FINANCIAL OPTION ANALYSIS HANDOUTS

Size: px
Start display at page:

Download "FINANCIAL OPTION ANALYSIS HANDOUTS"

Transcription

1 FINANCIAL OPTION ANALYSIS HANDOUTS 1

2 2

3 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any number. A person buying the object S today must pay 100 now, and a person selling the object S will receive 100 now. It is common knowledge that the prevailing price tomorrow S 1 will either be S 1 (u) = 125 if the market for S is up or S 1 (d) = 80 if the market for S is down. A person who purchases a unit of S today will receive either 125 or 80 tomorrow (depending on the outcome), and the person who sells a unit of S today is obligated to buy back a unit of S at the new prevailing market price (125 or 80). There is also a market for an object called C. It may be bought or sold by anyone for any number. A person who buys the object C today must pay $C 0 now, and a person who sells the object C will receive $C 0 now. A person who buys C today has the option but not the obligation to buy 1 unit of the object S tomorrow at today s market price of 100. A person who sells C today has the obligation of supplying a unit of S tomorrow for the price of 100 if a holder of a C wishes to exercise his option. There is also a market for dollars, the so-called money market M. A person who buys m dollars today receives m dollars today and owes (1.10)m tomorrow; that is, the person is taking out a loan. A person who sells m dollars today must give m dollars today (to the person buying), and will receive (1.10)m the next period; that is, when a person sells dollars today, they are acting like a banker in that they are loaning money to the person buying. QUESTION: How much is a unit of C worth to you? How do you assess its value? 3

4 OPTION EXAMPLE 1 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a one-period call option with strike price 100. Determine the self-financed replicating portfolio. 2/ (0.555S, 40.40M) 1/ NOTES = ΔC/ΔS = [25 0] [125 80] 2. The value of the call option at time 0 = (1/1.11)[ 2/3*25 + 1/3*0] = The money market amount = [100] = State Equations: h*s 1 (u) + m*r f = C 1 (u) 125h + 1.1m = 25 h*s 1 (d) + m*r f = C 1 (d) 80h + 1.1m = 0 4

5 OPTION EXAMPLE 2 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a one-period put option with strike price 100. Determine the self-financed replicating portfolio. 2/ (-0.444S, 50.50M) 1/ NOTES = ΔC/ΔS = [0 20] [125 80] 6. The value of the put option at time 0 = (1/1.11)[ 2/3*0 + 1/3*20] = The money market amount = *[100] = State Equations: h*s 1 (u) + m*r f = P 1 (u) 125h + 1.1m = 0 h*s 1 (d) + m*r f = P 1 (d) 80h + 1.1m = 20 5

6 OPTION EXAMPLE 3 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a 2-period call option with strike price 100. Determine the self-financed replicating portfolio. 2/ /3 (1.00S, 90.90M) 100 1/ (0.7575S, 55.10M) 2/3 1/ / NOTES 9. a = max( , 0). b. 0 = max( , 0) c. 0 = max(64 100, 0) d = (1/1.1)[2/3* /3*0] e = ΔC/ΔS = [ ] [ ] f = *125 g = (1/1.1)[2/3* /3*0] h = ΔC/ΔS = [ ] [125 80] i = * The value of the call option at time 0 = (1/1.21)[ 4/9* /9*0 + 1/9*0 ] 6

7 OPTION EXAMPLE 4 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a 2-period put option with strike price 100. Determine the self-financed replicating portfolio. 2/ / / (-0.242S, 27.55M) 2/3 1/ (-1.00S, 90.90M) 1/ NOTES 11. a. 0 = max( , 0). b. 0 = max( , 0) c. 36 = max(100 64, 0) d = (1/1.1)[2/3*0 + 1/3*36] e = ΔC/ΔS = [0 36] [100 64] f = *80 g = (1/1.1)[2/3*0 + 1/3*10.90] h = ΔC/ΔS = [ ] [125 80] i = * The value of the put option at time 0 = (1/1.21)[ 4/9*0 + 4/9*0 + 1/9*36 ] 13. European Put-Call Parity: S T + P T C T = K at time T, which implies that S 0 + P 0 C 0 = K/(1.1) 2. Verification: = 100/1.21 =

8 OPTION EXAMPLE 5 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a 2-period call option with strike price 80. Determine the self-financed replicating portfolio. 2/ /3 (1.00S, 72.72M) 100 1/ (0.8922S, 53.87M) 2/3 1/ (0.555S, 32.32M) 1/ NOTES 14. a = max( , 0). b. 20 = max(100 80, 0) c. 0 = max(64 80, 0) d = (1/1.1)[2/3* /3*20] e = ΔC/ΔS = [ ] [ ] f = *125 g = (1/1.1)[2/3*20 + 1/3*0] h = ΔC/ΔS = [20 0] [100 64] i = *80 j = (1/1.1)[2/3* /3*12.12] k = ΔC/ΔS = [ ] [125 80] l = * The value of the call option at time 0 = (1/1.21)[ 4/9* /9*20 + 1/9*0 ] 8

9 OPTION EXAMPLE 6 In each period the stock price may go up by a factor of U = 1.25 or down by a factor of D = The stock price at time 0 is 100. Risk-free rate each period is a constant 10%. Price a 2-period put option with strike price 80. Determine the self-financed replicating portfolio. 2/ / / (-0.107S, 12.24M) 2/3 1/ (-0.444S, 40.40M) 1/ NOTES 16. a. 0 = max( , 0). b. 0 = max(80 100, 0) c. 16 = max(80 64, 0) d = (1/1.1)[2/3*0 + 1/3*16] e = ΔC/ΔS = [0 16] [100 64] f = *80 g = (1/1.1)[2/3*0 + 1/3*4.84] h = ΔC/ΔS = [0 4.84] [125 80] i = * The value of the put option at time 0 = (1/1.21)[ 4/9*0 + 4/9*0 + 1/9*16 ] 18. European Put-Call Parity: S T + P T C T = K at time T, which implies that S 0 + P 0 C 0 = K/(1.1) 2. Verification: = 80/1.21 =

10 10

11 CHOOSER OPTION Consider a non-dividend paying stock whose initial stock price is 62 and which has a log-volatility of σ = The risk-free interest rate r f = 2.5% continuously compounded. Consider a 5-month option with a strike price of 60 in which after exactly 3 months the purchaser may declare this option to be a (European) call or put option. QUESTIONS: 1. Determine the value of U and D for the binomial lattice. The value for U = exp{σ(δt) 1/2 } = exp{0.20(1/12) 1/2 } = Note that D = 1/U = Determine the values for the binomial lattice for 5 1-month periods Stock Price Determine the appropriate risk-free rate. The interest rate per month R = exp(0.025*1/12) = Determine the risk-neutral probability q of going UP. The value for q satisfies q(us 0 ) + (1-q)(DS 0 ) = RS 0, which implies that q = (R-D)/(U-D) =

12 5. Determine the values for the call option and put option along the lattice Call Option Put Option Find the value of this Chooser Option. Compute the terminal value of the Chooser Option at t = 3 as the maximum of the call and put options at t = 3. From there we work backwards in the usual manner Chooser Option

13 CHOOSER OPTION Consider a non-dividend paying stock whose initial stock price is 62 and which has a log-volatility of σ = The interest rate r = 2.5% continuously compounded. Consider a 5-month option with a strike price of 60 in which after exactly 3 months the purchaser may declare this option to be a (European) call or put option. QUESTIONS: 1. Determine the value of U and D for the binomial lattice. The value for U = exp{σ(δt) 1/2 } = exp{0.20(1/12) 1/2 } = Note that D = 1/U = Determine the values for the binomial lattice for 5 1-month periods Stock Price Determine the appropriate risk-free rate. The interest rate per month R = exp(0.025*1/12) = Determine the risk-neutral probability p of going UP. The value for p satisfies p(us 0 ) + (1-p)(D S 0 ) = RS 0, which implies that p = (R-D)/(U-D) =

14 5. Determine the values for the call option and put option along the lattice Call Option Put Option Find the value of this Chooser Option. Compute the terminal value of the Chooser Option at t = 3 as the maximum of the call and put options at t = 3. From there we work backwards in the usual manner Chooser Option

15 FINANCIAL OPTION ANALYSIS PROBLEMS A. We consider a single period binomial lattice with S 0 = 50, U = 1.20 (D = 1/1.20) and R f = a. What is the objective probability p of an upward movement in the stock price if the market s required expected return on the stock, R S, is 8%? [p = ] b. Suppose the objective probability p of an upward movement in the stock price is What is the expected return, R S, on the stock? [R S = 9%] 2. A derivative security V has final payoffs given by V 1 = (max [S 1 50, 0]) 2, where S 1 is the final stock price. Assume the objective probability of an upward movement in the stock price p is a. Determine the no-arbitrage value V 0 for V. [ ] b. Determine the market s expected return on V (using objective probabilities). [29.16%] c. Determine the replicating portfolio (hs, mm). [(5.4545S, M)] d. Determine the portfolio weights, w S and w M, on the stock and the money market in the replicating portfolio. [w S = 5.032, w M = ] e. Determine the portfolio s expected return using the portfolio weights and the expected returns on the stock and bond. [29.16%] f. Compare your answers to (b) and (e). 15

16 B. A non-dividend paying stock has an initial price = 100. Its price path is modeled as a binomial lattice with U = 1.3 and D = 1/1.3. Period length = 1 year. The risk-free rate is 6% per year. 1. Determine the value of a 2 year European put option with strike price K = 100. [7.43] 2. An American put permits the holder to exercise at any date t, and receive the intrinsic value max (0, K S t ). Hence, at each time t, the holder can take one of two possible actions: no exercise, as in a European option, or exercise. Determine the value of a 2 year American put option with strike price K = 100. [9.84] 16

17 C. Smith knows that the value of a six month European call option with strike price K = 24 on a nondividend paying stock is The current value of the stock is 26. However, he wishes to price a European put option on the same stock with the same strike price and maturity. He knows that the risk-free rate is 2.50% per year, but he is stuck because he does not know the log-volatility σ upon which he would calculate the value of U. He comes to you for help. What say you? [4.50] 17

18 D. Do the following markets exhibit arbitrage? If so, demonstrate. If not, state why not Securities S1 S2 price at time up state at time down state at time Securities S1 S2 S3 price at time up state at time down state at time Securities S1 S2 S3 S4 S5 S6 S7 S8 S9 Price at time Up state at time Down state at time

19 E. The evolution of the stock price over 2 periods is shown in the figure below. Let S 2 denote the (random) value of the stock price at t = 2. The appropriate risk-adjusted rate of return (cost of capital) is 20% per period. The risk-free rate is 4% per period. In this problem we shall consider pricing a European square root derivative security with strike price 140 that pays off ( S ) 1/2 at time t = Determine the objective probabilities along the lattice. 2. Determine the final period payoffs for the square root option. (Enter them in the figure.) 3. Determine the Decision-Tree value of the square root option by (1) first computing the expectation of the final period payoffs using the objective probabilities, and then (2) discounting using the risk-adjusted rate of return. 4. Fill out the above figure by placing the correct value of the square root option as the 2 nd entry, and recording the self-financed replicating portfolio as the 3 rd entry. Determine the risk-neutral probabilities along the lattice and mark them with an asterisk. 5. Suppose the current market value of the square root option is the Decision-Tree value. Conceptually explain how you would use your answer to (d) to obtain a risk-free profit from the incorrect pricing. Be specific about your dynamic trading strategy. (No further calculations are required.) 19

20 Sample Worksheet 1: Sample Worksheet 2:

21 Asset Price Dynamics Example Data: σ = 0.30, risk-free rate = S(0) = month horizon. U = exp(σ Δ t ). One-month intervals: q = ( ) American Put Option European Put Option Half-month intervals: q = ( ) American Put option European Put option

22 22

23 Asset Price Dynamics Example Data: σ = 0.30, risk-free rate = S(0) = month horizon. Period length = 0.5 months. U = exp(σ Δ t ) Prob S 10 /S 0 ln [S 10 /S 0 ] (q = ) E[S 10 /S 0 ] = E(ln [S 10 /S 0 ]) = NOTES: 1. Δt = 1/ U = exp( / 24 ) = exp( ) = υ = (r σ 2 /2) = (0.08 (0.30) 2 /2) = q = 0.5( / / 24 ) = q = ( )/( ) = ( /24) 10 = exp(0.08(5/12)) = E (ln [S 1 /S 0 ]) = ( ) ( ) = E (ln [S 10 /S 0 ]) = 10( ) = υ(5/12) = P(S 10 38) = P(S(5/12) 38) = P{ [ln S(5/12)/S(0) - (0.035)(5/12)]/[ / 12 ] [ln 38/ ]/[ ] } = Φ( ) =

24 24

25 Table 1: A stochastic volatility, random interest rate model t = 0 t = 1 t = 2 S 0 = 4, r 0 = 25% S 1 (U) = 8, r 1 (U) = 25% S 2 (UU) = 12 S 1 (D) = 2, r 1 (D) = 50% S 2 (UD) = S 2 (DU) = 8 S 2 (DD) = 2 Option Analysis with Stochastic Interest Rates In this problem we consider a two-period, stochastic volatility, random interest rate model. The stock prices and interest rates are provided in Table 1. Consider the European option whose final payoffs are V 2 = max{s 2 7, 0}. Determine the value of this option at times 0 and 1. 25

26 Table 2: Solution to the stochastic volatility, random interest rate model t = 0 t = 1 t = = [0.5(2.4) + 0.5(0. 1)] 2.4 = [0.5(5) + 0.5(1)] = [(1/6)(1) + (5/6)(0)] 1 0 The risk-neutral q changes along the tree since the risk-free rate is stochastic. Otherwise, all the calculations are the same, since at each node the replicating portfolio and corresponding risk-neutral discounted expectation ideas still apply. The solution is provided in Table 2. 26

27 Asian Option Consider a non-dividend paying stock S whose price process follows a binomial lattice with U = 2 and D = 0.5. R = 1.25 and S 0 = 4. Define Y t := t S k, t = 0, 1, 2, 3 k=0 to be the sum of the stock prices between times zero and t. 1. Consider a (European) Asian call option that expires at time three and has a strike price K = 4; that is, its payoff at time three is { Y3 } max 4 4, 0. This is like a European call option, except the payoff of the option is based on the average stock price rather than the final stock price. Let V t (s, y) denote the price of this option at time n if S t = s and Y t = y. In particular, { y } V 3 (s, y) = max 4 4, 0. (a) Develop an algorithm for computing V t recursively. In particular, write a formula for V t in terms of V t+1. (b) Apply the algorithm developed in (a) to compute V 0 (4, 4), the price of the Asian option at time zero. (c) Provide a formula for δ t (s, y), the number of shares of stock that should be held by the replicating portfolio at time t if S t = s and Y t = y. 2. What is the value of a (European) Asian put option that expires at time three and has a strike price K = 4; that is, its payoff at time three is { max 4 Y } 3 4, 0. 27

28 1. Risk-neutral q = 0.5. ( ) (a) V t (s, y) = (1/1.25) 0.5V t+1 (us, y + us) + 0.5V t+1 (ds, y + ds). (b) V 3 (32, 60) = 11; V 3 (8, 36) = 5; V 3 (8, 24) = 2; V 3 (2, 18) = 0.5; V 3 (8, 18) = 0.5; V 3 (2, 12) = V 3 (2, 9) = V 3 (0.5, 7.5) = 0. V 2 (16, 28) = (1/1.25)[0.5(11) + 0.5(5)] = V 2 (4, 16) = (1/1.25)[0.5(2) + 0.5(0.5)] = 1.0. V 2 (4, 10) = (1/1.25)[0.5(0.5) + 0.5(0)] = V 2 (1, 7) = (1/1.25)[0.5(0) + 0.5(0)] = 0. V 1 (8, 12) = (1/1.25)[0.5(6.4) + 0.5(1.0)] = V 1 (2, 6) = (1/1.25)[0.5(0.2) + 0.5(0)] = (c) V 0 (4, 4) = (1/1.25)[0.5(2.96) + 0.5(0.08)] = Remark. The value of this Asian option, 1.216, equals the discounted expectation of the final payoffs using the risk-free rate and the risk-neutral probability, i.e., (1.25) 3. 8 Simulation is an especially useful computational approach for valuing pathdependent, European-style derivative securities, since their value can be obtained as a (discounted) sample average of the value along a sample path. δ t (s, y) = V t+1(us, y + us) V t+1 (ds, y + ds). (u d)s 28

29 No Arbitrage Bounds Consider a family of call options on a non-dividend paying stock, each option being identical except for its strike price. The value of the call with strike price K is denoted by C(K). Prove the following two general relations using arbitrage arguments: 1. If K 2 > K 1, then K 2 K 1 C(K 1 ) C(K 2 ). 2. If K 3 > K 2 > K 1, then C(K 2 ) ( K3 K ) ( 2 K2 K ) 1 C(K 1 ) + C(K 3 ). K 3 K 1 K 3 K 1 Hint: For both parts find a portfolio that is guaranteed to have no negative but sometimes positive final payoffs. If there is to be no arbitrage, such a portfolio must cost something to acquire today. In each part plot the final payoffs for each portfolio, otherwise known as the payoff diagram. 29

30 Solution: For both parts below one finds a portfolio that is guaranteed to have no negative but sometimes positive final payoffs. If there is to be no arbitrage, such a portfolio must cost something to acquire today. In each case below it will be instructive to plot the final payoffs for each portfolio, otherwise known as the payoff diagram. 1. Verify that the portfolio C(K 1 ) + C(K 2 ) + (K 2 K 1 ) has no negative but sometimes positive final payoffs. Hence, its cost today must be nonnegative, which establishes the result. 2. Consider the portfolio mc(k 1 ) C(K 2 ) + nc(k 3 ) with m, n > 0 and m < 1. This portfolio s final payoffs are zero if S T K 1 and will be positive on the interval K 1 S T K 2. Since m < 1 the payoffs decline on the interval K 2 S T K 3. If we set m so that m(k 3 K 1 ) = (K 3 K 2 ), then the payoffs will remain nonnegative in the interval K 2 S T K 3. In particular, the payoff when S T = K 3 will be zero. If we further set n so that m + n = 1, the final payoffs will be zero on the interval S T K 3. We conclude that the portfolio ( K3 K ) ( 2 K2 K ) 1 C(K 1 ) C(K 2 ) + C(K 3 ) K 3 K 1 K 3 K 1 has no negative but sometimes positive final payoffs. nonnegative, which establishes the result. Hence, its cost today must be 30

31 FINANCIAL OPTION ANALYSIS SAMPLE PROBLEMS I. Single-period 1. The price of asset S at time t = 0 is S 0 = 20. The asset s value at time t = 1 is S 1 (u) = 28 in the up state is S 1 (d) = 14 in the down state. The risk-free rate is 5%. The objective probability of the up state is A derivative security V has final payoffs at time t = 1 of V 1 (u) = 126 in the up state and V 1 (d) = 84 in the down state. a. Determine the expected return, R S, on the asset S. b. Determine the no-arbitrage value for V. c. Determine the expected return on V under the objective probabilities. d. Determine the replicating portfolio for V. e. Determine the portfolio weights of S and M in the replicating portfolio for V. f. Show how the answer to (c) can be obtained using the expected returns under the objective probabilities of the underlying assets in the replicating portfolio. 2. The price of asset S at time t = 0 is S 0 = 40. The asset s value at time t = 1 is S 1 (u) = 50 in the up state is S 1 (d) = 30 in the down state. The risk-free rate is 2.5%. The objective probability of the up state is A derivative security V has final payoffs at time t = 1 of V 1 (u) = 100 in the up state and V 1 (d) = 50 in the down state. a. Determine the expected return, R S, on the asset S. b. Determine the no-arbitrage value for V. c. Determine the expected return on V under the objective probabilities. d. Determine the replicating portfolio for V. e. Determine the portfolio weights of S and M in the replicating portfolio for V. f. Show how the answer to (c) can be obtained using the expected returns under the objective probabilities of the underlying assets in the replicating portfolio. II. Multi-period 3. A non-dividend paying stock has an initial price S 0 = 100. Its price path is modeled as a binomial lattice with U = 1.25 and D = Period length is 1 year. The risk-free rate is 10% per year. a. Determine the value of a 2 year American call option with strike price K = 90. b. Determine the value of a 2 year European call option with strike price K = 90. c. Use Put-Call Parity to value a 2 year European put option with strike price K = A non-dividend paying stock has an initial price S 0 = 100. Its price path is modeled as a binomial lattice with U = 1.25 and D = Period length is 1 year. The risk-free rate is 10% per year. a. Determine the value of a 2 year American put option with strike price K = 90. b. Determine the value of a 2 year European put option with strike price K = 90. c. Use Put-Call Parity to value a 2 year European call option with strike price K = The risk-free rate is 2.5% and the period length equals 3 months. Determine the value of the parameter U in a binomial lattice if log-volatility σ = 0.60, and determine the value of the risk-neutral probability q. 6. The risk-free rate is 4% and the period length equals 6 months. Determine the value of the parameter U in a binomial lattice if log-volatility σ = 0.80, and determine the value of the risk-neutral probability q. 31

32 7. The evolution of the stock price over 2 periods is shown in Figure 1 below. Let S 2 denote the (random) value of the stock price at t = 2. The appropriate risk-adjusted rate of return (cost of capital) is 20% per period. The risk-free rate is 4% per period. In this problem we wish to price a European derivative security that pays off ( S S S ) at time t =2. a. For each box in the figure below place the correct value of the derivative security as the 2 nd entry and record the self-financed replicating portfolio as the 3 rd entry b. Determine the value at time t = 0 of this derivative security according to DTA. c. Suppose the current market value of the derivative security is 150. Exactly explain how you could guarantee a risk-free profit from the incorrect pricing. Be specific with numbers. 32

33 8. The evolution of the stock price over 2 periods is shown in Figure 1 below. Let S 2 denote the (random) value of the stock price at t = 2. The appropriate risk-adjusted rate of return (cost of capital) is 12% per period. The risk-free rate is 5% per period. In this problem we wish to price a European derivative security that pays off S /2 at time t =2. a. For each box in the figure below place the correct value of the derivative security as the 2 nd entry and record the self-financed replicating portfolio as the 3 rd entry b. Determine the value at time t = 0 of this derivative security according to DTA. c. Suppose the current market value of the derivative security is priced according to DTA. Exactly explain how you could guarantee a risk-free profit from the incorrect pricing. Be specific with numbers. 33

34 III. Path Dependent 9. A non-dividend paying stock has an initial price S 0 = 100. Its price path is modeled as a binomial lattice with U = 1.25 and D = Period length is 1 year. The risk-free rate is 10% for the first year, and 2.5% for the second year. Determine the value of a 2-year European-style path-dependent derivative security whose payoff at time t = 2 is max {S 0, S 1, S 2 } S 2, namely, the difference between the maximum stock price observed over the 2-year period and the stock price at time t = The price process of a non-dividend paying stock over the next 2 years is shown in the following table: t = 0 t = 1 t = The risk-free rate is 5% per year. Define Y 2 = S 0 + S 1 + S 2 denote the sum of the stock prices between times zero and 2. A European Asian put option that expires at time t = 2 and has strike price K = 104 has its payoff at time t = 2 equal to max{104 - Y 2 /3, 0}. (This is like a European put option, except that the payoff of this option is based on the average stock price rather than the final stock price.) Determine the no-arbitrage value of this path-dependent option. 11. Consider a binomial lattice with S 0 = 4, U = 2 and D = The risk-free rate if 25%. A 3-year, lookback option is a European path-dependent derivative security that pays off at time three. V 3 = max {0 t 3} S t S 3 a. Determine the no-arbitrage value of this lookback option. b. Determine the replicating portfolio at time t = A non-dividend paying stock has an initial price S 0 = 36. Its price path is modeled as a binomial lattice with U = 1.5 and D = 2/3. Period length is 1 year. The risk-free rate is 2.5% for the first year, and 10% for the second year. Determine the value (to the nearest penny) of a 2-year American-style path-dependent derivative security whose payoff at any time t, if exercised, is the stock price at time t less the minimum stock price observed up to this time t. 13. A non-dividend paying stock has an initial price S 0 = 36. Its price path is modeled as a binomial lattice with U = 1.5 and D = 2/3. Period length is 1 year. The risk-free rate is 2.5% for the first year, and 10% for the second year. Determine the value (to the nearest penny) of a 2-year American-style path-dependent derivative security whose payoff at any time t, if exercised, is the maximum stock price observed up to this time t less the stock price at time t. 34

35 IV. Arbitrage 14. Does the following market exhibit arbitrage? If so, provide a concrete example of arbitrage. If not, state why not. Securities S1 S2 S3 S4 S5 S6 S7 S8 S9 Price at time Up state at time Down state at time Consider dividend-price data for a complete, no-arbitrage market with the following three securities: Security 1 Security 2 Security 3 Payoff Vector V Price at t = ? Payoff in state 1 at t = Payoff in state 2 at t = Payoff in state 3 at t = a. Use the replicating portfolio approach to determine the correct value of the payoff vector V at time 0. b. Use the risk-neutral approach to determine the correct value of the payoff vector V at time a. Does the following market exhibit arbitrage? If so, provide a concrete example of arbitrage. If not, state why not. Securities S1 S2 S3 S4 S5 Price at time State State State State b. Determine the risk-free rate for this market. 17. Consider the following market data: Securities S 1 S 2 S 3 Price at time State 1 at time State 2 at time Z a. Determine the state-prices y 1 and y 2. b. Determine the value of Z in the table so that this market does not exhibit arbitrage. c. Determine the risk-free rate for this market. 35

36 V. Asset Price Dynamics 18. Consider a non-dividend paying stock whose price follows Geometric Brownian motion, ds t = μs t dt + σ S t db t with (annual) parameters μ = 0.20, σ = 0.40, and S 0 = 100. a. Determine the expected value for the stock price after 3 months (0.25 yr). b. Determine the median value s* for the stock price after 3 months. Recall that s* is defined by the equation P[S(0.25) s*] = c. Determine the standard deviation of the stock price after 3 months. d. Consider a 1-year binomial lattice representation of S with 1-month periods. What is the probability that a simulated stock price path will have its terminal stock price equal to 100? 19. Consider a non-dividend paying stock whose price follows Geometric Brownian motion, ds t = μs t dt + σ S t db t with (annual) parameters μ = 0.12, σ = 0.60, and S 0 = 100. Risk-free rate is 2.5%. a. Determine the expected value for the stock price after 6 months (0.50 yr). b. Determine the median value s* for the stock price after 6 months. Recall that s* is defined by the equation P[S(0.50) s*] = c. Determine the standard deviation of the stock price after 6 months. d. Consider a 1-year binomial lattice representation of S with 2-month periods. What is the probability that a simulated stock price path will have its terminal stock price equal to 100? e. Set up the Black-Scholes equation to value a six-month call option on this stock with a strike price of 105. Be explicit but do not calculate. f. What is the probability that the stock price at the end of 6 months will be no higher than 110? 36

37 FINANCIAL OPTION ANALYSIS SAMPLE PROBLEM SOLUTIONS 1. a. R S = [0.6(28) + 0.4(14)]/20-1 = b. Since [0.5(28) + 0.5(14)]/1.05 = 20, q = 0.5. V 0 = [0.5(126) + 0.5(84)]/1.05 = 100. c. r V = [0.6(126) + 0.4(84)]/100-1 = or 9.2%. e. (126-84)/(28-14) = 3. So h = 3. Thus, replicating portfolio is (3S, 40M). e. 60/100 is invested in S, so w S = 0.6 and w M = 0.4. f. 0.6(12) + 0.4(5) = a. R S = [0.7(50) + 0.3(30)]/40-1 = b. Since [0.55(50) (30)]/1.025 = 40, q = V 0 = [0.55(100) (50)]/1.025 = c. R V = [0.7(100) + 0.3(50)]/ = or 12.42%. e. (100-50)/(50-30) = 2.5. So h = 2.5. Thus, replicating portfolio is (2.5S, M). e. 100/75.61 is invested in S, so w S = and w M = f (10) (2.5) = a. t = 0 t = 1 t = [43.182] [66.25] = 80 [6.061] 100 [10] [2/3(43.182)+1/3(6.061)]/1.1 since exercise value = 0 64 [0] b. [(4/9)(66.25)+(4/9)(10)]/(1.1) 2 = c. 90/(1.1) 2 = S + P C = P P = a. t = 0 t = 1 t = [0] [0] 3.03 = 1/3(10)/1.1 80* [10] 100 [0] since 10 > 1/3(26)/ [26] b. (1/9)(26)/(1.1) 2 = c. 90/(1.1) 2 = S + P C = C. C = U = exp[0.60(0.25) 1/2 ] = q = [exp(0.025*0.25) ]/[ ] = U = exp[0.80(0.50) 1/2 ] = q = [exp(0.040*0.50) ]/[ ] =

38 7. a. Note: Objective probabilities are in parentheses (0.622) (0.80) (1S, 3.36M) (0.377) (-0.185S, 151.3M) (0.64) (0.20) (-1S, M) (0.36) b. [185(0.80*0.622) (0.80* *0.64) (0.20*0.36)] / (1.2) 2 = c. Derivative security is overpriced, so you would want to sell it. Collect 150 and use of it to purchase the replicating portfolio of ( S, M). Invest the in the bank or buy lunch. If the price goes up next period to 130, rebalance the portfolio to (1S, 3.36M), which you can afford to do since it will cost and this is precisely what the portfolio ( S, M) equals when the price = 130. If the price goes down next period to 80, rebalance the portfolio to ( 1S, M), which you can afford to do by the same reasoning as before. Finally, when period 2 comes around, your updated portfolio will exactly match the final payoffs of the derivative security (185, or 167.5) regardless of the final state and so you will be able to meet your obligations. (If you were forced to buy back the derivative security at time 1, you would have the exact money to do so.) 38

39 8. a. Note: Objective probabilities are in parentheses (0.7) (0.525) (0.1195S, M) (0.3) 0 ( S, M) 0.35 (0.42) (0.475) ( S, M) 0.65 (0.58) b [(0.525)(0.7) + (0.475)(0.58)] / (1.12) 2 = c. Derivative security is underpriced, so you would want to buy it. Sell the RP for , i.e., acquire the portfolio ( S, M), and buy the derivative security for Collect and invest it in the bank. If the price goes up next period to 150, you owe Purchase the new RP of ( S, M), collect and pay off the obligation. If the price goes down next period to 80, you owe Purchase the new RP of (0.1195S, M), collect and pay off the obligation. Finally, when period 2 comes around, your updated portfolio s obligation will exactly match the final payoffs of the derivative security (8.3667, 0 or ) regardless of the final state, and so you will be able to meet your obligations. 9. There are four possible paths. The payoffs in the states uu, ud, du, dd are, respectively, 0, 25, 0, 36. Thus, the time 0 no-arbitrage value is [(2/3)(0.5)(25)]/(1.1)(1.025) + [(1/3)(0.5)(36)]/(1.1)(1.025) = There are four possible paths. The average values along the uu, ud, du, and dd paths are, respectively, , , 94, and 79. The values of the Asian put option for these paths are, respectively, 0, 0, 10, and 25. The q probability of path du is (0.5)(0.6) = 0.3, and the q probability of path dd is (0.5)(0.4) = 0.2. Therefore, the time 0 no-arbitrage value is [(0.3)(10) + (0.2)(25)]/(1.05) 2 = a. The final payoffs of this lookback option in states uuu, uud, udu, udd, duu, dud, ddu, ddd are, respectively, 32-32=0, 16-8=8, 8-8=0, 8-2=6, 8-8=0, 4-2=2, 4-2=2, 4-0.5=3.5. Since the q probability is 0.5, the time 0 no-arbitrage value is [( )/8]/ = b. To determine the RP at time t = 0, we have to find the time 1 no-arbitrage values of this lookback option. The time 1 value when S = 8 is [( )/4]/ = 2.24, and the time 1 value when S = 2 is [( )/4]/ = (Notice how [0.5(2.24)+0.5(1.20)]/1.25 = 1.376, as it should.) So, the RP is (0.1733S, M). 39

40 12. Stock price paths option value over time uu: ud: du: dd: 16 0 Risk-neutral probability q 1 = 0.43 and q 2 = = max{ [0.52(45) (0)]/1.1, } = max{ [0.52(12) (0)]/1.1, } = [0.43( ) (5.6727)]/ Stock price paths option value over time uu: ud: du: 36 12* 0 dd: Risk-neutral probability q 1 = 0.43 and q 2 = = max{ [0.52(0) (18)]/1.1, }. 12 = max{ [0.52(0) (18)]/1.1, }. (Exercise.) = [0.43(7.8545) (12)]/ First four securities show that q = 0.5. To be consistent, the value S9 = [0.5(385) + 0.5(245)]/1.05 = 300, which is less than 305. The portfolio (10S1, 100S2) replicates S9 and costs 300. So sell S9 for 305 and buy this replicating portfolio for 300, and pocket the difference of a. Since S2 does not payoff in either state 1 or 2 only S1 and S3 can be used to replicate the payoffs of the Vector V in these two states. (S3 is of course our old friend M.) We re back to the (hs1, M) : here, h = ( )/( ) = 1 and M = S3 = 200. Now use state 3 to pin down the number of units of S2 to hold: 176(S2) + 1.1(200) = 44 S2 = -1. Thus, the replicating portfolio is (1S1, 1S2, 200S3) for a cost today of 220. b. Let q = (q 1, q 2, q 3 ) denote the risk-neutral probability vector. Obviously R = 1.1. Discounted expectation using q and R applied to S2 implies that (1/1.1)176q 3 = 80 q 3 = 0.5. Thus, q 1 + q 2 = 0.5. Discounted expectation using q and R applied to S1 implies that (1/1.1)[200q q 2 ] = 100 q 1 =q 2 = Risk-neutral valuation says that (1/R)E q [V] = (1/R) q T V = p for any vector V. Thus, the value of V is (1/1.1)[0.25(420) (460) + 0.5(44)] = 220, which coincides with the answer in part (a), as it should. 40

41 16. a. We can use the first four assets to determine the state-prices. The equations are: 125y y 2 = y y 2 = 60. These equations imply that y 1 = 4/11, y 2 = 2/11. 28y y 4 = y y 4 = 40. These equations imply that y 3 = 4/21, y 4 = 4/21. Now we can use these state-prices to determine the no-arbitrage value of asset 5 as: (4/11)22 + (2/11)11 + (4/21)21 + (4/21)42 = 22. Since this IS the price of asset 5, this market does NOT exhibit arbitrage. b. Recall that the reciprocal of the sum of the state-prices equals = 1 + r f. Thus, 1+r f = 1/(4/11 + 2/11 + 4/21 + 4/21) = 231/214 = r f = 7.94%. Alternatively, one can easily combine assets 3 and 4 to obtain a constant payoff vector. For example, a purchase of 1 unit of asset 3 and 110/105 units of asset 4 yields a constant payoff of 110. The cost of this portfolio is 60(1) + 40(110/105) = Thus, the total return on the risk-free security is 110/ = , same as above, as it should. 17. a. The equations are: 26y y 2 = y y 2 = 10. These equations imply that y 1 = 10/21, y 2 = 10/21. b. 80 = 68y 1 + Zy 2 = 68(10/21) + Z(10/21). So, Z = 100. c. R = 1/(y 1 + y 2 ) = So risk-free rate is 5% in this market. 41

42 18. a. E[S(0.25)] = S(0)exp(0.20*0.25) = b. υ = 0.20 (0.40) 2 /2 = ln[s(0.25)/s(0)] ~ Normal with mean = 0.12(0.25) and variance = (0.40) 2 (0.25). The mean and median values are the same for a normally distributed random variable, and so the median value of ln[s(0.25)/s(0)] is 0.03, which implies the median value for S(0.25) is 100*exp(0.03) = c. ln [S(t)/S(0)] := X(t) ~ N(υt, σ 2 t), where υ = µ - 0.5*σ 2 = S(t) = S(0)exp[X(t)]. E[S(t)] = S(0)E[exp(X(t))] = S(0)exp[υt + 0.5σ 2 t] = 100exp[0.12(0.25) + 0.5(0.16)(0.25)] (when t = 0.25) = 100exp(0.05) = (Same answer as part a.) E[S(t) 2 ] = S(0) 2 E[exp(2X(t))] = S(0) 2 exp[2υt + 2σ 2 t] = 10000exp[ ] = (when t = 0.25). Var[S(0.25)] = ( ) 2 = Stdev[S(0.25)] = d. p = 0.5(1 + (0.12/0.40)(1/12) 1/2 ) = For a simulated stock price at the end of the 12 th month to have a value of 100, there must have been exactly 6 up and 6 down transitions. The probability of this occurrence is therefore ( 12 C 6 )*(0.5433) 6 (0.4567) 6 = a. E[S(0.50)] = S(0)exp(0.12*0.50) = b. υ = 0.12 (0.60) 2 /2 = ln[s(0.50)/s(0)] ~ Normal with mean = (-0.06)(0.50) and variance = (0.60) 2 (0.50). The mean and median values are the same for a normally distributed random variable, and so the median value of ln[s(0.50)/s(0)] is -0.06, which implies the median value for S(0.50) is 100*exp(-0.06) = c. ln [S(t)/S(0)] := X(t) ~ N(υt, σ 2 t), where υ = µ - 0.5*σ 2 = S(t) = S(0)exp[X(t)]. E[S(t)] = S(0)E[exp(X(t))] = S(0)exp[υt + 0.5σ 2 t] = 100exp[-0.06(0.50) + 0.5(0.36)(0.50)] (when t = 0.50) = 100exp(0.06) = (Same answer as part a.) E[S(t) 2 ] = S(0) 2 E[exp(2X(t))] = S(0) 2 exp[2υt + 2σ 2 t] = 10000exp[ ] = (when t = 0.50). Var[S(0.50)] = ( ) 2 = Stdev[S(0.50)] = d. p = 0.5(1 + (-0.06/0.60)(2/12) 1/2 ) = For a simulated stock price at the end of the 12 th month to have a value of 100, there must have been exactly 3 up and 3 down transitions. (Period length = 2 months.) The probability of this occurrence is therefore ( 6 C 3 )*(0.4796) 3 (0.5204) 3 = e. d 1 = [ln(100/105) + ( /2)(0.50)]/[0.60(0.50) 1/2 ] = d 2 = (0.50) 1/2 = Kexp(-rT) = 105exp(-0.025(0.50)) = C = 100Φ(0.1266) Φ( ). f. P{S(0.5) 110} = P{S(0.5)/ /100} = P{ln[S(0.5)/100] ln[1.1]} = P{ [ ln[s(0.5)/100] (-0.06)(0.5) ]/(0.6(0.5) ½ [ ln[1.1] (-0.06)(0.5) ]/(0.6(0.5) ½ } = P{Z } = Φ(0.2954) = or 61.6%. 42

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

B8.3 Week 2 summary 2018

B8.3 Week 2 summary 2018 S p VT u = f(su ) S T = S u V t =? S t S t e r(t t) 1 p VT d = f(sd ) S T = S d t T time Figure 1: Underlying asset price in a one-step binomial model B8.3 Week 2 summary 2018 The simplesodel for a random

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p 57) #4.1, 4., 4.3 Week (pp 58-6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15-19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9-31) #.,.6,.9 Week 4 (pp 36-37)

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Pricing Options with Binomial Trees

Pricing Options with Binomial Trees Pricing Options with Binomial Trees MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will learn: a simple discrete framework for pricing options, how to calculate risk-neutral

More information

REAL OPTIONS ANALYSIS HANDOUTS

REAL OPTIONS ANALYSIS HANDOUTS REAL OPTIONS ANALYSIS HANDOUTS 1 2 REAL OPTIONS ANALYSIS MOTIVATING EXAMPLE Conventional NPV Analysis A manufacturer is considering a new product line. The cost of plant and equipment is estimated at $700M.

More information

Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71

Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71 Option Valuation with Binomial Lattices corrected version Prepared by Lara Greden, Teaching Assistant ESD.71 Note: corrections highlighted in bold in the text. To value options using the binomial lattice

More information

Lattice Model of System Evolution. Outline

Lattice Model of System Evolution. Outline Lattice Model of System Evolution Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Model Slide 1 of 48

More information

Chapter 14 Exotic Options: I

Chapter 14 Exotic Options: I Chapter 14 Exotic Options: I Question 14.1. The geometric averages for stocks will always be lower. Question 14.2. The arithmetic average is 5 (three 5 s, one 4, and one 6) and the geometric average is

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Lattice Model of System Evolution. Outline

Lattice Model of System Evolution. Outline Lattice Model of System Evolution Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Model Slide 1 of 32

More information

The Binomial Model. Chapter 3

The Binomial Model. Chapter 3 Chapter 3 The Binomial Model In Chapter 1 the linear derivatives were considered. They were priced with static replication and payo tables. For the non-linear derivatives in Chapter 2 this will not work

More information

The Multistep Binomial Model

The Multistep Binomial Model Lecture 10 The Multistep Binomial Model Reminder: Mid Term Test Friday 9th March - 12pm Examples Sheet 1 4 (not qu 3 or qu 5 on sheet 4) Lectures 1-9 10.1 A Discrete Model for Stock Price Reminder: The

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

Option pricing models

Option pricing models Option pricing models Objective Learn to estimate the market value of option contracts. Outline The Binomial Model The Black-Scholes pricing model The Binomial Model A very simple to use and understand

More information

MS-E2114 Investment Science Exercise 10/2016, Solutions

MS-E2114 Investment Science Exercise 10/2016, Solutions A simple and versatile model of asset dynamics is the binomial lattice. In this model, the asset price is multiplied by either factor u (up) or d (down) in each period, according to probabilities p and

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Advanced Corporate Finance. 5. Options (a refresher)

Advanced Corporate Finance. 5. Options (a refresher) Advanced Corporate Finance 5. Options (a refresher) Objectives of the session 1. Define options (calls and puts) 2. Analyze terminal payoff 3. Define basic strategies 4. Binomial option pricing model 5.

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options

Page 1. Real Options for Engineering Systems. Financial Options. Leverage. Session 4: Valuation of financial options Real Options for Engineering Systems Session 4: Valuation of financial options Stefan Scholtes Judge Institute of Management, CU Slide 1 Financial Options Option: Right (but not obligation) to buy ( call

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005

Corporate Finance, Module 21: Option Valuation. Practice Problems. (The attached PDF file has better formatting.) Updated: July 7, 2005 Corporate Finance, Module 21: Option Valuation Practice Problems (The attached PDF file has better formatting.) Updated: July 7, 2005 {This posting has more information than is needed for the corporate

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices

MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices MS-E2114 Investment Science Lecture 10: Options pricing in binomial lattices A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science

More information

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson.

Investment Guarantees Chapter 7. Investment Guarantees Chapter 7: Option Pricing Theory. Key Exam Topics in This Lesson. Investment Guarantees Chapter 7 Investment Guarantees Chapter 7: Option Pricing Theory Mary Hardy (2003) Video By: J. Eddie Smith, IV, FSA, MAAA Investment Guarantees Chapter 7 1 / 15 Key Exam Topics in

More information

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE.

Name: MULTIPLE CHOICE. 1 (5) a b c d e. 2 (5) a b c d e TRUE/FALSE 1 (2) TRUE FALSE. 3 (5) a b c d e 2 (2) TRUE FALSE. Name: M339D=M389D Introduction to Actuarial Financial Mathematics University of Texas at Austin Sample In-Term Exam II Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. The

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

Course MFE/3F Practice Exam 2 Solutions

Course MFE/3F Practice Exam 2 Solutions Course MFE/3F Practice Exam Solutions The chapter references below refer to the chapters of the ActuarialBrew.com Study Manual. Solution 1 A Chapter 16, Black-Scholes Equation The expressions for the value

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press

CHAPTER 10 OPTION PRICING - II. Derivatives and Risk Management By Rajiv Srivastava. Copyright Oxford University Press CHAPTER 10 OPTION PRICING - II Options Pricing II Intrinsic Value and Time Value Boundary Conditions for Option Pricing Arbitrage Based Relationship for Option Pricing Put Call Parity 2 Binomial Option

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Financial Derivatives Section 5

Financial Derivatives Section 5 Financial Derivatives Section 5 The Black and Scholes Model Michail Anthropelos anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos/ University of Piraeus Spring 2018 M. Anthropelos (Un. of

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48.

S u =$55. S u =S (1+u) S=$50. S d =$48.5. S d =S (1+d) C u = $5 = Max{55-50,0} $1.06. C u = Max{Su-X,0} (1+r) (1+r) $1.06. C d = $0 = Max{48. Fi8000 Valuation of Financial Assets Spring Semester 00 Dr. Isabel katch Assistant rofessor of Finance Valuation of Options Arbitrage Restrictions on the Values of Options Quantitative ricing Models Binomial

More information

Binomial Option Pricing

Binomial Option Pricing Binomial Option Pricing The wonderful Cox Ross Rubinstein model Nico van der Wijst 1 D. van der Wijst Finance for science and technology students 1 Introduction 2 3 4 2 D. van der Wijst Finance for science

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II - Solutions This problem set is aimed at making up the lost

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

Option Pricing Models. c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 Option Pricing Models c 2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205 If the world of sense does not fit mathematics, so much the worse for the world of sense. Bertrand Russell (1872 1970)

More information

Forwards, Swaps, Futures and Options

Forwards, Swaps, Futures and Options IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh Forwards, Swaps, Futures and Options These notes 1 introduce forwards, swaps, futures and options as well as the basic mechanics

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes

Notes: This is a closed book and closed notes exam. The maximal score on this exam is 100 points. Time: 75 minutes M375T/M396C Introduction to Financial Mathematics for Actuarial Applications Spring 2013 University of Texas at Austin Sample In-Term Exam II Post-test Instructor: Milica Čudina Notes: This is a closed

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Fixed Income and Risk Management

Fixed Income and Risk Management Fixed Income and Risk Management Fall 2003, Term 2 Michael W. Brandt, 2003 All rights reserved without exception Agenda and key issues Pricing with binomial trees Replication Risk-neutral pricing Interest

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Econ 174 Financial Insurance Fall 2000 Allan Timmermann. Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

Utility Indifference Pricing and Dynamic Programming Algorithm

Utility Indifference Pricing and Dynamic Programming Algorithm Chapter 8 Utility Indifference ricing and Dynamic rogramming Algorithm In the Black-Scholes framework, we can perfectly replicate an option s payoff. However, it may not be true beyond the Black-Scholes

More information

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page.

Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Errata for ASM Exam MFE/3F Study Manual (Ninth Edition) Sorted by Page 1 Errata and updates for ASM Exam MFE/3F (Ninth Edition) sorted by page. Note the corrections to Practice Exam 6:9 (page 613) and

More information

BUSM 411: Derivatives and Fixed Income

BUSM 411: Derivatives and Fixed Income BUSM 411: Derivatives and Fixed Income 12. Binomial Option Pricing Binomial option pricing enables us to determine the price of an option, given the characteristics of the stock other underlying asset

More information

6. Numerical methods for option pricing

6. Numerical methods for option pricing 6. Numerical methods for option pricing Binomial model revisited Under the risk neutral measure, ln S t+ t ( ) S t becomes normally distributed with mean r σ2 t and variance σ 2 t, where r is 2 the riskless

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2. Derivative Securities Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial trees. This

More information

A Brief Review of Derivatives Pricing & Hedging

A Brief Review of Derivatives Pricing & Hedging IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh A Brief Review of Derivatives Pricing & Hedging In these notes we briefly describe the martingale approach to the pricing of

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark). The University of Toronto ACT460/STA2502 Stochastic Methods for Actuarial Science Fall 2016 Midterm Test You must show your steps or no marks will be awarded 1 Name Student # 1. 2 marks each True/False:

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in MAT2700 Introduction to mathematical finance and investment theory. Day of examination: November, 2015. Examination hours:??.????.??

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Final Exam. Please answer all four questions. Each question carries 25% of the total grade.

Final Exam. Please answer all four questions. Each question carries 25% of the total grade. Econ 174 Financial Insurance Fall 2000 Allan Timmermann UCSD Final Exam Please answer all four questions. Each question carries 25% of the total grade. 1. Explain the reasons why you agree or disagree

More information

P-7. Table of Contents. Module 1: Introductory Derivatives

P-7. Table of Contents. Module 1: Introductory Derivatives Preface P-7 Table of Contents Module 1: Introductory Derivatives Lesson 1: Stock as an Underlying Asset 1.1.1 Financial Markets M1-1 1.1. Stocks and Stock Indexes M1-3 1.1.3 Derivative Securities M1-9

More information

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold)

B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) B6302 B7302 Sample Placement Exam Answer Sheet (answers are indicated in bold) Part 1: Multiple Choice Question 1 Consider the following information on three mutual funds (all information is in annualized

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina

M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina M339W/M389W Financial Mathematics for Actuarial Applications University of Texas at Austin In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes

More information

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing

Outline One-step model Risk-neutral valuation Two-step model Delta u&d Girsanov s Theorem. Binomial Trees. Haipeng Xing Haipeng Xing Department of Applied Mathematics and Statistics Outline 1 An one-step Bionomial model and a no-arbitrage argument 2 Risk-neutral valuation 3 Two-step Binomial trees 4 Delta 5 Matching volatility

More information

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG

MATH 476/567 ACTUARIAL RISK THEORY FALL 2016 PROFESSOR WANG MATH 476/567 ACTUARIAL RISK THEORY FALL 206 PROFESSOR WANG Homework 5 (max. points = 00) Due at the beginning of class on Tuesday, November 8, 206 You are encouraged to work on these problems in groups

More information

MAFS525 Computational Methods for Pricing Structured Products. Topic 1 Lattice tree methods

MAFS525 Computational Methods for Pricing Structured Products. Topic 1 Lattice tree methods MAFS525 Computational Methods for Pricing Structured Products Topic 1 Lattice tree methods 1.1 Binomial option pricing models Risk neutral valuation principle Multiperiod extension Dynamic programming

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

How Much Should You Pay For a Financial Derivative?

How Much Should You Pay For a Financial Derivative? City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology Winter 2-26-2016 How Much Should You Pay For a Financial Derivative? Boyan Kostadinov

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Introduction to Binomial Trees. Chapter 12

Introduction to Binomial Trees. Chapter 12 Introduction to Binomial Trees Chapter 12 Fundamentals of Futures and Options Markets, 8th Ed, Ch 12, Copyright John C. Hull 2013 1 A Simple Binomial Model A stock price is currently $20. In three months

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives November 5, 212 Option Analysis and Modeling The Binomial Tree Approach Where we are Last Week: Options (Chapter 9-1, OFOD) This Week: Option Analysis and Modeling:

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1

Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1 Errata, Mahler Study Aids for Exam 3/M, Spring 2010 HCM, 1/26/13 Page 1 1B, p. 72: (60%)(0.39) + (40%)(0.75) = 0.534. 1D, page 131, solution to the first Exercise: 2.5 2.5 λ(t) dt = 3t 2 dt 2 2 = t 3 ]

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Registration number 65 Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Supervised by Dr Christopher Greenman University of East Anglia Faculty of Science School of Computing

More information

Options Markets: Introduction

Options Markets: Introduction 17-2 Options Options Markets: Introduction Derivatives are securities that get their value from the price of other securities. Derivatives are contingent claims because their payoffs depend on the value

More information