On Using Shadow Prices in Portfolio optimization with Transaction Costs

Size: px
Start display at page:

Download "On Using Shadow Prices in Portfolio optimization with Transaction Costs"

Transcription

1 On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia

2 Outline The Merton problem The Merton problem with transaction costs Shadow prices Application to Merton problem with transaction costs

3 The Merton problem Basic setting Bond normalized to S 0 = 1 Stock modelled as ds t = S t α t dt + S t σ t dw t Trading strategy (ϕ 0, ϕ), consumption rate c Self-financing condition: dϕ 0 t = S t dϕ t c t dt Admissibility condition: ϕ 0 t + ϕ t S t 0

4 The Merton problem Optimization problem Goal: Maximize expected utility from consumption ( ) E e δt log(c t )dt 0 over all admissible (ϕ 0, ϕ, c) Impatience rate δ log(c t ) measures utility from consumption at time t Infinite planning horizon Already solved by Merton (1971) What does the solution look like?

5 The Merton problem Solution Goal: Maximize over all admissible (ϕ 0, ϕ, c) ds t /S t = α t dt + σ t dw t ( ) E e δt log(c t )dt 0 Consume contant fraction c t = δ(ϕ 0 t + ϕ t S t ) of wealth Invest myopic fraction of wealth into stocks π t = ϕ ts t ϕ 0 t + ϕ t S t = α t σ 2 t For Black-Scholes model: α, σ and hence π are constant

6 The Merton problem Solution ct d Optimal strategy in the Black-Schloles model: Invest constant fraction πt = ϕ ts t ϕ 0 = α t + ϕ t S t σ 2 into stocks Buy stocks when prices go down, sell when they move up Consequence: Continuous trading necessary due to fluctuation of the Brownian motion W Strategy leads to instant ruin for transaction costs How to formalize this? How does the optimal policy change?

7 The Merton problem with transaction costs Basic setting Bond S 0 = 1, stock ds t = S t µ t dt + S t σ t dw t Can buy stocks only at higher ask price S t = (1 + λ)s t Can sell them only at lower bid price S t = (1 µ)s t Self-financing condition: dϕ 0 t = S t dϕ t S t ϕ t ds t c t dt Admissibility condition: ϕ 0 t + (ϕ t ) + S t (ϕ t ) S t 0

8 The Merton problem with transaction costs Optimization problem Goal: As before, maximize ( E over all admissible (ϕ 0, ϕ, c) 0 ) e δt log(c t )dt Problem does not have to be changed Only notion of admissibility has to be adapted But now, solution is much harder Results only available for Black-Scholes with constant α, σ Structure of the solution?

9 The Merton problem with transaction costs Results Remember: Without transaction costs (Merton (1971)) Fixed fraction π of wealth in stock (e.g. 31%) Consumption rate is fixed proportion of wealth Both numbers explicitly known With transaction costs (Magill & Constantinidis (1976), Davis & Norman (1990), Shreve and Soner (1994)): Minimal trading to keep fraction of wealth in stock in fixed corridor [π, π] (e.g %) Consumption rate is function of wealth in cash and stock Corridor known only as solution to free boundary problem Method: Stochastic control, PDEs. Here: Different approach

10 Shadow Prices A general principle s Optimal portfolio with transaction costs? t

11 Shadow Prices A general principle bid Optimal portfolio with transaction costs? t

12 Shadow Prices A general principle bid Optimal portfolio with transaction costs Optimal portfolio without transaction costs for shadow price t

13 Shadow prices A general principle Idea: Problem with transaction costs as problem without transaction costs for different price process Shadow price at boundary when optimal strategy transacts Min-Max theorem: sup ϕ ( ) inf Utility = S [S,S] ( ) inf sup Utility S [S,S] ϕ Similiar to concept of consistent price systems in W. Schachermayer s talk yesterday But does this really hold? Under what conditions?

14 Shadow prices A general principle? Existence of a shadow price S? Partial positive results for continuous processes in Karatzas & Cvitanić (1996), Loewenstein (2002) Kallsen & M-K (2009): Always holds, if Ω < Elementary proof, S constructed from Lagrange multipliers General theorem is still missing, current work in progress with W. Schachermayer, J. Kallsen and M. Owen Other structural results in different areas But can this be used for computations?

15 Application to Merton problem with transaction costs Using shadow prices? If d S = γ t dt + ɛ t dw t were known things would be easy: Consume contant fraction ct = δ(ϕ 0 t + ϕ S t t ) Invest constant fraction πt = γ t /ɛ 2 t into stocks Wealth now measured in terms of S instead of S But: Even if it exists, S is not known a priori Hence: Must be determined simulatneously with π and c!

16 Application to Merton problem with transaction costs Price processes Real price processes: Stock price: ds t /S t = αd t + σdw t Bid price: (1 µ)s t Ask price: (1 + λ)s t Shadow price process S [(1 µ)s, (1 + λ)s]: S t = exp(c t )S t C t = log( S t /S t ) deviation from real price C t [log(1 µ), log(1 + λ)] C moves in bounded interval. How to model such a process?

17 Application to Merton problem with transaction costs Ansatz for the shadow price How to model process C [log(1 µ), log(1 + λ)]? Naive approach: dc t = α(c t )dt + σ(c t )dw t Diffusion of order dt, drift of order dt, need drift at the boundary

18 Application to Merton problem with transaction costs Ansatz for the shadow price How to model process C [log(1 µ), log(1 + λ)]? Naive approach: dc t = α(c t )dt + σ(c t )dw t + local time Diffusion of order dt, drift of order dt, need drift at the boundary

19 Application to Merton problem with transaction costs Ansatz for the shadow price How to model process C [log(1 µ), log(1 + λ)]? Naive approach: dc t = α(c t )dt + σ(c t )dw t + local time Diffusion of order dt, drift of order dt, need drift at the boundary But: Optimal fraction Drift/Diffusion 2 would be infinite This is not a good idea with transaction costs! Different approach?

20 Application to Merton problem with transaction costs Ansatz for the shadow price ct d How to model process C [log(1 µ), log(1 + λ)]? Refined approach: dc t = α(c t )dt + σ(c t )dw t Diffusion of order dt, drift of order dt Need to have σ(c t ) 0 when approaching the boundary Analogous to square-root process for e.g. interest rates: dr t = (κ λr t )dt + r t dw t

21 Application to Merton problem with transaction costs Ansatz for the shadow price ct d Itô process dc t = α(c t )dt + σ(c t )dw t d S t / S t = Drift(C t )d t + Diffusion(C t )dw t Remember: Optimal strategy (without transaction costs): Consumption: δṽt Fraction of stocks: π(c t ) = Drift(Ct) Diffusion(C t) 2 Use transformation 1 1+exp( f (C = π(c t)) t) f (C t ) = log( π(ct) 1 π(c ) t) Need to determine 3 functions: α, σ, f f (log(1 µ)), f (log(1 + λ)) determine corridor

22 Application to Merton problem with transaction costs Conditions for the shadow price Optimality: exp( f ) = Drift Diffusion 2 No trading within bounds: dϕ t = 0 for optimal ϕ Itô s formula: (I) dϕ t = somefunction(f, f, f, α, σ)dt + anotherfunction(f, f, α, σ)dw t Hence 0 = somefunction, (II) 0 = anotherfunction (III) 3 conditions

23 Application to Merton problem with transaction costs Conditions for the shadow price ct d Solution to Equations I-III: σ σ = f 1 ( f α = α + σ 2 ) ( ) 1 f e f f satisfies the ODE ( ) f (x) = 2δ (1 + e f (x) ) σ 2 + ( 4α σ 2 + ( 2α σ 2 ) 1 4δ (1 + e f (x) ) f (x) σ 2 ) + 2 2δ (1 + e f (x) 1 e f (x) ) + (f (x)) 2 σ 2 1+e f (x) + ( 2α σ e f (x) ) (f (x)) 3 Still missing: Boundary conditions for x = log(1 µ) and x = log(1 + λ)?

24 Application to Merton problem with transaction costs Heuristics for boundary conditions Remember: has to stay in [log(1 µ, 1 + λ] dc t = α(c t )dt + σ(c t )dw t Consequence: Need σ 0 at the boundary σ = σ f 1 f = at the boundary If C = log(1 µ): Shadow price = Bid price higher sell boundary If C = log(1 + λ): Shadow price = Ask price lower buy boundary Hence: f is decreasing, f = at the boundary

25 Application to Merton problem with transaction costs The decisive ODE Have to solve second-order ODE s.t. f (log(1 µ)) = log f (x) = somefunction(f (x)) ( ) ( ) π π, f (log(1 + λ)) = log 1 π 1 π and f (log(1 µ)) =, f (log(1 + λ)) = Same number of conditions and degrees of freedom But f = is difficult both for existence proof and numerics Way out: Consider g = f 1 instead

26 Application to Merton problem with transaction costs The decisive free boundary problem g (y) = ( ) 1 e y 1+e + 1 2α y σ 2 + ( 4α + σ 2 ( 2α σ e y 1+e y 2δ ( 2δ σ 2 (1 + e y ) + 1 4δ (1 + e y ) σ ) 2 (g (y)) 3 ) (1 + e y ) σ 2 ) (g (y)) 2 g (y) s.t. ( ( )) ( ( )) π π g log = log(1 µ), g log = log(1 + λ) 1 π 1 π and ( )) ( ( )) π π g (log = 0, g log = 0 1 π 1 π Boundaries determine no-trade region

27 Application to Merton problem with transaction costs Numerical solution g (y) = somefunction(y) s.t. and g g ( ( )) ( ( )) π π log = log(1 µ), g log = 0 1 π 1 π ( ( )) ( ( )) π π log = log(1 + λ) g log = 0 1 π 1 π Numerically compute solution g to initial value proble for given boundary, find next zero of g Adjust boundary to get right value of g there This is also the basis for the existence proof

28 Application to Merton problem with transaction costs Numerical solution ct d 0.01 The function g The function f

29 Application to Merton problem with transaction costs Simulation 0.4 Optimal fraction of wealth held in stocks Shadow price/real price

30 Application to Merton problem with transaction costs Simulation ct d Value in stocks Value of the portfolio

31 Summary Computation of conditions: 1. Optimality without transaction costs, 2. Constant trading strategy within bounds, 3. Boundary conditions via Itô process assumption. Verification: 1. Prove existence of a solution to free boundary problem. 2. Prove existence of corresponding processes S etc. 3. Show that optimal investment in S trades only at boundary.

32 References This talk: Kallsen, J. and J. Muhle-Karbe (2008). On using shadow prices in portfolio optimization with transaction costs. The Annals of Applied Probability. To appear. Kallsen, J. and J. Muhle-Karbe (2009). On the existence of shadow prices in finite discrete time. Preprint. Portfolio optimization with transaction costs: Magill, M. and G. Constantinidis (1976) Portfolio selection with transaction costs. Journal of Economic Theory Davis, M. and A. Norman (1990). Portfolio selection with transaction costs. Mathematics of Operations Research Shreve, S. and M. Soner (1994). Optimal investment and consumption with transaction costs. The Annals of Applied Probability

Portfolio optimization with transaction costs

Portfolio optimization with transaction costs Portfolio optimization with transaction costs Jan Kallsen Johannes Muhle-Karbe HVB Stiftungsinstitut für Finanzmathematik TU München AMaMeF Mid-Term Conference, 18.09.2007, Wien Outline The Merton problem

More information

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set

An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set An Explicit Example of a Shadow Price Process with Stochastic Investment Opportunity Set Christoph Czichowsky Faculty of Mathematics University of Vienna SIAM FM 12 New Developments in Optimal Portfolio

More information

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs

Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Portfolio optimization for an exponential Ornstein-Uhlenbeck model with proportional transaction costs Martin Forde King s College London, May 2014 (joint work with Christoph Czichowsky, Philipp Deutsch

More information

ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS

ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS The Annals of Applied Probability 1, Vol., No. 4, 1341 1358 DOI: 1.114/9-AAP648 Institute of Mathematical Statistics, 1 ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION WITH TRANSACTION COSTS BY J. KALLSEN

More information

Asymmetric information in trading against disorderly liquidation of a large position.

Asymmetric information in trading against disorderly liquidation of a large position. Asymmetric information in trading against disorderly liquidation of a large position. Caroline Hillairet 1 Cody Hyndman 2 Ying Jiao 3 Renjie Wang 2 1 ENSAE ParisTech Crest, France 2 Concordia University,

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Deterministic Income under a Stochastic Interest Rate

Deterministic Income under a Stochastic Interest Rate Deterministic Income under a Stochastic Interest Rate Julia Eisenberg, TU Vienna Scientic Day, 1 Agenda 1 Classical Problem: Maximizing Discounted Dividends in a Brownian Risk Model 2 Maximizing Discounted

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

On Asymptotic Power Utility-Based Pricing and Hedging

On Asymptotic Power Utility-Based Pricing and Hedging On Asymptotic Power Utility-Based Pricing and Hedging Johannes Muhle-Karbe ETH Zürich Joint work with Jan Kallsen and Richard Vierthauer LUH Kolloquium, 21.11.2013, Hannover Outline Introduction Asymptotic

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

arxiv: v1 [q-fin.pm] 13 Mar 2014

arxiv: v1 [q-fin.pm] 13 Mar 2014 MERTON PORTFOLIO PROBLEM WITH ONE INDIVISIBLE ASSET JAKUB TRYBU LA arxiv:143.3223v1 [q-fin.pm] 13 Mar 214 Abstract. In this paper we consider a modification of the classical Merton portfolio optimization

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Drawdowns Preceding Rallies in the Brownian Motion Model

Drawdowns Preceding Rallies in the Brownian Motion Model Drawdowns receding Rallies in the Brownian Motion Model Olympia Hadjiliadis rinceton University Department of Electrical Engineering. Jan Večeř Columbia University Department of Statistics. This version:

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE

OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF FINITE Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 005 Seville, Spain, December 1-15, 005 WeA11.6 OPTIMAL PORTFOLIO CONTROL WITH TRADING STRATEGIES OF

More information

arxiv: v1 [q-fin.cp] 21 Oct 2010

arxiv: v1 [q-fin.cp] 21 Oct 2010 The Annals of Applied Probability 21, Vol. 2, No. 4, 1341 1358 DOI: 1.1214/9-AAP648 c Institute of Mathematical Statistics, 21 arxiv:11.4989v1 [q-fin.cp] 21 Oct 21 ON USING SHADOW PRICES IN PORTFOLIO OPTIMIZATION

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

Robust Portfolio Decisions for Financial Institutions

Robust Portfolio Decisions for Financial Institutions Robust Portfolio Decisions for Financial Institutions Ioannis Baltas 1,3, Athanasios N. Yannacopoulos 2,3 & Anastasios Xepapadeas 4 1 Department of Financial and Management Engineering University of the

More information

The dual optimizer for the growth-optimal portfolio under transaction costs

The dual optimizer for the growth-optimal portfolio under transaction costs Finance Stoch 23) 7:325 354 DOI.7/s78--65-9 The dual optimizer for the growth-optimal portfolio under transaction costs S. Gerhold J. Muhle-Karbe W. Schachermayer Received: 27 May 2 / Accepted: 8 October

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Completeness and Hedging. Tomas Björk

Completeness and Hedging. Tomas Björk IV Completeness and Hedging Tomas Björk 1 Problems around Standard Black-Scholes We assumed that the derivative was traded. How do we price OTC products? Why is the option price independent of the expected

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

The End-of-the-Year Bonus: How to Optimally Reward a Trader?

The End-of-the-Year Bonus: How to Optimally Reward a Trader? The End-of-the-Year Bonus: How to Optimally Reward a Trader? Hyungsok Ahn Jeff Dewynne Philip Hua Antony Penaud Paul Wilmott February 14, 2 ABSTRACT Traders are compensated by bonuses, in addition to their

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang

Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints. Zongxia Liang Optimal Dividend Policy of A Large Insurance Company with Solvency Constraints Zongxia Liang Department of Mathematical Sciences Tsinghua University, Beijing 100084, China zliang@math.tsinghua.edu.cn Joint

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Comprehensive Exam. August 19, 2013

Comprehensive Exam. August 19, 2013 Comprehensive Exam August 19, 2013 You have a total of 180 minutes to complete the exam. If a question seems ambiguous, state why, sharpen it up and answer the sharpened-up question. Good luck! 1 1 Menu

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

The Self-financing Condition: Remembering the Limit Order Book

The Self-financing Condition: Remembering the Limit Order Book The Self-financing Condition: Remembering the Limit Order Book R. Carmona, K. Webster Bendheim Center for Finance ORFE, Princeton University November 6, 2013 Structural relationships? From LOB Models to

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

Optimal portfolios of a small investor in a limit order market: a shadow price approach

Optimal portfolios of a small investor in a limit order market: a shadow price approach Noname manuscript No. will be inserted by the editor Optimal portfolios of a small investor in a limit order market: a shadow price approach Christoph Kühn Maximilian Stroh the date of receipt and acceptance

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities

Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Applied Mathematical Sciences, Vol. 6, 2012, no. 112, 5597-5602 Sensitivity of American Option Prices with Different Strikes, Maturities and Volatilities Nasir Rehman Department of Mathematics and Statistics

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line

Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Portfolio Selection with Randomly Time-Varying Moments: The Role of the Instantaneous Capital Market Line Lars Tyge Nielsen INSEAD Maria Vassalou 1 Columbia University This Version: January 2000 1 Corresponding

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Limited liability, or how to prevent slavery in contract theory

Limited liability, or how to prevent slavery in contract theory Limited liability, or how to prevent slavery in contract theory Université Paris Dauphine, France Joint work with A. Révaillac (INSA Toulouse) and S. Villeneuve (TSE) Advances in Financial Mathematics,

More information

The Uncertain Volatility Model

The Uncertain Volatility Model The Uncertain Volatility Model Claude Martini, Antoine Jacquier July 14, 008 1 Black-Scholes and realised volatility What happens when a trader uses the Black-Scholes (BS in the sequel) formula to sell

More information

Ross Recovery theorem and its extension

Ross Recovery theorem and its extension Ross Recovery theorem and its extension Ho Man Tsui Kellogg College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance April 22, 2013 Acknowledgements I am

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena

Volatility. Roberto Renò. 2 March 2010 / Scuola Normale Superiore. Dipartimento di Economia Politica Università di Siena Dipartimento di Economia Politica Università di Siena 2 March 2010 / Scuola Normale Superiore What is? The definition of volatility may vary wildly around the idea of the standard deviation of price movements

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Option Pricing Formula for Fuzzy Financial Market

Option Pricing Formula for Fuzzy Financial Market Journal of Uncertain Systems Vol.2, No., pp.7-2, 28 Online at: www.jus.org.uk Option Pricing Formula for Fuzzy Financial Market Zhongfeng Qin, Xiang Li Department of Mathematical Sciences Tsinghua University,

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Slides 4. Matthieu Gomez Fall 2017

Slides 4. Matthieu Gomez Fall 2017 Slides 4 Matthieu Gomez Fall 2017 How to Compute Stationary Distribution of a Diffusion? Kolmogorov Forward Take a diffusion process dx t = µ(x t )dt + σ(x t )dz t How does the density of x t evolves?

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Optimal Investment for Worst-Case Crash Scenarios

Optimal Investment for Worst-Case Crash Scenarios Optimal Investment for Worst-Case Crash Scenarios A Martingale Approach Frank Thomas Seifried Department of Mathematics, University of Kaiserslautern June 23, 2010 (Bachelier 2010) Worst-Case Portfolio

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

On Asymptotic Power Utility-Based Pricing and Hedging

On Asymptotic Power Utility-Based Pricing and Hedging On Asymptotic Power Utility-Based Pricing and Hedging Johannes Muhle-Karbe TU München Joint work with Jan Kallsen and Richard Vierthauer Workshop "Finance and Insurance", Jena Overview Introduction Utility-based

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

American Option Pricing Formula for Uncertain Financial Market

American Option Pricing Formula for Uncertain Financial Market American Option Pricing Formula for Uncertain Financial Market Xiaowei Chen Uncertainty Theory Laboratory, Department of Mathematical Sciences Tsinghua University, Beijing 184, China chenxw7@mailstsinghuaeducn

More information

High Frequency Trading in a Regime-switching Model. Yoontae Jeon

High Frequency Trading in a Regime-switching Model. Yoontae Jeon High Frequency Trading in a Regime-switching Model by Yoontae Jeon A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics University

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics t r t r2 r t SCHOOL OF MATHEMATICS AND STATISTICS Stochastic Processes and Financial Mathematics Spring Semester 2017 2018 3 hours t s s tt t q st s 1 r s r t r s rts t q st s r t r r t Please leave this

More information

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models

Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models Optimally Thresholded Realized Power Variations for Lévy Jump Diffusion Models José E. Figueroa-López 1 1 Department of Statistics Purdue University University of Missouri-Kansas City Department of Mathematics

More information

Optimal Selling Strategy With Piecewise Linear Drift Function

Optimal Selling Strategy With Piecewise Linear Drift Function Optimal Selling Strategy With Piecewise Linear Drift Function Yan Jiang July 3, 2009 Abstract In this paper the optimal decision to sell a stock in a given time is investigated when the drift term in Black

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Equilibrium Models with Transaction Costs I

Equilibrium Models with Transaction Costs I Equilibrium Models with Transaction Costs I Johannes Muhle-Karbe University of Michigan Carnegie Mellon University Dresden, August 28, 217 Introduction Outline Introduction Partial Equilibrium General

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

A discretionary stopping problem with applications to the optimal timing of investment decisions.

A discretionary stopping problem with applications to the optimal timing of investment decisions. A discretionary stopping problem with applications to the optimal timing of investment decisions. Timothy Johnson Department of Mathematics King s College London The Strand London WC2R 2LS, UK Tuesday,

More information

OPTIMIZATION PROBLEM OF FOREIGN RESERVES

OPTIMIZATION PROBLEM OF FOREIGN RESERVES Advanced Math. Models & Applications Vol.2, No.3, 27, pp.259-265 OPIMIZAION PROBLEM OF FOREIGN RESERVES Ch. Ankhbayar *, R. Enkhbat, P. Oyunbileg National University of Mongolia, Ulaanbaatar, Mongolia

More information

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron The Merton Model A Structural Approach to Default Prediction Agenda Idea Merton Model The iterative approach Example: Enron A solution using equity values and equity volatility Example: Enron 2 1 Idea

More information