Slides 4. Matthieu Gomez Fall 2017

Size: px
Start display at page:

Download "Slides 4. Matthieu Gomez Fall 2017"

Transcription

1 Slides 4 Matthieu Gomez Fall 2017

2 How to Compute Stationary Distribution of a Diffusion?

3 Kolmogorov Forward Take a diffusion process dx t = µ(x t )dt + σ(x t )dz t How does the density of x t evolves? Theorem (Kolmogorov Forward) Denote g t (x) the density of x t. We have: dg dt = x(µ(x)g(x)) xx(σ2 (x)g(x)) In particular, if a stationary density exists, it must satisfy 0 = x(µ(x)g(x)) xx(σ2 (x)g(x)) 1

4 Heuristic Proof For any function f, E[f (x t+dt )] can be written in two ways + + f (x)g t+dt (x)dx = [(f (x) + df (x))g t (x)dx Assume that f is a twice differentiable and use Ito s lemma on the RHS to obtain + + f (x)dg t (x)dx = (µ(x) xf (x) σ(x)2 xxf (x))g t (x)dx Assume that f decays fast enough as x + and use integration by parts to obtain + + f (x)dg t (x)dx = f (x)[( x(µ(x)g t (x)) x (σ(x) 2 g t ))dtdx This equality must hold for all f satisfying the conditions above. Therefore, we obtain dg t dt (x) = x(µ(x)g t(x)) x (σ2 (x)g t ) 2

5 Special Cases Take a Ornstein-Uhlenbeck ( AR(1) in discrete time) dx = θ(x µ)dt + σdz t Kolmogorov Forward gives 0 = x(θ(x µ)g(x)) + σ xx(g(x)) The solution is a normal distribution θ g(x) = πσ 2 e κ(x µ)2 /σ 2 Take a Cox-Ingersoll-Ross process dx = θ(x µ)dt + σ xdz t Kolmogorov Forward gives The solution is a gamma distribution with ω = 2κ/σ 2 and ν = 2κµ/σ 2 0 = x(κ(x µ)g(x)) + σ xx(xg(x)) g(x) = ων Γ(ν) xν 1 e ωx 3

6 General Case General case 0 = x(µ(x)g(x)) xx(σ2 (x)g(x)) Integrating wrt x 0 = µ(x)g(x) x(σ2 (x)g(x)) This is an ODE of degree one. We know that the solution has the following form g(x) = Cm(x) with m(z) 1 s(x)σ 2 (x) and C 1 and C 2 are constant chosen so that g(x) 0 and g(x)dx = 1 4

7 Solution Alternatively, we can solve with a computer the ODE 0 = x(µ(x)g(x)) xxσ2 (x)g(x) 1. Define a state space s = (s 1, s 2,..., s n). 2. The problem is to find g positive elementwise such that Ag = 0 5

8 Approximating First Derivative To approximate x(µ(x)g(x)), use the following matrix x(µ(x)g(x)) = D 1 g where D 1 is the matrix µ s µ 1 µ s s µ 0 2 µ s s D 1 = µ n 2 µ n 1 0 s s µ n 1 µn s s Formally µ n s x(µ(x)g(x)) i = µ+ g i i µ + i 1 g i 1 s g i+1µ i+1 g iµ i s where µ + i = max(µ i, 0) and µ i = min(µ i, 0) 6

9 Approximating Second Derivative To approximate xx(σ 2 (x)g(x)), use the following matrix where D 2 is the matrix D 2 = Formally σ2 1 σ 2 ( s) 2 2 xx(σ 2 (x)g(x)) = D 2 g ( s) σ1 2 ( s) 2 2 σ2 2 σ 2 ( s) 2 3 ( s) σ 2 2 ( s) 2 2 σ2 3. ( s) σ2 n 2 ( s) σ 2 n 2 ( s) 2 σ 2 n 1 ( s) σ2 n 1 ( s) 2 σn 1 2 ( s) 2 xx(σ 2 (x)g(x)) = σ2 i+1 g i+1 + σ 2 i 1 g i 1 2σ 2 i g i ( s) 2 σn 2 ( s) 2 σ2 n ( s) 2 7

10 Solve it We need to find a vector g such that (D D2 )g = 0 How can we be sure that there exists a solution g that is positive everywhere? 8

11 Theorem Suppose a square matrix A is such that 1. Sum of each column is 0 2. All elements off-diagonal are positive or null Then there exists a unique g 0 such that Ag = 0 9

12 Dicrete Time Version Proof. Take a positive real number δ. The matrix P = I + δa is such that 1. sum of each column is 1 2. all elements are positive or null (for δ small enough) Therefore, we know (existence stationary distribution for markov chain in discrete time) there is a unique g 0 such that Pg = g In particular, this means there exists a unique g 0 such that Ag = 0 10

13 By Force of Habit: Campbell Cochrane (1995)

14 Assumptions Utility is given by U(C t, X t ) = (C t X t ) 1 γ 1 γ In particular U C (C t, S t ) = (C t X t ) γ Define S t = C t X t C t We can write the marginal utility of consumption as U C (C t, S t ) = C γ t S γ t 11

15 Euler Equation. SDF is Λ t = e ρt U c(c t ) = e ρt C γ t S γ t = e ρt γ(c t+s t ) Assume that the process for c = log C and s = log S are given by dc = µ cdt + σ cdz t ds = µ sdt + σ sdz t Using Ito s lemma κ = σ Λ = γ(σ c + σ s) (1) r = µ Λ = ρ + γ(µ c + µ s) γ2 2 (σ2 c + σ2 s + 2σcσs) (2) 12

16 Evolution State Variable We assume the following law of motion for s t ds t = κ s(s t s)dt + λ(s t )σ cdw t with s and the function s λ(s) to be specified later. Plugging this expression for µ s and σ s in Equation (1) and Equation (2), we obtain κ = (1 + λ(s t ))γσ c (3) r = ρ + γ(µ c κ s(s t s)) γ2 2 (1 + λ(s t)) 2 σ 2 c (4) 13

17 Evolution State Variable Now choose s and λ to satisfy two things 1. Interest rate is constant: there exists K such that κs(s s) λ(s) = K + 2 γσc The volatility of X must be zero around the steady state s. Formally, we want We have σ X (s) = 0 and σ X (s) = 0 (5) X = C(S 1) Denote σ x the instantaneous volatility of ln X. Applying Ito s lemma The conditions Equation (5) mean Joining the three equations, we obtain σ X = (1 λ(s) e s 1 )σc λ(s) = e s 1 and λ (s) = e s λ(s) = e 1 s 2(s s) 1 γ e s = σ κ s 14

18 Euler Equation Plugging the value of s and λ in the Euler equation Equation (3) and Equation (4), we obtain κ = (1 + λ(s t ))γσ c r = ρ + γµ c γ 2 κs 15

19 Wealth-Consumption Ratio We can now solve for wealth-to-consumption ratio V using market pricing for wealth The law of motion of wealth is E[ dw ] = rdt + κσwdt ĉdt W One can interpret it as a market pricing equation for the wealth portfolio E[ C W dt + dw W ] = rdt + κσ Wdt Denote V the wealth-to-consumption ratio W/C We have dt d(vc) d(vc) + E[ ] = rdt + κσ[ V VC VC ]dt Denote µ V and σ V the geometric drift and volatility of V, i.e. dv V = µ Vdt + σ V dz t Applying Ito s lemma, we obtain 1 V + µc + σ2 c 2 + µ V + σ cσ V = r + κ(σ c + σ V ) (6) After substituting µ V and σ V using Ito s lemma, we obtain the following ODE: 1 V + µc + σ2 c 2 + V (s) V(s) µs(s) + 1 V (s) V (s) 2 V(s) σ2 s(s) + σ c V(s) σs(s) = r(s) + κ(s)(σc + V (s) V(s) σs) 16

20 Graphs Figure 1 17

21 Graphs Figure 2 18

22 Figure 3 19

23 Brunnemeir Nagel 2008: Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-Evidence on Individuals Asset Allocation?

24 Habit Model Remember the SDF κ = σ Λ = σ (C X) γ C = γ C X σc γ X C X σx Remember that at s = s, σ X = 0, that is C κ = γ C X σc Intuition: At s = s, it is as if the risk aversion of the representative agent is γ C C X We can inverse this formula σ c = (1 X C ) κ γ Intuition: the higher C, the higher the volatility of consumption 20

25 Habit Model Now suppose σ V 0 where V = W/C σ W = (1 XV W ) κ γ Dividing by σ R α = (1 XV W ) κ γσ R The habit model predicts that α increases in W is high 21

26 Omitted variables We want to hold γ constant = add household fixed effects (i.e. absorb any household specific determinant of portfolio share). We want to hold X, κ, σ R constant = add time fixed effects (i.e. absorb any year specific determinant of portfolio share). Life events may change wealth and portfolio shares at the same time,for reasons unrelated to habits. Think of getting fired, getting married, etc. = throw away households with big life events + add household life-cycle variables as controls We obtain the specification α = γ i + δ t + β log(w it ) + γx it + ɛ where X it is a set of household life-cycle controls Measurement error in W Measurement error in RHS biases down the estimates Because wealth is also used when computing the portfolio share α, it introductes a negative correlation between wealth and portfolio shares = instrument change in wealth by inheritance or change in income 22

27 Figure 4: The coefficient of in column 1 implies that 10 percent growth in real wealth leads to a tiny reduction in the share of risky liquid assets by , e.g., from 50 percent to percent. 23

28 Figure 5: The point estimate of in the first column implies that an increase in liquid wealth by 10 percent implies a roughly 1 percent increase in the probability or participating in the stock market. 24

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Non-Time-Separable Utility: Habit Formation

Non-Time-Separable Utility: Habit Formation Finance 400 A. Penati - G. Pennacchi Non-Time-Separable Utility: Habit Formation I. Introduction Thus far, we have considered time-separable lifetime utility specifications such as E t Z T t U[C(s), s]

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

An Intertemporal Capital Asset Pricing Model

An Intertemporal Capital Asset Pricing Model I. Assumptions Finance 400 A. Penati - G. Pennacchi Notes on An Intertemporal Capital Asset Pricing Model These notes are based on the article Robert C. Merton (1973) An Intertemporal Capital Asset Pricing

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

Financial Economics & Insurance

Financial Economics & Insurance Financial Economics & Insurance Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

Dynamic Hedging and PDE Valuation

Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation 1/ 36 Introduction Asset prices are modeled as following di usion processes, permitting the possibility of continuous trading. This environment

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Modern Dynamic Asset Pricing Models

Modern Dynamic Asset Pricing Models Modern Dynamic Asset Pricing Models Lecture Notes 7. Term Structure Models Pietro Veronesi University of Chicago Booth School of Business CEPR, NBER Pietro Veronesi Term Structure Models page: 2 Outline

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Continuous time one-dimensional asset pricing models with analytic price-dividend functions

Continuous time one-dimensional asset pricing models with analytic price-dividend functions Continuous time one-dimensional asset pricing models with analytic price-dividend functions Yu Chen Department of Mathematics Idaho State University Pocatello, ID 8309 Thomas F. Cosimano Department of

More information

A More Detailed and Complete Appendix for Macroeconomic Volatilities and Long-run Risks of Asset Prices

A More Detailed and Complete Appendix for Macroeconomic Volatilities and Long-run Risks of Asset Prices A More Detailed and Complete Appendix for Macroeconomic Volatilities and Long-run Risks of Asset Prices This is an on-line appendix with more details and analysis for the readers of the paper. B.1 Derivation

More information

Convenience Yield-Based Pricing of Commodity Futures

Convenience Yield-Based Pricing of Commodity Futures Convenience Yield-Based Pricing of Commodity Futures Takashi Kanamura, J-POWER Energy Finance/ INREC 2010 at University Duisburg-Essen October 8th, 2010 1 Agenda 1. The objectives and results 2. The convenience

More information

Help Session 2. David Sovich. Washington University in St. Louis

Help Session 2. David Sovich. Washington University in St. Louis Help Session 2 David Sovich Washington University in St. Louis TODAY S AGENDA Today we will cover the Change of Numeraire toolkit We will go over the Fundamental Theorem of Asset Pricing as well EXISTENCE

More information

Stochastic Volatility and Jump Modeling in Finance

Stochastic Volatility and Jump Modeling in Finance Stochastic Volatility and Jump Modeling in Finance HPCFinance 1st kick-off meeting Elisa Nicolato Aarhus University Department of Economics and Business January 21, 2013 Elisa Nicolato (Aarhus University

More information

Advanced topics in continuous time finance

Advanced topics in continuous time finance Based on readings of Prof. Kerry E. Back on the IAS in Vienna, October 21. Advanced topics in continuous time finance Mag. Martin Vonwald (martin@voni.at) November 21 Contents 1 Introduction 4 1.1 Martingale.....................................

More information

Why Surplus Consumption in the Habit Model May be Less Pe. May be Less Persistent than You Think

Why Surplus Consumption in the Habit Model May be Less Pe. May be Less Persistent than You Think Why Surplus Consumption in the Habit Model May be Less Persistent than You Think October 19th, 2009 Introduction: Habit Preferences Habit preferences: can generate a higher equity premium for a given curvature

More information

Online Appendix for Generalized Transform Analysis of Affine. Processes and Applications in Finance.

Online Appendix for Generalized Transform Analysis of Affine. Processes and Applications in Finance. Online Appendix for Generalized Transform Analysis of Affine Processes and Applications in Finance. Hui Chen Scott Joslin September 2, 211 These notes supplement Chen and Joslin (211). 1 Heterogeneous

More information

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS,

More information

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a variable depend only on the present, and not the history

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations IEOR E4603: Monte-Carlo Simulation c 2017 by Martin Haugh Columbia University Simulating Stochastic Differential Equations In these lecture notes we discuss the simulation of stochastic differential equations

More information

Continuous Time Bewley Models

Continuous Time Bewley Models 1 / 18 Continuous Time Bewley Models DEEQA Quantitative Macro Sang Yoon (Tim) Lee Toulouse School of Economics October 24, 2016 2 / 18 Today Aiyagari with Poisson wage process : Based on http://www.princeton.edu/~moll/hact.pdf,

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Market Selection Leonid Kogan, Stephen Ross, Jiang Wang and Mark M Westerfield

Market Selection Leonid Kogan, Stephen Ross, Jiang Wang and Mark M Westerfield Market Selection Leonid Kogan, Stephen Ross, Jiang Wang and Mark M Westerfield May 2009 1 The Market Selection Hypothesis Old Version: (Friedman 1953): Agents who trade based inaccurate beliefs will lose

More information

Life-Cycle Models with Stock and Labor Market. Cointegration: Insights from Analytical Solutions

Life-Cycle Models with Stock and Labor Market. Cointegration: Insights from Analytical Solutions Life-Cycle Models with Stock and Labor Market Cointegration: Insights from Analytical Solutions Daniel Moos University of St. Gallen This Version: November 24, 211 First Version: November 24, 211 Comments

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

A discretionary stopping problem with applications to the optimal timing of investment decisions.

A discretionary stopping problem with applications to the optimal timing of investment decisions. A discretionary stopping problem with applications to the optimal timing of investment decisions. Timothy Johnson Department of Mathematics King s College London The Strand London WC2R 2LS, UK Tuesday,

More information

Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels

Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels Yashar University of Illinois July 1, 2012 Motivation In pricing contingent claims, it is common not to have a simple

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions

Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Weierstrass Institute for Applied Analysis and Stochastics Maximum likelihood estimation for jump diffusions Hilmar Mai Mohrenstrasse 39 1117 Berlin Germany Tel. +49 3 2372 www.wias-berlin.de Haindorf

More information

Application of Moment Expansion Method to Option Square Root Model

Application of Moment Expansion Method to Option Square Root Model Application of Moment Expansion Method to Option Square Root Model Yun Zhou Advisor: Professor Steve Heston University of Maryland May 5, 2009 1 / 19 Motivation Black-Scholes Model successfully explain

More information

Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models

Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models MATHEMATICAL OPTIMIZATION Mathematical Methods In Economics And Industry 007 June 3 7, 007, Herl any, Slovak Republic Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Understanding Predictability (JPE, 2004)

Understanding Predictability (JPE, 2004) Understanding Predictability (JPE, 2004) Lior Menzly, Tano Santos, and Pietro Veronesi Presented by Peter Gross NYU October 19, 2009 Presented by Peter Gross (NYU) Understanding Predictability October

More information

Arbitrage, Martingales, and Pricing Kernels

Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels 1/ 36 Introduction A contingent claim s price process can be transformed into a martingale process by 1 Adjusting

More information

Multiname and Multiscale Default Modeling

Multiname and Multiscale Default Modeling Multiname and Multiscale Default Modeling Jean-Pierre Fouque University of California Santa Barbara Joint work with R. Sircar (Princeton) and K. Sølna (UC Irvine) Special Semester on Stochastics with Emphasis

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

The Term Structure of Interest Rates with Housing

The Term Structure of Interest Rates with Housing The Term Structure of Interest Rates with Housing Carles Vergara-Alert IESE Business School. 21 Pearson Avenue, 08034 Barcelona, Spain. Email: cvergara@iese.edu. Phone: +34 932534200. Fax: +34 932534343.

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 Interest Rate Modelling UTS Business School University of Technology Sydney Chapter 19. Allowing for Stochastic Interest Rates in the Black-Scholes Model May 15, 2014 1/33 Chapter 19. Allowing for

More information

An application of an entropy principle to short term interest rate modelling

An application of an entropy principle to short term interest rate modelling An application of an entropy principle to short term interest rate modelling by BRIDGETTE MAKHOSAZANA YANI Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the

More information

Dynamic Principal Agent Models: A Continuous Time Approach Lecture II

Dynamic Principal Agent Models: A Continuous Time Approach Lecture II Dynamic Principal Agent Models: A Continuous Time Approach Lecture II Dynamic Financial Contracting I - The "Workhorse Model" for Finance Applications (DeMarzo and Sannikov 2006) Florian Ho mann Sebastian

More information

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS In all of these X(t is Brownian motion. 1. By considering X (t, show that X(τdX(τ = 1 X (t 1 t. We use Itô s Lemma for a function F(X(t: Note that df = df dx dx

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

LECTURE NOTES 10 ARIEL M. VIALE

LECTURE NOTES 10 ARIEL M. VIALE LECTURE NOTES 10 ARIEL M VIALE 1 Behavioral Asset Pricing 11 Prospect theory based asset pricing model Barberis, Huang, and Santos (2001) assume a Lucas pure-exchange economy with three types of assets:

More information

On the pricing equations in local / stochastic volatility models

On the pricing equations in local / stochastic volatility models On the pricing equations in local / stochastic volatility models Hao Xing Fields Institute/Boston University joint work with Erhan Bayraktar, University of Michigan Kostas Kardaras, Boston University Probability

More information

Ross Recovery theorem and its extension

Ross Recovery theorem and its extension Ross Recovery theorem and its extension Ho Man Tsui Kellogg College University of Oxford A thesis submitted in partial fulfillment of the MSc in Mathematical Finance April 22, 2013 Acknowledgements I am

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

Lattice (Binomial Trees) Version 1.2

Lattice (Binomial Trees) Version 1.2 Lattice (Binomial Trees) Version 1. 1 Introduction This plug-in implements different binomial trees approximations for pricing contingent claims and allows Fairmat to use some of the most popular binomial

More information

Dynamic Portfolio Choice with Frictions

Dynamic Portfolio Choice with Frictions Dynamic Portfolio Choice with Frictions Nicolae Gârleanu UC Berkeley, CEPR, and NBER Lasse H. Pedersen NYU, Copenhagen Business School, AQR, CEPR, and NBER December 2014 Gârleanu and Pedersen Dynamic Portfolio

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

The Term Structure of Interest Rates under Regime Shifts and Jumps

The Term Structure of Interest Rates under Regime Shifts and Jumps The Term Structure of Interest Rates under Regime Shifts and Jumps Shu Wu and Yong Zeng September 2005 Abstract This paper develops a tractable dynamic term structure models under jump-diffusion and regime

More information

Application of Stochastic Calculus to Price a Quanto Spread

Application of Stochastic Calculus to Price a Quanto Spread Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting http://www.mysmu.edu/faculty/christophert/ Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, 2017 1/33

More information

Disaster risk and its implications for asset pricing Online appendix

Disaster risk and its implications for asset pricing Online appendix Disaster risk and its implications for asset pricing Online appendix Jerry Tsai University of Oxford Jessica A. Wachter University of Pennsylvania December 12, 2014 and NBER A The iid model This section

More information

Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles

Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles : A Potential Resolution of Asset Pricing Puzzles, JF (2004) Presented by: Esben Hedegaard NYUStern October 12, 2009 Outline 1 Introduction 2 The Long-Run Risk Solving the 3 Data and Calibration Results

More information

A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES

A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES Proceedings of ALGORITMY 01 pp. 95 104 A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES BEÁTA STEHLÍKOVÁ AND ZUZANA ZÍKOVÁ Abstract. A convergence model of interest rates explains the evolution of the

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Comprehensive Exam. August 19, 2013

Comprehensive Exam. August 19, 2013 Comprehensive Exam August 19, 2013 You have a total of 180 minutes to complete the exam. If a question seems ambiguous, state why, sharpen it up and answer the sharpened-up question. Good luck! 1 1 Menu

More information

Optimal stopping problems for a Brownian motion with a disorder on a finite interval

Optimal stopping problems for a Brownian motion with a disorder on a finite interval Optimal stopping problems for a Brownian motion with a disorder on a finite interval A. N. Shiryaev M. V. Zhitlukhin arxiv:1212.379v1 [math.st] 15 Dec 212 December 18, 212 Abstract We consider optimal

More information

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory).

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory). 5. Itô Calculus Types of derivatives Consider a function F (S t,t) depending on two variables S t (say, price) time t, where variable S t itself varies with time t. In stard calculus there are three types

More information

Dynamic Relative Valuation

Dynamic Relative Valuation Dynamic Relative Valuation Liuren Wu, Baruch College Joint work with Peter Carr from Morgan Stanley October 15, 2013 Liuren Wu (Baruch) Dynamic Relative Valuation 10/15/2013 1 / 20 The standard approach

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

A New Class of Non-linear Term Structure Models. Discussion

A New Class of Non-linear Term Structure Models. Discussion A New Class of Non-linear Term Structure Models by Eraker, Wang and Wu Discussion Pietro Veronesi The University of Chicago Booth School of Business Main Contribution and Outline of Discussion Main contribution

More information

Online Appendix to Financing Asset Sales and Business Cycles

Online Appendix to Financing Asset Sales and Business Cycles Online Appendix to Financing Asset Sales usiness Cycles Marc Arnold Dirk Hackbarth Tatjana Xenia Puhan August 31, 2015 University of St. allen, Rosenbergstrasse 52, 9000 St. allen, Switzerl. Telephone:

More information

Stochastic Volatility

Stochastic Volatility Stochastic Volatility A Gentle Introduction Fredrik Armerin Department of Mathematics Royal Institute of Technology, Stockholm, Sweden Contents 1 Introduction 2 1.1 Volatility................................

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Steve Dunbar No Due Date: Practice Only. Find the mode (the value of the independent variable with the

More information