2 %, α = 7 %, σ = 0.3.

28 26 Future work More extensive empirical study. Study of different models (to get better fit of the tail behavior...). Iterated time changing algorithm.

29 27 I Mandelbrot Benoìt B. The variation of certain speculative prices. Journal of Business, XXXVI, Ole E. Barndorff-Nielsen. of Normal Inverse Gaussian Type. Finance and Stochastic, Ole E. Barndorff-Nielsen and Neil Shephard. Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2004.

30 28 II Ole E. Barndorff-Nielsen, Neil Shephard, and Matthias Winkel. Limit theorems for multipower variation in the presence of jumps. Stochastic and Their Applications, Rama Cont and Peter Tankov. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series., Nils Chr. Framstad, Bernt Øksendal, and Agnès Sulem. consumption and portfolio in a jump diffusion market. In A. Shyriaev et al (eds): Workshop on Mathematical Finance, 1998.

31 29 III Jan Hannig. Detecting Jumps from Jump Diffusion Bernt Øksendal and Agnès Sulem. Applied stochastic control of jump diffusions. 2nd ed. Universitext. Berlin: Springer., Nishiyama Y. Sueshi, N. in Mathematical Finance: A Comparative Study. Web page of International Congress on and Simulation, 2005.

32 30 Thank you for attention

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering Paul Glassennan Monte Carlo Methods in Financial Engineering With 99 Figures

More information

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Lévy Processes Antonis Papapantoleon TU Berlin Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Antonis Papapantoleon (TU Berlin) Lévy processes 1 / 41 Overview of the course

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Using Lévy Processes to Model Return Innovations

Using Lévy Processes to Model Return Innovations Using Lévy Processes to Model Return Innovations Liuren Wu Zicklin School of Business, Baruch College Option Pricing Liuren Wu (Baruch) Lévy Processes Option Pricing 1 / 32 Outline 1 Lévy processes 2 Lévy

More information

Financial Engineering. Craig Pirrong Spring, 2006

Financial Engineering. Craig Pirrong Spring, 2006 Financial Engineering Craig Pirrong Spring, 2006 March 8, 2006 1 Levy Processes Geometric Brownian Motion is very tractible, and captures some salient features of speculative price dynamics, but it is

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Lecture on advanced volatility models

Lecture on advanced volatility models FMS161/MASM18 Financial Statistics Stochastic Volatility (SV) Let r t be a stochastic process. The log returns (observed) are given by (Taylor, 1982) r t = exp(v t /2)z t. The volatility V t is a hidden

More information

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data

A Simulation Study of Bipower and Thresholded Realized Variations for High-Frequency Data Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-18-2018 A Simulation Study of Bipower and Thresholded

More information

Asymptotic Methods in Financial Mathematics

Asymptotic Methods in Financial Mathematics Asymptotic Methods in Financial Mathematics José E. Figueroa-López 1 1 Department of Mathematics Washington University in St. Louis Statistics Seminar Washington University in St. Louis February 17, 2017

More information

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Hilmar Mai Mohrenstrasse 39 1117 Berlin Germany Tel. +49 3 2372 www.wias-berlin.de Haindorf

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

I Preliminary Material 1

I Preliminary Material 1 Contents Preface Notation xvii xxiii I Preliminary Material 1 1 From Diffusions to Semimartingales 3 1.1 Diffusions.......................... 5 1.1.1 The Brownian Motion............... 5 1.1.2 Stochastic

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Optimal Option Pricing via Esscher Transforms with the Meixner Process

Optimal Option Pricing via Esscher Transforms with the Meixner Process Communications in Mathematical Finance, vol. 2, no. 2, 2013, 1-21 ISSN: 2241-1968 (print), 2241 195X (online) Scienpress Ltd, 2013 Optimal Option Pricing via Esscher Transforms with the Meixner Process

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information

مجلة الكوت للعلوم االقتصادية واالدارية تصدرعن كلية اإلدارة واالقتصاد/جامعة واسط العدد) 23 ( 2016

مجلة الكوت للعلوم االقتصادية واالدارية تصدرعن كلية اإلدارة واالقتصاد/جامعة واسط العدد) 23 ( 2016 اخلالصة المعادالث التفاضليت العشىائيت هي حقل مهمت في مجال االحتماالث وتطبيقاتها في السىىاث االخيزة, لذلك قام الباحث بذراست المعادالث التفاضليت العشىائيت المساق بعمليت Levy بذال مه عمليت Brownian باستخذام

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Pricing of some exotic options with N IG-Lévy input

Pricing of some exotic options with N IG-Lévy input Pricing of some exotic options with N IG-Lévy input Sebastian Rasmus, Søren Asmussen 2 and Magnus Wiktorsson Center for Mathematical Sciences, University of Lund, Box 8, 22 00 Lund, Sweden {rasmus,magnusw}@maths.lth.se

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay

Pricing Dynamic Guaranteed Funds Under a Double Exponential. Jump Diffusion Process. Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay Pricing Dynamic Guaranteed Funds Under a Double Exponential Jump Diffusion Process Chuang-Chang Chang, Ya-Hui Lien and Min-Hung Tsay ABSTRACT This paper complements the extant literature to evaluate the

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Bandit Problems with Lévy Payoff Processes

Bandit Problems with Lévy Payoff Processes Bandit Problems with Lévy Payoff Processes Eilon Solan Tel Aviv University Joint with Asaf Cohen Multi-Arm Bandits A single player sequential decision making problem. Time is continuous or discrete. The

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005

Valuation of Volatility Derivatives. Jim Gatheral Global Derivatives & Risk Management 2005 Paris May 24, 2005 Valuation of Volatility Derivatives Jim Gatheral Global Derivatives & Risk Management 005 Paris May 4, 005 he opinions expressed in this presentation are those of the author alone, and do not necessarily

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version

Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Fair Valuation of Insurance Contracts under Lévy Process Specifications Preliminary Version Rüdiger Kiesel, Thomas Liebmann, Stefan Kassberger University of Ulm and LSE June 8, 2005 Abstract The valuation

More information

Lecture 1: Lévy processes

Lecture 1: Lévy processes Lecture 1: Lévy processes A. E. Kyprianou Department of Mathematical Sciences, University of Bath 1/ 22 Lévy processes 2/ 22 Lévy processes A process X = {X t : t 0} defined on a probability space (Ω,

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Beyond the Black-Scholes-Merton model

Beyond the Black-Scholes-Merton model Econophysics Lecture Leiden, November 5, 2009 Overview 1 Limitations of the Black-Scholes model 2 3 4 Limitations of the Black-Scholes model Black-Scholes model Good news: it is a nice, well-behaved model

More information

Jump-type Lévy processes

Jump-type Lévy processes Jump-type Lévy processes Ernst Eberlein Department of Mathematical Stochastics, University of Freiburg, Eckerstr. 1, 7914 Freiburg, Germany, eberlein@stochastik.uni-freiburg.de 1 Probabilistic structure

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

There are no predictable jumps in arbitrage-free markets

There are no predictable jumps in arbitrage-free markets There are no predictable jumps in arbitrage-free markets Markus Pelger October 21, 2016 Abstract We model asset prices in the most general sensible form as special semimartingales. This approach allows

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Value at Risk and Self Similarity

Value at Risk and Self Similarity Value at Risk and Self Similarity by Olaf Menkens School of Mathematical Sciences Dublin City University (DCU) St. Andrews, March 17 th, 2009 Value at Risk and Self Similarity 1 1 Introduction The concept

More information

Distortion operator of uncertainty claim pricing using weibull distortion operator

Distortion operator of uncertainty claim pricing using weibull distortion operator ISSN: 2455-216X Impact Factor: RJIF 5.12 www.allnationaljournal.com Volume 4; Issue 3; September 2018; Page No. 25-30 Distortion operator of uncertainty claim pricing using weibull distortion operator

More information

Drawdowns Preceding Rallies in the Brownian Motion Model

Drawdowns Preceding Rallies in the Brownian Motion Model Drawdowns receding Rallies in the Brownian Motion Model Olympia Hadjiliadis rinceton University Department of Electrical Engineering. Jan Večeř Columbia University Department of Statistics. This version:

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Mathematics and Finance: The Black-Scholes Option Pricing Formula and Beyond

Mathematics and Finance: The Black-Scholes Option Pricing Formula and Beyond Invited paper for Dept. of Math./CMA University of Oslo Matilde, Danish Mathematical Society Pure Mathematics No 11 c/o Bent Ørsted, Aarhus University, Denmark ISSN 0806 2439 June 2010 Mathematics and

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion

Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Optimal rebalancing of portfolios with transaction costs assuming constant risk aversion Lars Holden PhD, Managing director t: +47 22852672 Norwegian Computing Center, P. O. Box 114 Blindern, NO 0314 Oslo,

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Portfolio optimization with transaction costs

Portfolio optimization with transaction costs Portfolio optimization with transaction costs Jan Kallsen Johannes Muhle-Karbe HVB Stiftungsinstitut für Finanzmathematik TU München AMaMeF Mid-Term Conference, 18.09.2007, Wien Outline The Merton problem

More information

Estimation methods for Levy based models of asset prices

Estimation methods for Levy based models of asset prices Estimation methods for Levy based models of asset prices José Enrique Figueroa-López Financial mathematics seminar Department of Statistics and Applied Probability UCSB October, 26 Abstract Stock prices

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

The Birth of Financial Bubbles

The Birth of Financial Bubbles The Birth of Financial Bubbles Philip Protter, Cornell University Finance and Related Mathematical Statistics Issues Kyoto Based on work with R. Jarrow and K. Shimbo September 3-6, 2008 Famous bubbles

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

arxiv: v1 [q-fin.pm] 13 Mar 2014

arxiv: v1 [q-fin.pm] 13 Mar 2014 MERTON PORTFOLIO PROBLEM WITH ONE INDIVISIBLE ASSET JAKUB TRYBU LA arxiv:143.3223v1 [q-fin.pm] 13 Mar 214 Abstract. In this paper we consider a modification of the classical Merton portfolio optimization

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Calculation of Volatility in a Jump-Diffusion Model

Calculation of Volatility in a Jump-Diffusion Model Calculation of Volatility in a Jump-Diffusion Model Javier F. Navas 1 This Draft: October 7, 003 Forthcoming: The Journal of Derivatives JEL Classification: G13 Keywords: jump-diffusion process, option

More information

Testing for non-correlation between price and volatility jumps and ramifications

Testing for non-correlation between price and volatility jumps and ramifications Testing for non-correlation between price and volatility jumps and ramifications Claudia Klüppelberg Technische Universität München cklu@ma.tum.de www-m4.ma.tum.de Joint work with Jean Jacod, Gernot Müller,

More information

Stochastic volatility modeling in energy markets

Stochastic volatility modeling in energy markets Stochastic volatility modeling in energy markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Joint work with Linda Vos, CMA Energy Finance Seminar, Essen 18

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics and Statistics Washington University in St. Louis School Of Mathematics, UMN March 14, 2019 Based

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Linear-Rational Term-Structure Models

Linear-Rational Term-Structure Models Linear-Rational Term-Structure Models Anders Trolle (joint with Damir Filipović and Martin Larsson) Ecole Polytechnique Fédérale de Lausanne Swiss Finance Institute AMaMeF and Swissquote Conference, September

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

Short-Time Asymptotic Methods In Financial Mathematics

Short-Time Asymptotic Methods In Financial Mathematics Short-Time Asymptotic Methods In Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Department of Applied Mathematics, Illinois Institute of Technology

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD

SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1. By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The Annals of Applied Probability 1999, Vol. 9, No. 2, 493 53 SADDLEPOINT APPROXIMATIONS TO OPTION PRICES 1 By L. C. G. Rogers and O. Zane University of Bath and First Chicago NBD The use of saddlepoint

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Modeling financial markets with extreme risk Tobias Kusche Preprint Nr. 04/2008 Modeling financial markets with extreme risk Dr. Tobias Kusche 11. January 2008 1 Introduction

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information