Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions

Size: px
Start display at page:

Download "Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions"

Transcription

1 Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Hilmar Mai Mohrenstrasse Berlin Germany Tel Haindorf Seminar 212

2 Discontinuities in market data Tankov et al. [27] Drift estimation for jump diffusions Haindorf Seminar 212 Page 2 (24)

3 Jump diffusions - an overview dx t = γ(x t, t) dt + σ(x t, t) dl t, t [, T ] X = x Mathematical finance Option pricing: Merton [1976] Stochastic volatility models: Heston [1993], Barndorff-Nielsen and Shephard [21] Interest rate models: Cox, Ingersoll and Ross [1985] Condensed matter physics Atomic diffusion modelling in Hall and Ross [1981] Neuroscience Neuronal membrane potential in Jahn, Berg, Hounsgaard and Ditlevsen [211] Drift estimation for jump diffusions Haindorf Seminar 212 Page 3 (24)

4 Drift estimation for jump diffusions Consider an SDE with driver (L t, t ) on a filtered probability space (Ω, F, (F t) t, P ) dx t = γ(x t, t, θ) dt + σ(x t, t) dl t, t [, T ] X = x L a Lévy process and parameter θ A R. We call the solution X a jump diffusion. Recall that L is a Lévy process if L has independent and stationary increments, L is continuous in probability, i.e. p lim t sl t = L s How to estimate θ efficiently when (X t) t [,T ] observed continuously? given discrete oberservations X t1,..., X tn? Drift estimation for jump diffusions Haindorf Seminar 212 Page 4 (24)

5 Absolute coninuity for jump diffusions Define K t(x, A) = 1 A\{} (γ(t, x)) µ(dy), R d β(θ, s, x) = δ(θ, s, x) + b + y K st(x, dy), x >1 c(s, x) = γ(t, x)γ(t, x) a(θ, θ, s, x) = β(θ, s, X) β(θ, s, x). (1) Under suitable conditions on the coefficients of X the Hellinger process h for the absolute continuity problem induced by X is given by h t(θ, θ ) = t (c(s, X t) 1 a(θ, θ, s, X t)) c(s, X t)(c(s, X t) 1 a(θ, θ, s, X t)). Drift estimation for jump diffusions Haindorf Seminar 212 Page 5 (24)

6 Likelihood theory for jump diffusions Theorem Suppose that the coefficients are locally Lipschitz and c is strictly positive definite. Then (i) P θ t loc Pt θ if and only if P θ (h t(θ, θ ) < ) = P θ (h t(θ, θ ) < ) = 1. (ii) If (ii) holds the likelihood function is given by [ dpt θ t = exp c(s, X s ) 1 a(θ, θ, s, X s ) dx dpt θ s c 1 t ] a(θ, θ, s, X s) c(s, X s ) 1 a(θ, θ, s, X s) ds 2 here X c denotes the continuous martingale part under P θ. Drift estimation for jump diffusions Haindorf Seminar 212 Page 6 (24)

7 Lévy-driven Ornstein-Uhlenbeck processes Let (L t, t ) be a Lévy process on (Ω, F, (F t), P ). For every a R dx t = ax t dt + dl t, t R +, X = x, (2) defines an Ornstein-Uhlenbeck process driven by the Lévy process L. Equivalently, The likelihood function is dp a t dp a t = dp a ( t exp dp a X t = e at X + t e a(t s) dl s. (3) (a a) X σ 2 s dxs c (a a) 2 2σ 2 where X c denotes the continuous martingale part of X under P a. The MLE vor a is â T = T Xs dxc s T X2 s ds. t ) Xs 2 ds, Drift estimation for jump diffusions Haindorf Seminar 212 Page 7 (24)

8 Asymptotic properties of MLE The form of the likelihood function means that we are in curved exponential family setting (cf. Küchler and Sørensen (1997)). Theorem If σ 2 > the MLE â T = T Xs dxc s T X2 s ds. exists and is strongly consistent. If furthermore X is stationary and E a[x 2 ] < then under P a as T. T (ât a) N ( ) σ 2, E a[x 2] weakly Drift estimation for jump diffusions Haindorf Seminar 212 Page 8 (24)

9 Local asymptotic normality Theorem Assume that X is stationary and E a[x 2 ] <, then the following holds: 1. The statistical experiment {P a, a R} is locally asymptotically normal. 2. The maximum likelihood estimator â T is asymptotically efficient in the sense of Hájek-Le Cam. Drift estimation for jump diffusions Haindorf Seminar 212 Page 9 (24)

10 Lévy-driven CIR processes Let (L t, t ) be a Lévy process on (Ω, F, (F t), P ). For every a R dx t = ax tdt + X tdl t; t T defines Cox-Ingersoll-Ross process X driven by the Lévy process L. No explicit solution is known for this SDE. The likelihood function for continuous-time observations is dpt a = exp [ 1σ dpt 2 (XcT X c) aσ T 2 where X c denotes the continuous martingale part of X under P a. The MLE vor a is ] X t dt. â T = Xc T X c T. (4) Xt dt Drift estimation for jump diffusions Haindorf Seminar 212 Page 1 (24)

11 Consistency and estimation error Theorem Let X be stationary, σ 2 > and E[X 2 ] <. Then the MLE â T is consistent and as T. T (ât a) D N(, σ 2 E[ X 1 ]) (5) Moreover, the model is locally asymptotically normal such that the MLE is efficient in the sense of Hájek-Le Cam. Drift estimation for jump diffusions Haindorf Seminar 212 Page 11 (24)

12 Linear stochastic delay equations Let L be a Lévy process with Lévy -Khintchine triplet (γ, σ 2, µ) and consider the following linear stochastic delay differential equation (SDDE) driven by L. dx t = ax t dt + bx t 1 dt + dl t, t > (6) X t = X t, t [ 1, ], (7) where a, b R and X : [ 1, ] Ω R is the initial process with càdlàg trajectories that is assumed to be independent of L. The likelihood function reads where L(θ, X, T ) = dp ( T θ = exp θ V dp (,) T 1 ) 2 θ I T θ, T V T = ( ) T Xt dxc t T Xt 1 dxc t and I T is the observed Fisher information ( T ) T I T = X2 t dt XtXt 1 dt T XtXt 1 dt T. X2 t 1 dt Drift estimation for jump diffusions Haindorf Seminar 212 Page 12 (24)

13 Consistency and asymptotic normality Theorem Assume that X is a stationary solution, then the MLE ˆθ T is strongly consistent, i.e. under P a ˆθ T a.s. θ as t. Theorem Assume that X is a stationary solution, then T 1/2 (ˆθT ) D θ N (, Σ 1) where ( Σ = σ 2 x (s) 2 ds x (s)x (s + 1) ds ) x (s)x (s + 1) ds x (s) 2. ds and x denotes the fundamental solution. Drift estimation for jump diffusions Haindorf Seminar 212 Page 13 (24)

14 Continuous martingale part X c By the Lévy-Itô decomposition of L we can write X as t X t = X a X s ds + σw t + J t, t, where W is a standard Wiener process and J a quadratic pure jump process in the sense of Protter given by J t = { x <1} x(n t(dx) tµ(dx)) + bt + s t X s1 { Xs 1}. Hence, the continuous martingale part of X under P a is t X c = W t a X s ds. Drift estimation for jump diffusions Haindorf Seminar 212 Page 14 (24)

15 Influence of jump noise An interesting question is the influence of jumps on the MLE. Define X j t (ɛ) = x(n t(dx) tµ(dx)), x ɛ then the resulting estimate remains strongly consistent. Theorem Let us assume that X is stationary with E[X 2 ] <, σ 2 > and set X cj (ɛ) = X c + X j (ɛ). If we define ã ɛ T = T Xs dxcj T X2 s ds s (ɛ), then ã ɛ T a with probability 1 as T. Drift estimation for jump diffusions Haindorf Seminar 212 Page 15 (24)

16 Influence of jumps on estimation error Theorem Let X be a stationary Ornstein-Uhlenbeck process with E a[x 2 ] <, then T (ã ɛ T a) N(, Σ(ɛ)) as T where Σ(ɛ) = E a[x 2 ] 1 σ 2 + E a[x 2 ] 1 x <ɛ x 2 µ(dx). Drift estimation for jump diffusions Haindorf Seminar 212 Page 16 (24)

17 Maximum likelihood versus least squares The LSE for the parameter a is a LS T = T T X2 s ds Xs dxs From the theorem it follows for the asymptotic variances AV AR LSE AV AR MLE = E a[x 2 ] x 2 µ(dx) >. This motivates the jump filtering approach that will be discussed in the next section. R Drift estimation for jump diffusions Haindorf Seminar 212 Page 17 (24)

18 Filtering jumps from discrete observations Observation scheme: Observation points = t 1 <... < t n = T n such that T n n and n = max{ t i+1 t i, 1 i n 1} n. Discretized MLE with jump filter: n i=1 ā n := X t n ix1 i { i X v n} n i=1 X2 t n n i i for ix = X ti+1 X ti and some cut-off sequence v n >. Drift estimation for jump diffusions Haindorf Seminar 212 Page 18 (24)

19 Discretized MLE with jump filter Assumption 1. There exists α (, 2) such that as v v x 2 µ(dx) = O(v 2 α ). (8) v 2. There exists δ > such that for all ɛ δ E[ im1 { i M ɛ}] = Theorem If Assumption 1. and 2. hold and v n = β n for β (, 1/2) such that T n 1/2 β n n then Tn 1/2 (ā n a) D N(, σ 2 E[X 2 ] 1 ). Furthermore, the estimator is asymptotically efficient. Hence, the truncated MLE is asymptotically efficient in the sense of Hájek-Le Cam. = o(1) as Drift estimation for jump diffusions Haindorf Seminar 212 Page 19 (24)

20 Main steps of the proof 1. Choose the threshold v n such that the continuous part is approximated in the limit. 2. Show that ā n has the same asymptotic behavior as the following benchmark estimator n i=1 â n = X t n ix(un) i n. i=1 X2 t n n i i 3. Prove a CLT for the benchmark â n. 4. Finally, show that the drift is negligible and Tn 1/2 p (ā n â n). Drift estimation for jump diffusions Haindorf Seminar 212 Page 2 (24)

21 Identifying the jumps Define for n N and i {1,..., n} } A i n = {ω Ω : 1 { i X vn} = 1 { i N(B cun )=} where B un = [ u n, u n], its complement B c u n and N(B un ) counts the jumps of L in B un. Lemma Let v n, u n such that for the Lévy measure µ of L µ(b 2vn \Bun ) µ(b c un ) u 2 nv 2 n = o(t 1 n ). = o(tn 1 ) and Then, it follows that for A n = n i=1 Ai n we have P (A n) 1 as n. Drift estimation for jump diffusions Haindorf Seminar 212 Page 21 (24)

22 The benchmark estimator To proof the CLT for ā n we introduce a benchmark estimator n i=1 â n = Xt ix(un) i n. i=1 X2 t i n i Lemma Under the Assumptions of the previous lemma and if n 1/2 µ(bu c n ) = o(tn 1 ) it follows that n 1 X t n i ( ix1 { i X v n} ix(u n)) = op(1) i= as n. Drift estimation for jump diffusions Haindorf Seminar 212 Page 22 (24)

23 CLT for benchmark estimator The following lemma leads to a CLT for the benchmark estimator. Lemma Let X be stationary with finite second moments. Set X(un) = σw + J(u n) then n 1 Tn 1/2 i= X t n i n i X(u n) D N (, σ 2 E a[x 2 ] ) as n. Drift estimation for jump diffusions Haindorf Seminar 212 Page 23 (24)

24 Summary We have developed a maximum likelihood approach for drift estimation in jump diffusions. The jumps lead to an inefficient LSE in this class of processes. Several examples like Ornstein-Uhlenbeck, Cox-Ingersoll-Ross and linear stochastic delay equations lead to explicit MLEs. Strong optimality properties have been demonstrated for the MLE is these models. For the OU process the discretized MLE attains the efficiency bound from the continuous case when a jump filter is employed. The estimator can be computed directly and performs well for finite sample size. Drift estimation for jump diffusions Haindorf Seminar 212 Page 24 (24)

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

On modelling of electricity spot price

On modelling of electricity spot price , Rüdiger Kiesel and Fred Espen Benth Institute of Energy Trading and Financial Services University of Duisburg-Essen Centre of Mathematics for Applications, University of Oslo 25. August 2010 Introduction

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012

Lévy Processes. Antonis Papapantoleon. TU Berlin. Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Lévy Processes Antonis Papapantoleon TU Berlin Computational Methods in Finance MSc course, NTUA, Winter semester 2011/2012 Antonis Papapantoleon (TU Berlin) Lévy processes 1 / 41 Overview of the course

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

Asymptotic Methods in Financial Mathematics

Asymptotic Methods in Financial Mathematics Asymptotic Methods in Financial Mathematics José E. Figueroa-López 1 1 Department of Mathematics Washington University in St. Louis Statistics Seminar Washington University in St. Louis February 17, 2017

More information

Testing for non-correlation between price and volatility jumps and ramifications

Testing for non-correlation between price and volatility jumps and ramifications Testing for non-correlation between price and volatility jumps and ramifications Claudia Klüppelberg Technische Universität München cklu@ma.tum.de www-m4.ma.tum.de Joint work with Jean Jacod, Gernot Müller,

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

Short-time asymptotics for ATM option prices under tempered stable processes

Short-time asymptotics for ATM option prices under tempered stable processes Short-time asymptotics for ATM option prices under tempered stable processes José E. Figueroa-López 1 1 Department of Statistics Purdue University Probability Seminar Purdue University Oct. 30, 2012 Joint

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s.,

Control. Econometric Day Mgr. Jakub Petrásek 1. Supervisor: RSJ Invest a.s., and and Econometric Day 2009 Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University, RSJ Invest a.s., email:petrasek@karlin.mff.cuni.cz 2 Department of Probability and

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Martingale representation theorem

Martingale representation theorem Martingale representation theorem Ω = C[, T ], F T = smallest σ-field with respect to which B s are all measurable, s T, P the Wiener measure, B t = Brownian motion M t square integrable martingale with

More information

On the pricing equations in local / stochastic volatility models

On the pricing equations in local / stochastic volatility models On the pricing equations in local / stochastic volatility models Hao Xing Fields Institute/Boston University joint work with Erhan Bayraktar, University of Michigan Kostas Kardaras, Boston University Probability

More information

Exponential martingales and the UI martingale property

Exponential martingales and the UI martingale property u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f m a t h e m a t i c a l s c i e n c e s Faculty of Science Exponential martingales and the UI martingale property Alexander Sokol Department

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

Normal Inverse Gaussian (NIG) Process

Normal Inverse Gaussian (NIG) Process With Applications in Mathematical Finance The Mathematical and Computational Finance Laboratory - Lunch at the Lab March 26, 2009 1 Limitations of Gaussian Driven Processes Background and Definition IG

More information

Parameter sensitivity of CIR process

Parameter sensitivity of CIR process Parameter sensitivity of CIR process Sidi Mohamed Ould Aly To cite this version: Sidi Mohamed Ould Aly. Parameter sensitivity of CIR process. Electronic Communications in Probability, Institute of Mathematical

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

A note on the existence of unique equivalent martingale measures in a Markovian setting

A note on the existence of unique equivalent martingale measures in a Markovian setting Finance Stochast. 1, 251 257 1997 c Springer-Verlag 1997 A note on the existence of unique equivalent martingale measures in a Markovian setting Tina Hviid Rydberg University of Aarhus, Department of Theoretical

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Stochastic volatility modeling in energy markets

Stochastic volatility modeling in energy markets Stochastic volatility modeling in energy markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway Joint work with Linda Vos, CMA Energy Finance Seminar, Essen 18

More information

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies

Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies Limit Theorems for the Empirical Distribution Function of Scaled Increments of Itô Semimartingales at high frequencies George Tauchen Duke University Viktor Todorov Northwestern University 2013 Motivation

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

A new approach for scenario generation in risk management

A new approach for scenario generation in risk management A new approach for scenario generation in risk management Josef Teichmann TU Wien Vienna, March 2009 Scenario generators Scenarios of risk factors are needed for the daily risk analysis (1D and 10D ahead)

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) First Name: Waterloo, April 2013. Last Name: UW ID #:

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Convexity Theory for the Term Structure Equation

Convexity Theory for the Term Structure Equation Convexity Theory for the Term Structure Equation Erik Ekström Joint work with Johan Tysk Department of Mathematics, Uppsala University October 15, 2007, Paris Convexity Theory for the Black-Scholes Equation

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

I Preliminary Material 1

I Preliminary Material 1 Contents Preface Notation xvii xxiii I Preliminary Material 1 1 From Diffusions to Semimartingales 3 1.1 Diffusions.......................... 5 1.1.1 The Brownian Motion............... 5 1.1.2 Stochastic

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Modelling financial data with stochastic processes

Modelling financial data with stochastic processes Modelling financial data with stochastic processes Vlad Ardelean, Fabian Tinkl 01.08.2012 Chair of statistics and econometrics FAU Erlangen-Nuremberg Outline Introduction Stochastic processes Volatility

More information

Bandit Problems with Lévy Payoff Processes

Bandit Problems with Lévy Payoff Processes Bandit Problems with Lévy Payoff Processes Eilon Solan Tel Aviv University Joint with Asaf Cohen Multi-Arm Bandits A single player sequential decision making problem. Time is continuous or discrete. The

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Modeling financial markets with extreme risk Tobias Kusche Preprint Nr. 04/2008 Modeling financial markets with extreme risk Dr. Tobias Kusche 11. January 2008 1 Introduction

More information

An Intertemporal Capital Asset Pricing Model

An Intertemporal Capital Asset Pricing Model I. Assumptions Finance 400 A. Penati - G. Pennacchi Notes on An Intertemporal Capital Asset Pricing Model These notes are based on the article Robert C. Merton (1973) An Intertemporal Capital Asset Pricing

More information

Value at Risk and Self Similarity

Value at Risk and Self Similarity Value at Risk and Self Similarity by Olaf Menkens School of Mathematical Sciences Dublin City University (DCU) St. Andrews, March 17 th, 2009 Value at Risk and Self Similarity 1 1 Introduction The concept

More information

Logarithmic derivatives of densities for jump processes

Logarithmic derivatives of densities for jump processes Logarithmic derivatives of densities for jump processes Atsushi AKEUCHI Osaka City University (JAPAN) June 3, 29 City University of Hong Kong Workshop on Stochastic Analysis and Finance (June 29 - July

More information

Affine term structures for interest rate models

Affine term structures for interest rate models Stefan Tappe Albert Ludwig University of Freiburg, Germany UNSW-Macquarie WORKSHOP Risk: modelling, optimization and inference Sydney, December 7th, 2017 Introduction Affine processes in finance: R = a

More information

Near-expiration behavior of implied volatility for exponential Lévy models

Near-expiration behavior of implied volatility for exponential Lévy models Near-expiration behavior of implied volatility for exponential Lévy models José E. Figueroa-López 1 1 Department of Statistics Purdue University Financial Mathematics Seminar The Stevanovich Center for

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Parameter estimation of diffusion models from discrete observations

Parameter estimation of diffusion models from discrete observations 221 Parameter estimation of diffusion models from discrete observations Miljenko Huzak Abstract. A short review of diffusion parameter estimations methods from discrete observations is presented. The applicability

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Short-Time Asymptotic Methods in Financial Mathematics

Short-Time Asymptotic Methods in Financial Mathematics Short-Time Asymptotic Methods in Financial Mathematics José E. Figueroa-López Department of Mathematics Washington University in St. Louis Probability and Mathematical Finance Seminar Department of Mathematical

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

Applications of Lévy processes

Applications of Lévy processes Applications of Lévy processes Graduate lecture 29 January 2004 Matthias Winkel Departmental lecturer (Institute of Actuaries and Aon lecturer in Statistics) 6. Poisson point processes in fluctuation theory

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Introduction to Affine Processes. Applications to Mathematical Finance

Introduction to Affine Processes. Applications to Mathematical Finance and Its Applications to Mathematical Finance Department of Mathematical Science, KAIST Workshop for Young Mathematicians in Korea, 2010 Outline Motivation 1 Motivation 2 Preliminary : Stochastic Calculus

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Drawdowns Preceding Rallies in the Brownian Motion Model

Drawdowns Preceding Rallies in the Brownian Motion Model Drawdowns receding Rallies in the Brownian Motion Model Olympia Hadjiliadis rinceton University Department of Electrical Engineering. Jan Večeř Columbia University Department of Statistics. This version:

More information

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29

Chapter 5 Univariate time-series analysis. () Chapter 5 Univariate time-series analysis 1 / 29 Chapter 5 Univariate time-series analysis () Chapter 5 Univariate time-series analysis 1 / 29 Time-Series Time-series is a sequence fx 1, x 2,..., x T g or fx t g, t = 1,..., T, where t is an index denoting

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

Semimartingales and their Statistical Inference

Semimartingales and their Statistical Inference Semimartingales and their Statistical Inference B.L.S. Prakasa Rao Indian Statistical Institute New Delhi, India CHAPMAN & HALL/CRC Boca Raten London New York Washington, D.C. Contents Preface xi 1 Semimartingales

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Conditional Full Support and No Arbitrage

Conditional Full Support and No Arbitrage Gen. Math. Notes, Vol. 32, No. 2, February 216, pp.54-64 ISSN 2219-7184; Copyright c ICSRS Publication, 216 www.i-csrs.org Available free online at http://www.geman.in Conditional Full Support and No Arbitrage

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

DYNAMIC CDO TERM STRUCTURE MODELLING

DYNAMIC CDO TERM STRUCTURE MODELLING DYNAMIC CDO TERM STRUCTURE MODELLING Damir Filipović (joint with Ludger Overbeck and Thorsten Schmidt) Vienna Institute of Finance www.vif.ac.at PRisMa 2008 Workshop on Portfolio Risk Management TU Vienna,

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay. Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2012, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Consider

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

A Continuity Correction under Jump-Diffusion Models with Applications in Finance

A Continuity Correction under Jump-Diffusion Models with Applications in Finance A Continuity Correction under Jump-Diffusion Models with Applications in Finance Cheng-Der Fuh 1, Sheng-Feng Luo 2 and Ju-Fang Yen 3 1 Institute of Statistical Science, Academia Sinica, and Graduate Institute

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

D MATH Departement of Mathematics Finite dimensional realizations for the CNKK-volatility surface model

D MATH Departement of Mathematics Finite dimensional realizations for the CNKK-volatility surface model Finite dimensional realizations for the CNKK-volatility surface model Josef Teichmann Outline 1 Introduction 2 The (generalized) CNKK-approach 3 Affine processes as generic example for the CNNK-approach

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Ornstein-Uhlenbeck Theory

Ornstein-Uhlenbeck Theory Beatrice Byukusenge Department of Technomathematics Lappeenranta University of technology January 31, 2012 Definition of a stochastic process Let (Ω,F,P) be a probability space. A stochastic process is

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information