A New Class of Non-linear Term Structure Models. Discussion

Size: px
Start display at page:

Download "A New Class of Non-linear Term Structure Models. Discussion"

Transcription

1 A New Class of Non-linear Term Structure Models by Eraker, Wang and Wu Discussion Pietro Veronesi The University of Chicago Booth School of Business

2 Main Contribution and Outline of Discussion Main contribution of the paper: Proposes a new non-linear interest rate class of models Based on Eraker and Wang non-linear model for volatility (on Journal of Econometrics) Still preliminary version, so still developing main contribution Better fit of term structure data? Closed-form likelihood function for estimation? Other?

3 Main Contribution and Outline of Discussion Main contribution of the paper: Proposes a new non-linear interest rate class of models Based on Eraker and Wang non-linear model for volatility (on Journal of Econometrics) Still preliminary version, so still developing main contribution Better fit of term structure data? Closed-form likelihood function for estimation? Other? Outline of discussion 1. Review of new modeling device 2. Review of other non-linear models 3. Additional comments on the model

4 Model Short-term rate r t = f(x t ) State variable x t follows some type of easy process dx t = µ(x)dt + σ(x)dw t Easy here means that we can use it to do some cool inversion later on

5 Short-term rate Model r t = f(x t ) State variable x t follows some type of easy process dx t = µ(x)dt + σ(x)dw t Easy here means that we can use it to do some cool inversion later on Issue: How do we solve for B(t, T) = E Q e T t f(x u )du? Change of numeraire: Define new numeraire N = G(x) and let Then we know P(x, t; T) = B(x; t, T) G(x) µ(x)g (x) σ2 (x)g (x) = G(x)f(x)

6 Model Therefore, we can define a new measure N so that dx t = µ(x) + σ 2 (x) G (x) dt + σ(x)dwt N G(x)

7 Model Therefore, we can define a new measure N so that dx t = µ(x) + σ 2 (x) G (x) dt + σ(x)dwt N G(x) = B(x, t; T) = G(x)E N 1 G(x T ) x

8 Model Therefore, we can define a new measure N so that dx t = µ(x) + σ 2 (x) G (x) dt + σ(x)dwt N G(x) = B(x, t; T) = G(x)E N Eraker, Wong, and Wu show that one can write this as 1 G(x T ) x B(x, t; T) = 1 2π G(x) 1/G(u)φ(t, u; x t ; T)du where φ(.) is conditional characteristics function of x under new measure, and 1/G(u) is the Fourier transform of 1/G(x). = Judicious choices of G(x), µ(x), σ(x), f(x) leads to closed form formulas.

9 Model Therefore, we can define a new measure N so that dx t = µ(x) + σ 2 (x) G (x) dt + σ(x)dwt N G(x) = B(x, t; T) = G(x)E N Eraker, Wong, and Wu show that one can write this as 1 G(x T ) x B(x, t; T) = 1 2π G(x) 1/G(u)φ(t, u; x t ; T)du where φ(.) is conditional characteristics function of x under new measure, and 1/G(u) is the Fourier transform of 1/G(x). = Judicious choices of G(x), µ(x), σ(x), f(x) leads to closed form formulas. Example: µ(x) = k(θ x); σ(x) = σ x; G(x) = x α e βx ; r t = f(x t ) = a x + bx + c Estimated non-linear model does better than CIR model

10 Other Non-Affine Models Linear-quadratic models (e.g. Ahn, Dittmar, Gallant 2002) (factors) (short rate) dx t = K (θ X t ) dt + ΣdW t r t = δ 0 + δ 1 X t X t δ 2X t Closed form formulas for bond prices B(X t, t; T) = exp A(t, T) + B(t, T) X t X tc(t, T)X t

11 Other Non-Affine Models Linear-quadratic models (e.g. Ahn, Dittmar, Gallant 2002) (factors) (short rate) dx t = K (θ X t ) dt + ΣdW t r t = δ 0 + δ 1 X t X t δ 2X t Closed form formulas for bond prices B(X t, t; T) = exp A(t, T) + B(t, T) X t X tc(t, T)X t Linearity-generating model (Gabaix (2007), Pancost (2015)) (factors) (SDF) dx t = [ µ φx t + X tx tδ 1 + Σ(X t )σ(x)] dt + Σ(XdW t dm t = [δ 0 + δ 1 M X t]dt σ(x t )dw t t Closed form formulas for bond prices B(X t,t; T) = A(t, T) + B(t, T) X t

12 Other Non-Affine Models Habit-based Term Structure Models (Buraschi and Jiltsov (2007)) (Inverse Surplus) (Money Shocks) dy t = k(y Y t )dt (Y t λ)σ y dw t dl i,t = k i (θ i l i,t )dt + l it σ i dw i,t Closed form formula for bond prices B(t, T) = e h(t t) 2 i=1 A i,0 + A i,1 Y t + A i,2 l i + A i,3 Y t l i 2 i=1 B i,0 + B i,1 Y t + B i,2 l i + B i,3 Y t l i

13 Other Non-Affine Models Habit-based Term Structure Models (Buraschi and Jiltsov (2007)) (Inverse Surplus) (Money Shocks) dy t = k(y Y t )dt (Y t λ)σ y dw t dl i,t = k i (θ i l i,t )dt + l it σ i dw i,t Closed form formula for bond prices B(t, T) = e h(t t) 2 i=1 A i,0 + A i,1 Y t + A i,2 l i + A i,3 Y t l i 2 i=1 B i,0 + B i,1 Y t + B i,2 l i + B i,3 Y t l i State-dependent, learning-based models (Veronesi (2004)) (beliefs) Closed form formula for bond prices dπ t = Λ π t dt + π t. (ν 1 n π tν) dw t B(t, T) = π t Q(T t) π t k

14 Zero-Lower Bound Need of non-linear models to deal with interest rates at zero lower bound Shadow rate models (Black (1995), Xia and Wu (2014)) (factors) dx t = K (θ X t ) dt + ΣdW t (short shadow rate) s t = δ 0 + δ 1X t (short rate) r t = max(s t, 0) Approximate bond pricing formulas from Xia and Wu

15 Zero-Lower Bound Need of non-linear models to deal with interest rates at zero lower bound Shadow rate models (Black (1995), Xia and Wu (2014)) (factors) dx t = K (θ X t ) dt + ΣdW t (short shadow rate) s t = δ 0 + δ 1X t (short rate) r t = max(s t, 0) Approximate bond pricing formulas from Xia and Wu VARG-Zero Models (Monfort, Pegoraro, Renne, Rousellet 2014) (factors) X j,t X γ νj (δ 0 + δ 1 X t, µ j ) (transition) γ νj (λ, µ) = non-central Gamma distribution ν j = 0 j = 1,.., n; ν j 0 j = n + 1,..., M; (short rate) r t = n j=1 δ jx j,t Closed form formula for bond prices B(X t,t; T) = exp (A(t, T) + B(t, T) X t )

16 Positioning of the paper Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model? The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match This is a class of models: Can we choose f(x) so as to deal with the Zero Lower Bound and still get closed form solutions?

17 Positioning of the paper Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model? The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match This is a class of models: Can we choose f(x) so as to deal with the Zero Lower Bound and still get closed form solutions? How about the market price of risk? Non-linear (or non-affine) models claim they are better able to fit risk premia, and predict future returns. How would you specify the market price of risk in this setting in order to get good results under the physical measure? Is the flexibility afforded by the model able to generate any new insight?

18 Positioning of the paper Why do we need a new class of non-linear models? What bad features of old models do we want to fix? What is the right benchmark? Just CIR model? The new methodology is interesting, but as the paper shapes up, it would be great to figure out what new features of the data the new model is able to match This is a class of models: Can we choose f(x) so as to deal with the Zero Lower Bound and still get closed form solutions? How about the market price of risk? Non-linear (or non-affine) models claim they are better able to fit risk premia, and predict future returns. How would you specify the market price of risk in this setting in order to get good results under the physical measure? Is the flexibility afforded by the model able to generate any new insight? Related, how about the issue of unspanned volatility? Non-linear function f(x) may generate a special relation between interest rate volatility and yields. Can you use the flexibility of the model in order to ensure that volatility does not explain future returns, but it does generate time varying volatility?

19 Positioning of the paper Can the model generate the inversion in bond volatility and yields that we observed in the data? 1980: High yields and high bond return volatility 2010: Low yields and high bond return volatility Can the flexibility of the model generate time variation in the covariance between bonds and stocks? 1980: Positive covariance 2010: Negative covariance

20 Pietro Veronesi Macroeconomic Uncertainty and Learning page: 62 A. 5 Year Bond Return Volatility and Yield 15 Volatility (% per annum) Yield (%) B. 5 Year Rolling Correlation Between Bond Volatility and Yield 0.5 Correlation

21 Pietro Veronesi Macroeconomic Uncertainty and Learning page: Treasury Bonds and Stock Market Return Correlation Correlation year T bond 10 year T bond 30 year T bond

22 Positioning of the paper Can the model generate the inversion in bond volatility and yields that we observed in the data? 1980: High yields and high bond return volatility 2010: Low yields and high bond return volatility Can the flexibility of the model generate time variation in the covariance between bonds and stocks? 1980: Positive covariance 2010: Negative covariance How about the pricing of derivatives? Would the change in measure also help for pricing interest rate derivatives? I am not sure the methodology can be easily applied to derivatives V = G(x)E N payoff(x T ) G(x T )

23 Overall... Overall: It is a promising approach, although it is too early to see through its full potential I am a big fan of non-linear model, especially those that let risk prices change and switch sign over time Such time variation seems needed to just fit the time series data in the past 30 years I look forward to receiving a more complete paper and see what the new methodology can really do.

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

A discretionary stopping problem with applications to the optimal timing of investment decisions.

A discretionary stopping problem with applications to the optimal timing of investment decisions. A discretionary stopping problem with applications to the optimal timing of investment decisions. Timothy Johnson Department of Mathematics King s College London The Strand London WC2R 2LS, UK Tuesday,

More information

Modern Dynamic Asset Pricing Models

Modern Dynamic Asset Pricing Models Modern Dynamic Asset Pricing Models Lecture Notes 7. Term Structure Models Pietro Veronesi University of Chicago Booth School of Business CEPR, NBER Pietro Veronesi Term Structure Models page: 2 Outline

More information

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models

MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models MLEMVD: A R Package for Maximum Likelihood Estimation of Multivariate Diffusion Models Matthew Dixon and Tao Wu 1 Illinois Institute of Technology May 19th 2017 1 https://papers.ssrn.com/sol3/papers.cfm?abstract

More information

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1 Topics Utility-based measurement of performance Utilities

More information

VII. Incomplete Markets. Tomas Björk

VII. Incomplete Markets. Tomas Björk VII Incomplete Markets Tomas Björk 1 Typical Factor Model Setup Given: An underlying factor process X, which is not the price process of a traded asset, with P -dynamics dx t = µ (t, X t ) dt + σ (t, X

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Linear-Rational Term-Structure Models

Linear-Rational Term-Structure Models Linear-Rational Term-Structure Models Anders Trolle (joint with Damir Filipović and Martin Larsson) Ecole Polytechnique Fédérale de Lausanne Swiss Finance Institute AMaMeF and Swissquote Conference, September

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Predictability of Interest Rates and Interest-Rate Portfolios

Predictability of Interest Rates and Interest-Rate Portfolios Predictability of Interest Rates and Interest-Rate Portfolios Liuren Wu Zicklin School of Business, Baruch College Joint work with Turan Bali and Massoud Heidari July 7, 2007 The Bank of Canada - Rotman

More information

A Multifrequency Theory of the Interest Rate Term Structure

A Multifrequency Theory of the Interest Rate Term Structure A Multifrequency Theory of the Interest Rate Term Structure Laurent Calvet, Adlai Fisher, and Liuren Wu HEC, UBC, & Baruch College Chicago University February 26, 2010 Liuren Wu (Baruch) Cascade Dynamics

More information

7 th General AMaMeF and Swissquote Conference 2015

7 th General AMaMeF and Swissquote Conference 2015 Linear Credit Damien Ackerer Damir Filipović Swiss Finance Institute École Polytechnique Fédérale de Lausanne 7 th General AMaMeF and Swissquote Conference 2015 Overview 1 2 3 4 5 Credit Risk(s) Default

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Slides 4. Matthieu Gomez Fall 2017

Slides 4. Matthieu Gomez Fall 2017 Slides 4 Matthieu Gomez Fall 2017 How to Compute Stationary Distribution of a Diffusion? Kolmogorov Forward Take a diffusion process dx t = µ(x t )dt + σ(x t )dz t How does the density of x t evolves?

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Forward Dynamic Utility

Forward Dynamic Utility Forward Dynamic Utility El Karoui Nicole & M RAD Mohamed UnivParis VI / École Polytechnique,CMAP elkaroui@cmapx.polytechnique.fr with the financial support of the "Fondation du Risque" and the Fédération

More information

Understanding Predictability (JPE, 2004)

Understanding Predictability (JPE, 2004) Understanding Predictability (JPE, 2004) Lior Menzly, Tano Santos, and Pietro Veronesi Presented by Peter Gross NYU October 19, 2009 Presented by Peter Gross (NYU) Understanding Predictability October

More information

Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution?

Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution? Modeling Yields at the Zero Lower Bound: Are Shadow Rates the Solution? Jens H. E. Christensen & Glenn D. Rudebusch Federal Reserve Bank of San Francisco Term Structure Modeling and the Lower Bound Problem

More information

A Macro-Finance Model of the Term Structure: the Case for a Quadratic Yield Model

A Macro-Finance Model of the Term Structure: the Case for a Quadratic Yield Model Title page Outline A Macro-Finance Model of the Term Structure: the Case for a 21, June Czech National Bank Structure of the presentation Title page Outline Structure of the presentation: Model Formulation

More information

Supplementary Appendix to The Risk Premia Embedded in Index Options

Supplementary Appendix to The Risk Premia Embedded in Index Options Supplementary Appendix to The Risk Premia Embedded in Index Options Torben G. Andersen Nicola Fusari Viktor Todorov December 214 Contents A The Non-Linear Factor Structure of Option Surfaces 2 B Additional

More information

dt+ ρσ 2 1 ρ2 σ 2 κ i and that A is a rather lengthy expression that we may or may not need. (Brigo & Mercurio Lemma Thm , p. 135.

dt+ ρσ 2 1 ρ2 σ 2 κ i and that A is a rather lengthy expression that we may or may not need. (Brigo & Mercurio Lemma Thm , p. 135. A 2D Gaussian model (akin to Brigo & Mercurio Section 4.2) Suppose where ( κ1 0 dx(t) = 0 κ 2 r(t) = δ 0 +X 1 (t)+x 2 (t) )( X1 (t) X 2 (t) ) ( σ1 0 dt+ ρσ 2 1 ρ2 σ 2 )( dw Q 1 (t) dw Q 2 (t) ) In this

More information

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies

A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL. Stephen Chin and Daniel Dufresne. Centre for Actuarial Studies A GENERAL FORMULA FOR OPTION PRICES IN A STOCHASTIC VOLATILITY MODEL Stephen Chin and Daniel Dufresne Centre for Actuarial Studies University of Melbourne Paper: http://mercury.ecom.unimelb.edu.au/site/actwww/wps2009/no181.pdf

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Part 1: q Theory and Irreversible Investment

Part 1: q Theory and Irreversible Investment Part 1: q Theory and Irreversible Investment Goal: Endogenize firm characteristics and risk. Value/growth Size Leverage New issues,... This lecture: q theory of investment Irreversible investment and real

More information

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 References Indifference valuation in binomial models (with

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Analytical formulas for local volatility model with stochastic. Mohammed Miri

Analytical formulas for local volatility model with stochastic. Mohammed Miri Analytical formulas for local volatility model with stochastic rates Mohammed Miri Joint work with Eric Benhamou (Pricing Partners) and Emmanuel Gobet (Ecole Polytechnique Modeling and Managing Financial

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

Quadratic hedging in affine stochastic volatility models

Quadratic hedging in affine stochastic volatility models Quadratic hedging in affine stochastic volatility models Jan Kallsen TU München Pittsburgh, February 20, 2006 (based on joint work with F. Hubalek, L. Krawczyk, A. Pauwels) 1 Hedging problem S t = S 0

More information

The Self-financing Condition: Remembering the Limit Order Book

The Self-financing Condition: Remembering the Limit Order Book The Self-financing Condition: Remembering the Limit Order Book R. Carmona, K. Webster Bendheim Center for Finance ORFE, Princeton University November 6, 2013 Structural relationships? From LOB Models to

More information

Term Premium Dynamics and the Taylor Rule. Bank of Canada Conference on Fixed Income Markets

Term Premium Dynamics and the Taylor Rule. Bank of Canada Conference on Fixed Income Markets Term Premium Dynamics and the Taylor Rule Michael Gallmeyer (Texas A&M) Francisco Palomino (Michigan) Burton Hollifield (Carnegie Mellon) Stanley Zin (Carnegie Mellon) Bank of Canada Conference on Fixed

More information

Financial Economics & Insurance

Financial Economics & Insurance Financial Economics & Insurance Albert Cohen Actuarial Sciences Program Department of Mathematics Department of Statistics and Probability A336 Wells Hall Michigan State University East Lansing MI 48823

More information

Likelihood Estimation of Jump-Diffusions

Likelihood Estimation of Jump-Diffusions Likelihood Estimation of Jump-Diffusions Extensions from Diffusions to Jump-Diffusions, Implementation with Automatic Differentiation, and Applications Berent Ånund Strømnes Lunde DEPARTMENT OF MATHEMATICS

More information

Advanced topics in continuous time finance

Advanced topics in continuous time finance Based on readings of Prof. Kerry E. Back on the IAS in Vienna, October 21. Advanced topics in continuous time finance Mag. Martin Vonwald (martin@voni.at) November 21 Contents 1 Introduction 4 1.1 Martingale.....................................

More information

Heston Stochastic Local Volatility Model

Heston Stochastic Local Volatility Model Heston Stochastic Local Volatility Model Klaus Spanderen 1 R/Finance 2016 University of Illinois, Chicago May 20-21, 2016 1 Joint work with Johannes Göttker-Schnetmann Klaus Spanderen Heston Stochastic

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

Real Options and Free-Boundary Problem: A Variational View

Real Options and Free-Boundary Problem: A Variational View Real Options and Free-Boundary Problem: A Variational View Vadim Arkin, Alexander Slastnikov Central Economics and Mathematics Institute, Russian Academy of Sciences, Moscow V.Arkin, A.Slastnikov Real

More information

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS,

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

Online Appendix for Generalized Transform Analysis of Affine. Processes and Applications in Finance.

Online Appendix for Generalized Transform Analysis of Affine. Processes and Applications in Finance. Online Appendix for Generalized Transform Analysis of Affine Processes and Applications in Finance. Hui Chen Scott Joslin September 2, 211 These notes supplement Chen and Joslin (211). 1 Heterogeneous

More information

Empirical Test of Affine Stochastic Discount Factor Model of Currency Pricing. Abstract

Empirical Test of Affine Stochastic Discount Factor Model of Currency Pricing. Abstract Empirical Test of Affine Stochastic Discount Factor Model of Currency Pricing Alex Lebedinsky Western Kentucky University Abstract In this note, I conduct an empirical investigation of the affine stochastic

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

The Term Structure of Interest Rates under Regime Shifts and Jumps

The Term Structure of Interest Rates under Regime Shifts and Jumps The Term Structure of Interest Rates under Regime Shifts and Jumps Shu Wu and Yong Zeng September 2005 Abstract This paper develops a tractable dynamic term structure models under jump-diffusion and regime

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Vienna, 16 November 2007 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Vienna, 16 November

More information

Polynomial Models in Finance

Polynomial Models in Finance Polynomial Models in Finance Martin Larsson Department of Mathematics, ETH Zürich based on joint work with Damir Filipović, Anders Trolle, Tony Ware Risk Day Zurich, 11 September 2015 Flexibility Tractability

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Efficient Calibration of Trinomial Trees for One-Factor Short Rate Models

Efficient Calibration of Trinomial Trees for One-Factor Short Rate Models Efficient Calibration of Trinomial Trees for One-Factor Short Rate Models Markus Leippold Swiss Banking Institute, University of Zurich Zvi Wiener School of Business Administration, Hebrew University of

More information

Convexity Theory for the Term Structure Equation

Convexity Theory for the Term Structure Equation Convexity Theory for the Term Structure Equation Erik Ekström Joint work with Johan Tysk Department of Mathematics, Uppsala University October 15, 2007, Paris Convexity Theory for the Black-Scholes Equation

More information

Heterogeneous Firm, Financial Market Integration and International Risk Sharing

Heterogeneous Firm, Financial Market Integration and International Risk Sharing Heterogeneous Firm, Financial Market Integration and International Risk Sharing Ming-Jen Chang, Shikuan Chen and Yen-Chen Wu National DongHwa University Thursday 22 nd November 2018 Department of Economics,

More information

The Crude Oil Futures Curve, the U.S. Term Structure and Global Macroeconomic Shocks

The Crude Oil Futures Curve, the U.S. Term Structure and Global Macroeconomic Shocks The Crude Oil Futures Curve, the U.S. Term Structure and Global Macroeconomic Shocks Ron Alquist Gregory H. Bauer Antonio Diez de los Rios Bank of Canada Bank of Canada Bank of Canada November 20, 2012

More information

Structural Models of Credit Risk and Some Applications

Structural Models of Credit Risk and Some Applications Structural Models of Credit Risk and Some Applications Albert Cohen Actuarial Science Program Department of Mathematics Department of Statistics and Probability albert@math.msu.edu August 29, 2018 Outline

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Common risk factors in currency markets

Common risk factors in currency markets Common risk factors in currency markets by Hanno Lustig, Nick Roussanov and Adrien Verdelhan Discussion by Fabio Fornari Frankfurt am Main, 18 June 2009 External Developments Division Common risk factors

More information

User s Guide for the Matlab Library Implementing Closed Form MLE for Diffusions

User s Guide for the Matlab Library Implementing Closed Form MLE for Diffusions User s Guide for the Matlab Library Implementing Closed Form MLE for Diffusions Yacine Aït-Sahalia Department of Economics and Bendheim Center for Finance Princeton University and NBER This Version: July

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Pricing Default Events: Surprise, Exogeneity and Contagion

Pricing Default Events: Surprise, Exogeneity and Contagion 1/31 Pricing Default Events: Surprise, Exogeneity and Contagion C. GOURIEROUX, A. MONFORT, J.-P. RENNE BdF-ACPR-SoFiE conference, July 4, 2014 2/31 Introduction When investors are averse to a given risk,

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

is a standard Brownian motion.

is a standard Brownian motion. Stochastic Calculus Final Examination Solutions June 7, 25 There are 2 problems and points each.. (Property of Brownian Bridge) Let Bt = {B t, t B = } be a Brownian bridge, and define dx t = Xt dt + db

More information

Resolving the Spanning Puzzle in Macro-Finance Term Structure Models

Resolving the Spanning Puzzle in Macro-Finance Term Structure Models Resolving the Spanning Puzzle in Macro-Finance Term Structure Models Michael Bauer Glenn Rudebusch Federal Reserve Bank of San Francisco The 8th Annual SoFiE Conference Aarhus University, Denmark June

More information

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance

Saddlepoint Approximation Methods for Pricing. Financial Options on Discrete Realized Variance Saddlepoint Approximation Methods for Pricing Financial Options on Discrete Realized Variance Yue Kuen KWOK Department of Mathematics Hong Kong University of Science and Technology Hong Kong * This is

More information

P&L Attribution and Risk Management

P&L Attribution and Risk Management P&L Attribution and Risk Management Liuren Wu Options Markets (Hull chapter: 15, Greek letters) Liuren Wu ( c ) P& Attribution and Risk Management Options Markets 1 / 19 Outline 1 P&L attribution via the

More information

Multi-dimensional Term Structure Models

Multi-dimensional Term Structure Models Multi-dimensional Term Structure Models We will focus on the affine class. But first some motivation. A generic one-dimensional model for zero-coupon yields, y(t; τ), looks like this dy(t; τ) =... dt +

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Pricing Pension Buy-ins and Buy-outs 1

Pricing Pension Buy-ins and Buy-outs 1 Pricing Pension Buy-ins and Buy-outs 1 Tianxiang Shi Department of Finance College of Business Administration University of Nebraska-Lincoln Longevity 10, Santiago, Chile September 3-4, 2014 1 Joint work

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae

Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae Modeling Co-movements and Tail Dependency in the International Stock Market via Copulae Katja Ignatieva, Eckhard Platen Bachelier Finance Society World Congress 22-26 June 2010, Toronto K. Ignatieva, E.

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

LECTURE NOTES 10 ARIEL M. VIALE

LECTURE NOTES 10 ARIEL M. VIALE LECTURE NOTES 10 ARIEL M VIALE 1 Behavioral Asset Pricing 11 Prospect theory based asset pricing model Barberis, Huang, and Santos (2001) assume a Lucas pure-exchange economy with three types of assets:

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Completeness and Hedging. Tomas Björk

Completeness and Hedging. Tomas Björk IV Completeness and Hedging Tomas Björk 1 Problems around Standard Black-Scholes We assumed that the derivative was traded. How do we price OTC products? Why is the option price independent of the expected

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Term Structure Models with Negative Interest Rates

Term Structure Models with Negative Interest Rates Term Structure Models with Negative Interest Rates Yoichi Ueno Bank of Japan Summer Workshop on Economic Theory August 6, 2016 NOTE: Views expressed in this paper are those of author and do not necessarily

More information

A Model of Financial Intermediation

A Model of Financial Intermediation A Model of Financial Intermediation Jesús Fernández-Villaverde University of Pennsylvania December 25, 2012 Jesús Fernández-Villaverde (PENN) A Model of Financial Intermediation December 25, 2012 1 / 43

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Recent Advances in Fixed Income Securities Modeling Techniques

Recent Advances in Fixed Income Securities Modeling Techniques Recent Advances in Fixed Income Securities Modeling Techniques Day 1: Equilibrium Models and the Dynamics of Bond Returns Pietro Veronesi Graduate School of Business, University of Chicago CEPR, NBER Bank

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

Extended Libor Models and Their Calibration

Extended Libor Models and Their Calibration Extended Libor Models and Their Calibration Denis Belomestny Weierstraß Institute Berlin Haindorf, 7 Februar 2008 Denis Belomestny (WIAS) Extended Libor Models and Their Calibration Haindorf, 7 Februar

More information

Good Deal Bounds. Tomas Björk, Department of Finance, Stockholm School of Economics, Lausanne, 2010

Good Deal Bounds. Tomas Björk, Department of Finance, Stockholm School of Economics, Lausanne, 2010 Good Deal Bounds Tomas Björk, Department of Finance, Stockholm School of Economics, Lausanne, 2010 Outline Overview of the general theory of GDB (Irina Slinko & Tomas Björk) Applications to vulnerable

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

VaR Estimation under Stochastic Volatility Models

VaR Estimation under Stochastic Volatility Models VaR Estimation under Stochastic Volatility Models Chuan-Hsiang Han Dept. of Quantitative Finance Natl. Tsing-Hua University TMS Meeting, Chia-Yi (Joint work with Wei-Han Liu) December 5, 2009 Outline Risk

More information