WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

Size: px
Start display at page:

Download "WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance"

Transcription

1 WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS INTRODUCTION TO MATHEMATICAL FINANCE EMEC03P Monday 1 June 006, (with 15 minutes reading time) There are FIFTEEN questions. SECTION A contains TEN questions and you should answer ALL of them. SECTION B contains FIVE questions and you should answer THREE of them. Section A is worth 40% of the overall mark. Sections B is worth 60% of the overall mark. Non-programmable calculators may be used. Credit will be given for clear, compact and purposeful use of mathematics. Write clearly and leave space between and around your answers Turn over 1

2 SECTION A Answer ALL questions. Say whether each of the following statements is TRUE or FALSE.Give a BRIEF explanation for your answer. 1. In the absence of arbitrage opportunities a forward contract, F (t) on the underlying asset price S(t), to deliver in period T, when the price is fixed at period t, will satisfy the condition F (t)e r(t t) = S(t) where r is the risk-free rate, with continously compounded interest. True. Assume the the expected return on asset i satisfies the condition E(R i )=E(R z )+β i [E (R m ) E (R z )] where R m is the market return, β i = cov(r i,r m )/var(r m ) and R z is the return on any portfolio for which β z =0. If this condition holds for all assets, all portfolios combining asset i and the market portfolio offer the same tradeoff between risk and return. False. Only at the margin where the weight on asset i is zero. 3. The return, R, on a portfolio of two assets with returns R 1 and R will have variance var(r) =a var(r 1 )+(1 a). var(r ) where a is the weight on asset 1. False: A gift to weaker students. Neglects the covariance term.a.(1 a).cov(r 1,R ) 4. If x is an Ito Process of the form dx = a 1 xdt + a xdz where z is a Wiener Process and a 1 and a are constants, then ln x is a generalised Wiener Process of the form where b 1 and b are constants True:byIto slemma d ln x = b 1 dt + b dz

3 5. Assume there are two equally probable states of nature and two pure securities. Pure security s, with price p s pays off 1 in state s, and zero otherwise, s =1,.If p 1 =0.45, p =0.4theexpectedreturnonpure security is lower than that on pure security 1. False: 1+E(R 1 )=.5/.45 = 10/9; 1 + E(R )=.5/.4 =10/8 > 1+E(R 1 ) 6. The probability that a stochastic variable x will be greater than a given value bx is given by prob(x >bx) = f(x)dx where f(x) is the density of x. True: 7. If asset A second-order stochastically dominates asset B at current prices, no risk-averse investor will buy asset A. false: other way around: A dominates B 8. If there are N states of nature, and N assets, itisalwayspossibletoderive the implicit prices of N "pure securities", P i,i=1..n, where pure security i has a payoff of unity in state i, and zero in all other states. false: the payoffs must be linearly independent. ideally show using brief linear algebra (matrix A of payoffs must be invertible) as in lectures 9. If x y = α + βx z = γ + δx where x is stochastic and α,β γand δ are constants, then True cov(y, z) =βδvar(x) 10. If dividends at time t are given by D 0 (1 + g) t, and there is a constant cost of capital, r, at all points in the future, the ex-dividend value of a firm at time zero, S 0,willbegivenby: S 0 = D 0 r g False: replace D 0 with D 1 3

4 SECTION B Answer THREE questions (a) Assume that investors have a utility function U(R) defined in terms of R, thereturnontheirwealth,withu 0 > 0, U 00 < 0.Assuming R N(μ, σ) show that investors will have mean-variance expected utility. Answer:Define E(U(R)) = U(R)f(R)dR whichwecanrewritebyusingthefactthat dr = σdz and, from the definition of the normal density, f(r) = 1 σ f(z).thus we can substitute for R and write E(U(R)) = = = = U(R)f(R)dR U(μ + σz) f(z) σ σdz = V (μ, σ) U(μ + σz)f(z)dz (b) Show that, on the same assumptions, if all agents can lend or borrow at the risk-free rate, and R m is the return on the market (the portfolio of all assets, weighted by by their market value), then there is a constant price of risk (the market tradeoff between volatility and expected return) given by E(R p ) σ p = E(R m) R f σ m where R p is a portfolio of the risk-free asset and the market portfolio, and σ p and σ m are the standard deviations of the return on the portfolio and the market respectively. 4

5 answer: Form portfolio with a in market and (1 a) in risk-free asset, implies E(R p ) = R f + a [E(R m ) R f ] E(R p ) a = E(R m ) R f var(r p ) = a σ m σ p = aσ m hence E(R p ) = E(R p)/ a = E(R m) R f σ p σ p / a σ m (c) Assume that in equilibrium all assets are fairly priced and in the market portfolio. Use a no arbitrage argument to derive the CAPM security market line for asset i, E(R i )=E(R z )+β i [E (R m ) E (R z )] where β i = cov(r i,r m )/var (R m ) (a) A consumer has the intertemporal consumption and portfolio choice problem max u(c 0 )+ 1 c 0,X 1...X N 1+δ E(u(c 1)) subject to W = c 0 + c 1 X j (1 + R j )X j where δ istherateofpuretimepreference,andu() is the per period utility function, defined in terms of consumption, c; c 0 is (certain) consumption at time zero, and c 1 is (uncertain) consumption in the next period, when asset returns are realised. X j is the quantity of asset j bought in period 0, yielding return R j in period 1. Show that the first order conditions for this problem yield for every asset j, an optimality condition of the form u 0 (c 0 )= 1 1+δ E ((1 + R j)u 0 (c 1 )) answer: substute from the nd constraint into the maximand, and 5

6 rewrite the problem as a Lagrangian max u(c 0 )+ 1 c 0, X 1...X N 1+δ E u (1 + R jt )X j λ c 0 + X j W where everything is now chosen in the first period. The first order conditions are u 0 (c t ) λ = δ E [u0 (c 1 )(1 + R j )] λ = 0 for all j c 0 + X j W = 0 (b) Show how to re-express this optimality condition in the form 1=E ((1 + R j ) θ) for all j and explain how in equilibrium, if all investors can optimise as in section (a), and have the same expectations, there must be a unique market stochastic discount factor, θ. (c) Show that E(θ) = 1 1+R where R is the risk-free rate, and use this and the general expression in (b) to derive and briefly interpret an expression for E(R i ) R, the risk premium on asset i, in the light of the optimality condition derived in part (a) 13. Assume that the log of the stock price is a generalised Wiener Process d ln S = µμ σ dt + σdz where μ is the expected return; σ is the variance rate, and z is a Wiener process. 1. (a) Show that ln S T is normally distributed, with the form ln S T N(ln S 0 + ηt, σ T ) and give the definition of η. answer: summary version of Hull (4th edition) pp1-4, and p38. η = μ σ 6

7 (b) Hence show that E(S T )=S 0 e μt answer: line) given assumption of log normality (no need to prove first (c) Using the result that: where E ln(st )+var(ln ST )/ E(S T ) = e = e ln S0+ηT+ σ T = e ln S 0+(μ σ )T + σ T = e ln S 0+μT = S 0 e μt E[max(S T X, 0)] = E(S T )N(d 1 ) XN(d ) d 1 = d = ³ ln(s 0 /X)+ σt 1 ³ ln(s 0 /X)+ σt 1 μ + σ μ σ and N() is the cumulative density of a standard normal variate, show how the formula needs to be adapted under risk-neutral valuation, given a constant riskless rate r. Carefully explain and interpret the impact of risk-neutral valuation on the probability N(d ), and hence on the term XN(d ). answer: μ needs to be replaced with r.this implies a fall in N(d ), which is the probability that S T >X (d) Hence derive the Black-Scholes formula for the price, c, ofaeuropean call option at time zero,with exercise price X and maturity date T. answer: T T c = e rt [ E(S b T )N(d 1 ) XN(d )] = e rt [S 0 e rt N(d 1 ) XN(d )] where d and d 1 are redefined replacing μ with r. Cancelling out of terms in the first expression gives us the Black-Scholes formula: c = S 0 N(d 1 ) Xe rt N(d )] 14. Ito s Lemma states that for any Ito Process, x: dx = a(x, t)dt + b(x, t)dz 7

8 where z is a Wiener process, then a function G(x, t) is also an Ito Process, with the form: µ G dg = x a + G t + 1 G x b dt + G x bdz 1. (a) Assuming that the stock price is a geometric brownian motion process, ds = μsdt + σsdz derive the process for any derivative security, f(s, t), by application of Ito s Lemma. (b) By assuming that derivatives and the underlying securities can be traded so that riskless portfolios can be constructed, use the resulting expression in (a) to.derive the Black-Scholes differential equation for the price of a derivative security: f f + rs t S + 1 f S σ S = rf answer toaandb: simply substitute into Ito s Lemma µ f f df = μs + S t + 1 f S σ S dt + f S σdz form portfolio Π = f + f S S change in portfolio is dπ = df + f S ds µ f f = μs + S t + 1 f S σ S dt + f S σdz + f [μsdt + σsdz] S terms in f f SμSdt and Sσdz cancel. dπ does not depend on dz and hence is riskless, so must yield the risk-free return, hence after cancelling terms we have µ dπ = f/ t 1 f S σ S dt = rπdt Substituting for Π on the right-hand side, we have µ f/ t 1 µ f S σ S dt = r f + f S S dt which after cancellation of terms in dt and rearrangement gives f f + rs t S + 1 f S σ S = rf which is the B-S DE 8

9 15. (c) Briefly explain why the expected return on the stock, μ,does not appear in the Black-Scholes differential equation. answer: The B-S DE is derived on the assumption that the underlying portfolio is made riskless (you can point to the fact that there are two offsetting terms in μs) (d) Assume a derivative is traded with the form f = αse qt derive the implied process for f, and show that it only satisfies the Black-Scholes differential equation if q =0. Interpret this result. 1. (a) State the key assumptions underlying the Arbitrage Pricing Theory and carefully show how these assumptions can be used to derive an expression for expected returns on assets. (b) Show how a special case of the Arbitrage Pricing Theory can be related to the Capital Asset Pricing Model, carefully explaining the differences in assumptions underlying the two models. 9

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

Financial Risk Management

Financial Risk Management Risk-neutrality in derivatives pricing University of Oulu - Department of Finance Spring 2018 Portfolio of two assets Value at time t = 0 Expected return Value at time t = 1 Asset A Asset B 10.00 30.00

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Simulation Analysis of Option Buying

Simulation Analysis of Option Buying Mat-.108 Sovelletun Matematiikan erikoistyöt Simulation Analysis of Option Buying Max Mether 45748T 04.0.04 Table Of Contents 1 INTRODUCTION... 3 STOCK AND OPTION PRICING THEORY... 4.1 RANDOM WALKS AND

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 Interest Rate Modelling UTS Business School University of Technology Sydney Chapter 19. Allowing for Stochastic Interest Rates in the Black-Scholes Model May 15, 2014 1/33 Chapter 19. Allowing for

More information

Seminar 2 A Model of the Behavior of Stock Prices. Miloslav S. Vosvrda UTIA AV CR

Seminar 2 A Model of the Behavior of Stock Prices. Miloslav S. Vosvrda UTIA AV CR Seminar A Model of the Behavior of Stock Prices Miloslav S. Vosvrda UTIA AV CR The Black-Scholes Analysis Ito s lemma The lognormal property of stock prices The distribution of the rate of return Estimating

More information

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle

Birkbeck MSc/Phd Economics. Advanced Macroeconomics, Spring Lecture 2: The Consumption CAPM and the Equity Premium Puzzle Birkbeck MSc/Phd Economics Advanced Macroeconomics, Spring 2006 Lecture 2: The Consumption CAPM and the Equity Premium Puzzle 1 Overview This lecture derives the consumption-based capital asset pricing

More information

Probability in Options Pricing

Probability in Options Pricing Probability in Options Pricing Mark Cohen and Luke Skon Kenyon College cohenmj@kenyon.edu December 14, 2012 Mark Cohen and Luke Skon (Kenyon college) Probability Presentation December 14, 2012 1 / 16 What

More information

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas

Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas Derivation and Comparative Statics of the Black-Scholes Call and Put Option Pricing Formulas James R. Garven Latest Revision: February 27, 2012 Abstract This paper provides an alternative derivation of

More information

Equilibrium Asset Returns

Equilibrium Asset Returns Equilibrium Asset Returns Equilibrium Asset Returns 1/ 38 Introduction We analyze the Intertemporal Capital Asset Pricing Model (ICAPM) of Robert Merton (1973). The standard single-period CAPM holds when

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 18 & 5 th, 13 he Black-Scholes-Merton Model for Options plus Applications 11.1 Where we are Last Week: Modeling the Stochastic Process for

More information

Aspects of Financial Mathematics:

Aspects of Financial Mathematics: Aspects of Financial Mathematics: Options, Derivatives, Arbitrage, and the Black-Scholes Pricing Formula J. Robert Buchanan Millersville University of Pennsylvania email: Bob.Buchanan@millersville.edu

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 55.444 Introduction to Financial Derivatives Weeks of November 19 & 6 th, 1 he Black-Scholes-Merton Model for Options plus Applications Where we are Previously: Modeling the Stochastic Process for Derivative

More information

Financial Risk Management

Financial Risk Management Extensions of the Black-Scholes model University of Oulu - Department of Finance Spring 018 Dividend payment Extensions of the Black-Scholes model ds = rsdt + σsdz ÊS = S 0 e r S 0 he risk-neutral price

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche

A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche Physics Department Duke University Durham, North Carolina 30th April 2001 3 1 Introduction

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models Advanced Topics in Derivative Pricing Models Topic 3 - Derivatives with averaging style payoffs 3.1 Pricing models of Asian options Partial differential approach for continuous models Closed form pricing

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS In all of these X(t is Brownian motion. 1. By considering X (t, show that X(τdX(τ = 1 X (t 1 t. We use Itô s Lemma for a function F(X(t: Note that df = df dx dx

More information

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods

Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Registration number 65 Models of Option Pricing: The Black-Scholes, Binomial and Monte Carlo Methods Supervised by Dr Christopher Greenman University of East Anglia Faculty of Science School of Computing

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Financial Derivatives Section 5

Financial Derivatives Section 5 Financial Derivatives Section 5 The Black and Scholes Model Michail Anthropelos anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos/ University of Piraeus Spring 2018 M. Anthropelos (Un. of

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

7.1 Volatility Simile and Defects in the Black-Scholes Model

7.1 Volatility Simile and Defects in the Black-Scholes Model Chapter 7 Beyond Black-Scholes Model 7.1 Volatility Simile and Defects in the Black-Scholes Model Before pointing out some of the flaws in the assumptions of the Black-Scholes world, we must emphasize

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

Lecture 2: Stochastic Discount Factor

Lecture 2: Stochastic Discount Factor Lecture 2: Stochastic Discount Factor Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Stochastic Discount Factor (SDF) A stochastic discount factor is a stochastic process {M t,t+s } such that

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

2.3 Mathematical Finance: Option pricing

2.3 Mathematical Finance: Option pricing CHAPTR 2. CONTINUUM MODL 8 2.3 Mathematical Finance: Option pricing Options are some of the commonest examples of derivative securities (also termed financial derivatives or simply derivatives). A uropean

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side

FINANCIAL OPTIMIZATION. Lecture 5: Dynamic Programming and a Visit to the Soft Side FINANCIAL OPTIMIZATION Lecture 5: Dynamic Programming and a Visit to the Soft Side Copyright c Philip H. Dybvig 2008 Dynamic Programming All situations in practice are more complex than the simple examples

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010 Problem set 5 Asset pricing Markus Roth Chair for Macroeconomics Johannes Gutenberg Universität Mainz Juli 5, 200 Markus Roth (Macroeconomics 2) Problem set 5 Juli 5, 200 / 40 Contents Problem 5 of problem

More information

STEX s valuation analysis, version 0.0

STEX s valuation analysis, version 0.0 SMART TOKEN EXCHANGE STEX s valuation analysis, version. Paulo Finardi, Olivia Saa, Serguei Popov November, 7 ABSTRACT In this paper we evaluate an investment consisting of paying an given amount (the

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Option Pricing in Continuous-Time: The Black Scholes Merton Theory and Its Extensions

Option Pricing in Continuous-Time: The Black Scholes Merton Theory and Its Extensions Chapter 2 Option Pricing in Continuous-Time: The Black Scholes Merton Theory and Its Extensions This chapter is organized as follows: 1. Section 2 provides an overview of the option pricing theory in the

More information

Consumption- Savings, Portfolio Choice, and Asset Pricing

Consumption- Savings, Portfolio Choice, and Asset Pricing Finance 400 A. Penati - G. Pennacchi Consumption- Savings, Portfolio Choice, and Asset Pricing I. The Consumption - Portfolio Choice Problem We have studied the portfolio choice problem of an individual

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Continuous-Time Consumption and Portfolio Choice

Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice Continuous-Time Consumption and Portfolio Choice 1/ 57 Introduction Assuming that asset prices follow di usion processes, we derive an individual s continuous

More information

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans

Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans Portability, salary and asset price risk: a continuous-time expected utility comparison of DB and DC pension plans An Chen University of Ulm joint with Filip Uzelac (University of Bonn) Seminar at SWUFE,

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Stochastic Volatility (Working Draft I)

Stochastic Volatility (Working Draft I) Stochastic Volatility (Working Draft I) Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu 1 Introduction When using the Black-Scholes-Merton model to price derivative

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 1 The Black-Scholes-Merton Random Walk Assumption l Consider a stock whose price is S l In a short period of time of length t the return

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

OULU BUSINESS SCHOOL. Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION

OULU BUSINESS SCHOOL. Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION OULU BUSINESS SCHOOL Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION Master s Thesis Finance March 2014 UNIVERSITY OF OULU Oulu Business School ABSTRACT

More information

Asset Pricing Models with Underlying Time-varying Lévy Processes

Asset Pricing Models with Underlying Time-varying Lévy Processes Asset Pricing Models with Underlying Time-varying Lévy Processes Stochastics & Computational Finance 2015 Xuecan CUI Jang SCHILTZ University of Luxembourg July 9, 2015 Xuecan CUI, Jang SCHILTZ University

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

The Derivation and Discussion of Standard Black-Scholes Formula

The Derivation and Discussion of Standard Black-Scholes Formula The Derivation and Discussion of Standard Black-Scholes Formula Yiqian Lu October 25, 2013 In this article, we will introduce the concept of Arbitrage Pricing Theory and consequently deduce the standard

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

Hedging Errors for Static Hedging Strategies

Hedging Errors for Static Hedging Strategies Hedging Errors for Static Hedging Strategies Tatiana Sushko Department of Economics, NTNU May 2011 Preface This thesis completes the two-year Master of Science in Financial Economics program at NTNU. Writing

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Introduction: A Shortcut to "MM" (derivative) Asset Pricing**

Introduction: A Shortcut to MM (derivative) Asset Pricing** The Geneva Papers on Risk and Insurance, 14 (No. 52, July 1989), 219-223 Introduction: A Shortcut to "MM" (derivative) Asset Pricing** by Eric Briys * Introduction A fairly large body of academic literature

More information

1 Geometric Brownian motion

1 Geometric Brownian motion Copyright c 05 by Karl Sigman Geometric Brownian motion Note that since BM can take on negative values, using it directly for modeling stock prices is questionable. There are other reasons too why BM is

More information

Review of Derivatives I. Matti Suominen, Aalto

Review of Derivatives I. Matti Suominen, Aalto Review of Derivatives I Matti Suominen, Aalto 25 SOME STATISTICS: World Financial Markets (trillion USD) 2 15 1 5 Securitized loans Corporate bonds Financial institutions' bonds Public debt Equity market

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

1 Interest Based Instruments

1 Interest Based Instruments 1 Interest Based Instruments e.g., Bonds, forward rate agreements (FRA), and swaps. Note that the higher the credit risk, the higher the interest rate. Zero Rates: n year zero rate (or simply n-year zero)

More information

Lecture 8: Asset pricing

Lecture 8: Asset pricing BURNABY SIMON FRASER UNIVERSITY BRITISH COLUMBIA Paul Klein Office: WMC 3635 Phone: (778) 782-9391 Email: paul klein 2@sfu.ca URL: http://paulklein.ca/newsite/teaching/483.php Economics 483 Advanced Topics

More information

The stochastic discount factor and the CAPM

The stochastic discount factor and the CAPM The stochastic discount factor and the CAPM Pierre Chaigneau pierre.chaigneau@hec.ca November 8, 2011 Can we price all assets by appropriately discounting their future cash flows? What determines the risk

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a

Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a Continuous time; continuous variable stochastic process. We assume that stock prices follow Markov processes. That is, the future movements in a variable depend only on the present, and not the history

More information

INTERTEMPORAL ASSET ALLOCATION: THEORY

INTERTEMPORAL ASSET ALLOCATION: THEORY INTERTEMPORAL ASSET ALLOCATION: THEORY Multi-Period Model The agent acts as a price-taker in asset markets and then chooses today s consumption and asset shares to maximise lifetime utility. This multi-period

More information

A Simple Approach to CAPM and Option Pricing. Riccardo Cesari and Carlo D Adda (University of Bologna)

A Simple Approach to CAPM and Option Pricing. Riccardo Cesari and Carlo D Adda (University of Bologna) A imple Approach to CA and Option ricing Riccardo Cesari and Carlo D Adda (University of Bologna) rcesari@economia.unibo.it dadda@spbo.unibo.it eptember, 001 eywords: asset pricing, CA, option pricing.

More information

Forecasting Life Expectancy in an International Context

Forecasting Life Expectancy in an International Context Forecasting Life Expectancy in an International Context Tiziana Torri 1 Introduction Many factors influencing mortality are not limited to their country of discovery - both germs and medical advances can

More information