Portfolio optimization with transaction costs

Size: px
Start display at page:

Download "Portfolio optimization with transaction costs"

Transcription

1 Portfolio optimization with transaction costs Jan Kallsen Johannes Muhle-Karbe HVB Stiftungsinstitut für Finanzmathematik TU München AMaMeF Mid-Term Conference, , Wien

2 Outline The Merton problem with transaction costs A general principle Application to Merton problem with transaction costs References

3 The Merton problem with transaction costs Goal: Maximize expected utility from consumption ( ) E e δt u(c t )dt 0 Here: u(x) = log(x) c admissible consumption rate (no debts) Bank account: 1 (no interest paid) Stock price S: Modeled as geometric Brownian motion Proportional transaction costs µ, λ (e.g. 1%)

4 The Merton problem with transaction costs Without transaction costs (Merton [1971]): Fixed fraction of wealth in stock (e.g. 31%) Consumption rate is fixed proportion of wealth Both numbers explicitly known With transaction costs (Magill and Constantinides [1976], Davis and Norman [1990]): Fraction of wealth in stock in fixed corridor (e.g %) Consumption rate is function of wealth in cash and stock Corridor known only as solution to free boundary problem

5 A general principle Shadow prices s Optimal portfolio with transaction costs? t

6 A general principle Shadow prices bid Optimal portfolio with transaction costs? t

7 A general principle Shadow prices bid Optimal portfolio with transaction costs Optimal portfolio without transaction costs for shadow price t

8 A general principle Shadow prices Idea: Problem with transaction costs as problem without transaction costs for different price process Shadow price at boundary when optimal strategy transacts Appearances in various fields: Jouini and Kallal [1995]: No-arbitrage Lamberton et al. [1998]: Local risk minimization Cvitanić and Karatzas [1996], Loewenstein [2000]: Portfolio optimization Useful for computations?

9 Real price processes: Stock price(discounted): ds t /S t = αd t + σdw t Bid price: (1 µ)s t Ask price: (1 + λ)s t Shadow price process S [(1 µ)s, (1 + λ)s]: St = exp(c t )S t C t = log( S t /S t ) deviation from real price C t [log(1 µ), log(1 + λ)]

10 Real price processes: Stock price(discounted): ds t /S t = αd t + σdw t Bid price: (1 µ)s t Ask price: (1 + λ)s t Shadow price process S [(1 µ)s, (1 + λ)s]: St = exp(c t )S t C t = log( S t /S t ) deviation from real price C t [log(1 µ), log(1 + λ)]

11 Real price processes: Stock price(discounted): ds t /S t = αd t + σdw t Bid price: (1 µ)s t Ask price: (1 + λ)s t Shadow price process S [(1 µ)s, (1 + λ)s]: St = exp(c t )S t C t = log( S t /S t ) deviation from real price C t [log(1 µ), log(1 + λ)] Dynamics of C?

12 Ansatz: Itô process dc t = α(c t )dt + σ(c t )dw t d S t / S t = Drift(C t )d t + Diffusion(C t )dw t Optimal strategy (without transaction costs): Consumption: δṽt Fraction of stocks: π(c t ) = Drift(Ct) Diffusion(C t) 2 Use transformation 1 1+exp(f (C t)) = π(c t) Need to determine 3 functions: α, σ, f f (log(1 µ)), f (log(1 + λ)) determine corridor

13 Ansatz: Itô process dc t = α(c t )dt + σ(c t )dw t d S t / S t = Drift(C t )d t + Diffusion(C t )dw t Optimal strategy (without transaction costs): Consumption: δṽt Fraction of stocks: π(c t ) = Drift(Ct) Diffusion(C t) 2 Use transformation 1 1+exp(f (C t)) = π(c t) Need to determine 3 functions: α, σ, f f (log(1 µ)), f (log(1 + λ)) determine corridor

14 Ansatz: Itô process dc t = α(c t )dt + σ(c t )dw t d S t / S t = Drift(C t )d t + Diffusion(C t )dw t Optimal strategy (without transaction costs): Consumption: δṽt Fraction of stocks: π(c t ) = Drift(Ct) Diffusion(C t) 2 Use transformation 1 1+exp(f (C t)) = π(c t) Need to determine 3 functions: α, σ, f f (log(1 µ)), f (log(1 + λ)) determine corridor

15 Optimality: exp( f ) = Drift Diffusion 2 (I) No trading within bounds: dϕ t = 0 for optimal ϕ Itô s formula: dϕ t = somefunction(f, f, f, α, σ)dt + anotherfunction(f, f, α, σ)dw t Hence 0 = somefunction, (II) 0 = anotherfunction (III) 3 conditions

16 Optimality: exp( f ) = Drift Diffusion 2 (I) No trading within bounds: dϕ t = 0 for optimal ϕ Itô s formula: dϕ t = somefunction(f, f, f, α, σ)dt + anotherfunction(f, f, α, σ)dw t Hence 0 = somefunction, (II) 0 = anotherfunction (III) 3 conditions

17 Optimality: exp( f ) = Drift Diffusion 2 (I) No trading within bounds: dϕ t = 0 for optimal ϕ Itô s formula: dϕ t = somefunction(f, f, f, α, σ)dt + anotherfunction(f, f, α, σ)dw t Hence 0 = somefunction, (II) 0 = anotherfunction (III) 3 conditions

18 Solution to Equations I-III: f satisfies the ODE σ σ = f 1 ( ) ( ) f α = α + σ 2 1 f e f f (x) = ( 2δ (1 + e f (x) ) ) + ( 2α 1 4δ (1 + e f (x) ) ) f (x) σ 2 σ 2 σ 2 + ( 4α σ 2 ) + 2 2δ (1 + e f (x) 1 e f (x) ) + (f (x)) 2 σ 2 1+e f (x) + ( 2α σ e f (x) ) (f (x)) 3 Still missing: Boundary conditions for x = log(1 µ) and x = log(1 + λ)

19 Heuristics for boundary conditions: Optimal fraction π(c t ): Reflected diffusion (e.g. between 20% and 40%) local time at boundary ( ) Hence f (C t ) = log 1 π(ct) π(c t) has local time Our Ansatz: S t (and hence C t ) Itô process, i.e. no local time at boundary Intuition: otherwise infinite position optimal at boundary Consequence: Contradiction unless f = on boundary Boundary conditions f (log(1 µ)) = f (log(1 + λ)) =

20 Heuristics for boundary conditions: Optimal fraction π(c t ): Reflected diffusion (e.g. between 20% and 40%) local time at boundary ( ) Hence f (C t ) = log 1 π(ct) π(c t) has local time Our Ansatz: S t (and hence C t ) Itô process, i.e. no local time at boundary Intuition: otherwise infinite position optimal at boundary Consequence: Contradiction unless f = on boundary Boundary conditions f (log(1 µ)) = f (log(1 + λ)) =

21 Heuristics for boundary conditions: Optimal fraction π(c t ): Reflected diffusion (e.g. between 20% and 40%) local time at boundary ( ) Hence f (C t ) = log 1 π(ct) π(c t) has local time Our Ansatz: S t (and hence C t ) Itô process, i.e. no local time at boundary Intuition: otherwise infinite position optimal at boundary Consequence: Contradiction unless f = on boundary Boundary conditions f (log(1 µ)) = f (log(1 + λ)) =

22 Heuristics for boundary conditions: Optimal fraction π(c t ): Reflected diffusion (e.g. between 20% and 40%) local time at boundary ( ) Hence f (C t ) = log 1 π(ct) π(c t) has local time Our Ansatz: S t (and hence C t ) Itô process, i.e. no local time at boundary Intuition: otherwise infinite position optimal at boundary Consequence: Contradiction unless f = on boundary Boundary conditions f (log(1 µ)) = f (log(1 + λ)) =

23 Heuristics for boundary conditions: Optimal fraction π(c t ): Reflected diffusion (e.g. between 20% and 40%) local time at boundary ( ) Hence f (C t ) = log 1 π(ct) π(c t) has local time Our Ansatz: S t (and hence C t ) Itô process, i.e. no local time at boundary Intuition: otherwise infinite position optimal at boundary Consequence: Contradiction unless f = on boundary Boundary conditions f (log(1 µ)) = f (log(1 + λ)) =

24 Numerical solution: Consider g = f 1 ODE for g: g (y) = ( ) 1 e y + 1 2α 1+e y σ 2 + ( 4α σ 2 + ( 2α σ 2 Free boundary: y 1, y 2 with 2 1 e y 1+e y 2δ σ 2 (1 + e y ) + 1 4δ σ 2 (1 + e y ) ) (g (y)) 2 ( 2δ σ 2 (1 + e y ) ) (g (y)) 3 g(y 1 ) = log(1 µ), g (y 1 ) = 0 g(y 2 ) = log(1 + λ), g (y 2 ) = 0 ) g (y) Free boundaries y 1, y 2 determine corridor, g = f 1 determines dynamics of C and hence S = exp(c)s

25 Numerical solution ct d 0.01 The function g The function f

26 Simulation 0.4 Optimal fraction of wealth held in stocks Shadow price/real price

27 Simulation ct d Value in stocks Value of the portfolio

28 Summary Computation of conditions: 1. Optimality without transaction costs, 2. Constant trading strategy within bounds, 3. Boundary conditions via Itô process assumption. Verification: 1. Prove existence of a solution to free boundary problem. 2. Prove existence of corresponding processes S etc. 3. Show that optimal investment in S trades only at boundary.

29 References J. Cvitanić and I. Karatzas. Hedging and portfolio optimization under transaction costs: a martingale approach. Mathematical Finance, 6(2): , M. H. A. Davis and A. R. Norman. Portfolio selection with transaction costs. Mathematics of Operations Research, 15(4): , E. Jouini and H. Kallal. Martingales and arbitrage in securities markets with transaction costs. Journal of Economic Theory, 66(1): , D. Lamberton, H. Pham, and M. Schweizer. Local risk-minimization under transaction costs. Mathematics of Operations Research, 23(3): , M. Loewenstein. On optimal portfolio trading strategies for an investor facing transactions costs in a continuous trading market. Journal of Mathematical Economics, 33(2), M. J. P. Magill and G. M. Constantinides. Portfolio selection with transactions costs. Journal of Economic Theory, 13(2): , R. C. Merton. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3: , 1971.

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set Christoph Czichowsky Faculty of Mathematics University of Vienna SIAM FM 12 New Developments in Optimal Portfolio

More information

ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS

ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS The Annals of Applied Probability 1, Vol., No. 4, 1341 1358 DOI: 1.114/9-AAP648 Institute of Mathematical Statistics, 1 ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS BY J. KALLSEN

More information

On Asymptotic Power Utility-Based Pricing and Hedging

On Asymptotic Power Utility-Based Pricing and Hedging On Asymptotic Power Utility-Based Pricing and Hedging Johannes Muhle-Karbe ETH Zürich Joint work with Jan Kallsen and Richard Vierthauer LUH Kolloquium, 21.11.2013, Hannover Outline Introduction Asymptotic

More information

Portfolio Optimisation under Transaction Costs

Portfolio Optimisation under Transaction Costs Portfolio Optimisation under Transaction Costs W. Schachermayer University of Vienna Faculty of Mathematics joint work with Ch. Czichowsky (Univ. Vienna), J. Muhle-Karbe (ETH Zürich) June 2012 We fix a

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

arxiv: v1 [q-fin.cp] 21 Oct 2010

arxiv: v1 [q-fin.cp] 21 Oct 2010 The Annals of Applied Probability 21, Vol. 2, No. 4, 1341 1358 DOI: 1.1214/9-AAP648 c Institute of Mathematical Statistics, 21 arxiv:11.4989v1 [q-fin.cp] 21 Oct 21 ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Martin Forde King s College London, May 2014 (joint work with Christoph Czichowsky, Philipp Deutsch

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

On Asymptotic Power Utility-Based Pricing and Hedging

On Asymptotic Power Utility-Based Pricing and Hedging On Asymptotic Power Utility-Based Pricing and Hedging Johannes Muhle-Karbe TU München Joint work with Jan Kallsen and Richard Vierthauer Workshop "Finance and Insurance", Jena Overview Introduction Utility-based

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

The Mathematics of Currency Hedging

The Mathematics of Currency Hedging The Mathematics of Currency Hedging Benoit Bellone 1, 10 September 2010 Abstract In this note, a very simple model is designed in a Gaussian framework to study the properties of currency hedging Analytical

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Non-Time-Separable Utility: Habit Formation

Non-Time-Separable Utility: Habit Formation Finance 400 A. Penati - G. Pennacchi Non-Time-Separable Utility: Habit Formation I. Introduction Thus far, we have considered time-separable lifetime utility specifications such as E t Z T t U[C(s), s]

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

Pricing and hedging in incomplete markets

Pricing and hedging in incomplete markets Pricing and hedging in incomplete markets Chapter 10 From Chapter 9: Pricing Rules: Market complete+nonarbitrage= Asset prices The idea is based on perfect hedge: H = V 0 + T 0 φ t ds t + T 0 φ 0 t ds

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Portfolio optimization problem with default risk

Portfolio optimization problem with default risk Portfolio optimization problem with default risk M.Mazidi, A. Delavarkhalafi, A.Mokhtari mazidi.3635@gmail.com delavarkh@yazduni.ac.ir ahmokhtari20@gmail.com Faculty of Mathematics, Yazd University, P.O.

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark). The University of Toronto ACT460/STA2502 Stochastic Methods for Actuarial Science Fall 2016 Midterm Test You must show your steps or no marks will be awarded 1 Name Student # 1. 2 marks each True/False:

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA Today we will cover the Change of Numeraire toolkit We will go over the Fundamental Theorem of Asset Pricing as well EXISTENCE

More information

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron The Merton Model A Structural Approach to Default Prediction Agenda Idea Merton Model The iterative approach Example: Enron A solution using equity values and equity volatility Example: Enron 2 1 Idea

More information

The dual optimizer for the growth-optimal portfolio under transaction costs

The dual optimizer for the growth-optimal portfolio under transaction costs Finance Stoch 23) 7:325 354 DOI.7/s78--65-9 The dual optimizer for the growth-optimal portfolio under transaction costs S. Gerhold J. Muhle-Karbe W. Schachermayer Received: 27 May 2 / Accepted: 8 October

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Option Hedging with Transaction Costs

Option Hedging with Transaction Costs Option Hedging with Transaction Costs Sonja Luoma Master s Thesis Spring 2010 Supervisor: Erik Norrman Abstract This thesis explores how transaction costs affect the optimality of hedging when using Black-Scholes

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

Guarantee valuation in Notional Defined Contribution pension systems

Guarantee valuation in Notional Defined Contribution pension systems Guarantee valuation in Notional Defined Contribution pension systems Jennifer Alonso García (joint work with Pierre Devolder) Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Université

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Information and Inventories in High-Frequency Trading

Information and Inventories in High-Frequency Trading Information and Inventories in High-Frequency Trading Johannes Muhle-Karbe ETH Zürich and Swiss Finance Institute Joint work with Kevin Webster AMaMeF and Swissquote Conference, September 7, 2015 Introduction

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Optimal portfolios of a small investor in a limit order market: a shadow price approach

Optimal portfolios of a small investor in a limit order market: a shadow price approach Noname manuscript No. will be inserted by the editor Optimal portfolios of a small investor in a limit order market: a shadow price approach Christoph Kühn Maximilian Stroh the date of receipt and acceptance

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Lars Tyge Nielsen INSEAD Maria Vassalou 1 Columbia University This Version: January 2000 1 Corresponding

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

Lifetime Portfolio Selection: A Simple Derivation

Lifetime Portfolio Selection: A Simple Derivation Lifetime Portfolio Selection: A Simple Derivation Gordon Irlam (gordoni@gordoni.com) July 9, 018 Abstract Merton s portfolio problem involves finding the optimal asset allocation between a risky and a

More information

Equilibrium Models with Transaction Costs I

Equilibrium Models with Transaction Costs I Equilibrium Models with Transaction Costs I Johannes Muhle-Karbe University of Michigan Carnegie Mellon University Dresden, August 28, 217 Introduction Outline Introduction Partial Equilibrium General

More information

Smooth pasting as rate of return equalisation: A note

Smooth pasting as rate of return equalisation: A note mooth pasting as rate of return equalisation: A note Mark hackleton & igbjørn ødal May 2004 Abstract In this short paper we further elucidate the smooth pasting condition that is behind the optimal early

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

Law of the Minimal Price

Law of the Minimal Price Law of the Minimal Price Eckhard Platen School of Finance and Economics and Department of Mathematical Sciences University of Technology, Sydney Lit: Platen, E. & Heath, D.: A Benchmark Approach to Quantitative

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Arbitrage Bounds for Volatility Derivatives as Free Boundary Problem. Bruno Dupire Bloomberg L.P. NY

Arbitrage Bounds for Volatility Derivatives as Free Boundary Problem. Bruno Dupire Bloomberg L.P. NY Arbitrage Bounds for Volatility Derivatives as Free Boundary Problem Bruno Dupire Bloomberg L.P. NY bdupire@bloomberg.net PDE and Mathematical Finance, KTH, Stockholm August 16, 25 Variance Swaps Vanilla

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Ross Recovery theorem and its extension

Ross Recovery theorem and its extension Ross Recovery theorem and its extension Ho Man Tsui Kellogg College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance April 22, 2013 Acknowledgements I am

More information

Greek parameters of nonlinear Black-Scholes equation

Greek parameters of nonlinear Black-Scholes equation International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 69-74. ISSN Print : 2249-3328 ISSN Online: 2319-5215 Greek parameters of nonlinear Black-Scholes equation Purity J. Kiptum 1,

More information

Continuous-time Stochastic Control and Optimization with Financial Applications

Continuous-time Stochastic Control and Optimization with Financial Applications Huyen Pham Continuous-time Stochastic Control and Optimization with Financial Applications 4y Springer Some elements of stochastic analysis 1 1.1 Stochastic processes 1 1.1.1 Filtration and processes 1

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side FINANCIAL OPTIMIZATION Lecture 5: Dynamic Programming and a Visit to the Soft Side Copyright c Philip H. Dybvig 2008 Dynamic Programming All situations in practice are more complex than the simple examples

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

arxiv: v1 [q-fin.pm] 13 Mar 2014

arxiv: v1 [q-fin.pm] 13 Mar 2014 MERTON PORTFOLIO PROBLEM WITH ONE INDIVISIBLE ASSET JAKUB TRYBU LA arxiv:143.3223v1 [q-fin.pm] 13 Mar 214 Abstract. In this paper we consider a modification of the classical Merton portfolio optimization

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 23 rd March 2017 Subject CT8 Financial Economics Time allowed: Three Hours (10.30 13.30 Hours) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1. Please read

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION

THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION THE OPTIMAL ASSET ALLOCATION PROBLEMFOR AN INVESTOR THROUGH UTILITY MAXIMIZATION SILAS A. IHEDIOHA 1, BRIGHT O. OSU 2 1 Department of Mathematics, Plateau State University, Bokkos, P. M. B. 2012, Jos,

More information

Option Pricing and Hedging with Small Transaction Costs

Option Pricing and Hedging with Small Transaction Costs Option Pricing and Hedging with Small Transaction Costs Jan Kallsen Johannes Muhle-Karbe Abstract An investor with constant absolute risk aversion trades a risky asset with general Itôdynamics, in the

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

THE BLACK-SCHOLES FORMULA AND THE GREEK PARAMETERS FOR A NONLINEAR BLACK-SCHOLES EQUATION

THE BLACK-SCHOLES FORMULA AND THE GREEK PARAMETERS FOR A NONLINEAR BLACK-SCHOLES EQUATION International Journal of Pure and Applied Mathematics Volume 76 No. 2 2012, 167-171 ISSN: 1311-8080 printed version) url: http://www.ijpam.eu PA ijpam.eu THE BLACK-SCHOLES FORMULA AND THE GREEK PARAMETERS

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Brownian Motion and Ito s Lemma

Brownian Motion and Ito s Lemma Brownian Motion and Ito s Lemma 1 The Sharpe Ratio 2 The Risk-Neutral Process Brownian Motion and Ito s Lemma 1 The Sharpe Ratio 2 The Risk-Neutral Process The Sharpe Ratio Consider a portfolio of assets

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS

OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS J. Korean Math. Soc. 44 (2007, No. 1, pp. 139 150 OPTIMAL PORTFOLIO SELECTION WITH TRANSACTION COSTS WHEN AN ILLIQUID ASSET PAYS CASH DIVIDENDS Bong-Gyu Jang Reprinted from the Journal of the Korean Mathematical

More information

Risk Minimization Control for Beating the Market Strategies

Risk Minimization Control for Beating the Market Strategies Risk Minimization Control for Beating the Market Strategies Jan Večeř, Columbia University, Department of Statistics, Mingxin Xu, Carnegie Mellon University, Department of Mathematical Sciences, Olympia

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Mgr. Jakub Petrásek 1. May 4, 2009

Mgr. Jakub Petrásek 1. May 4, 2009 Dissertation Report - First Steps Petrásek 1 2 1 Department of Probability and Mathematical Statistics, Charles University email:petrasek@karlin.mff.cuni.cz 2 RSJ Invest a.s., Department of Probability

More information

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

Numerical Solution of Stochastic Differential Equations with Jumps in Finance Numerical Solution of Stochastic Differential Equations with Jumps in Finance Eckhard Platen School of Finance and Economics and School of Mathematical Sciences University of Technology, Sydney Kloeden,

More information

Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets

Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets HONG LIU Liu is from the John M. Olin School of Business, Washington University in St. Louis. I thank Domenico Cuoco,

More information

FINANCIAL PRICING MODELS

FINANCIAL PRICING MODELS Page 1-22 like equions FINANCIAL PRICING MODELS 20 de Setembro de 2013 PhD Page 1- Student 22 Contents Page 2-22 1 2 3 4 5 PhD Page 2- Student 22 Page 3-22 In 1973, Fischer Black and Myron Scholes presented

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information