Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008

Size: px
Start display at page:

Download "Practical Hedging: From Theory to Practice. OSU Financial Mathematics Seminar May 5, 2008"

Transcription

1 Practical Hedging: From Theory to Practice OSU Financial Mathematics Seminar May 5, 008

2 Background Dynamic replication is a risk management technique used to mitigate market risk We hope to spend a certain amount of money up-front that will cover uncertain future cash flows Mathematical models are idealized so that replication may be done without error. The real world is not, of course, so well behaved.

3 Review of Terminology Below, the strike K is a specified value and S is the stock price at option expiry Futures contract obligation to buy or sell at price K Put option, but not obligation, to sell at a predetermined price Payoff = Max(0, K S) Call option, but not obligation, to buy at a predetermined price Payoff = Max(0, S K) Long position exchange cash for an asset (buy the asset profit from increases to asset price) Short position receive cash for selling an asset not yet owned (profit from decreases to asset price) 3

4 Market Assumptions Stock price returns are random and normally distributed: ds = µ Sdt + σsdx We may sell the stock short with full use of proceeds. There are no transaction costs or taxes. There are no dividends. We may borrow or lend at a constant riskfree rate, 4

5 More on Market Assumptions Continuous Trading Traditional derivations require We will derive the pricing equation while allowing trading at discrete intervals Volatility Assumptions At first, volatility will be constant and known. Then, we ll allow it to be constant but unknown. Volatility may also be random (beyond scope of this presentation). 5

6 Traditional Black-Scholes Derivation We start with a portfolio with a long option position and a short position in quantity _ of the underlying: Π = V ( S, t) ΔS The change in the portfolio value for a change in S is: dπ = dv ( S, t) ΔdS 6

7 Black-Scholes Derivation (Continued) From Itô s Lemma, V V 1 V dv = dt + ds + σ S t S S dt Thus the portfolio changes by V V 1 V dπ = dt + ds + σ S t S S dt ΔdS 7

8 Black-Scholes Derivation (Continued) We eliminate risk by carefully choosing _: Δ = dv ds The remainder is completely riskless: V 1 V dπ = + σ S t S dt By the no arbitrage principle, dπ = rπdt 8

9 9 Black-Scholes Derivation (Concluded) Substituting, Finally, rearranging and dividing by dt, dt S V S V r dt S V S t V = + 1 σ 0 1 = + + rv S V S S V S t V σ

10 The Accountant s Derivation of Black-Scholes We can derive the same pricing equation in expectation by examining the income generated by the hedge portfolio To illustrate, we will sell a put on 10,000 times the index. S = 1,505 K = 1,500 T = 1 year Sale Price = $818K The sale price corresponds to a risk free rate equal to 5% and implied volatility equal to 0% We then dynamically replicate our position 10

11 Derivation of Black-Scholes with Discrete Time Trading Consider the hedge portfolio We start with zero cash We sell a put option for $818K We sell some stock short (how much?) Any cash left (positive or negative) is put into a risk-free account earning interest This is the same portfolio that we used in the traditional derivation. 11

12 How much stock should we short? Let s suppose that we are given option prices as a function of the stock price and time to maturity. We can take the derivative of the option value with respect to stock price We then take an offsetting position Value of a Put 5,000,000 4,000,000 Current stock Option Value 3,000,000,000,000 1,000, ,000,000 -,000,000 1,060 1,000 1,10 1,180 1,40 1,300 1,360 1,40 1,480 1,540 1,600 1,660 1,70 1,780 1,840 1,900 1,960 Stock Price Market OV Option Delta 1

13 How does this work? We sold the put for $818K but hedge it with a model value of only $540K. A three day simulation is below. Stock Stock Option Shares BOP EOP Net Price Value (100s) Bank Bank Cash Flow 1, , ,558,16 5,559,9 77,709 1, , ,93,65 5,94, , , ,99,90 5,994,110-4,971 1, , ,753,548 5,754,

14 Three reasons why our total wealth changes from today to tomorrow 1. The option price curve changes due to the passage of time. There is an interest payment 3. The stock price changes 14

15 Time Value Change of the Option The option changes in value for the passage of time: Θ δt 15

16 Interest Payment We received Δ S from the sale of stock and V from the option sale. The money in the bank is ΔS V So the interest payment is r( ΔS V ) 16

17 The stock price changes We matched the linear change in option value with the short stock But the change in value of our portfolio is not linear Portfolio losses for instantaneous changes in stock price Portfolio Loss 800, , , , , ,000 00, ,000 0 Stock Price ds? Portfolio 17

18 Non-linear change in option value We apply a Taylor expansion 1 δ V δs δ S This is random. The expected value is 1 δ V σ S δs δt 18

19 Putting it all together Adding all of the cash flows (and ignoring the dt that multiplies all terms), we have dv dt 1 + σ S d ds V + r( ΔS V ) This looks a lot like the Black-Scholes equation except it isn t an equation! On average, its value is zero. 19

20 What does this mean? And where do we go next? Given that stock prices follow this process ds = µ Sdt + σsdx and if we know the volatility, on average the change in value of our portfolio is zero. In theory, if we can trade continuously, we can set up a risk-less portfolio But now, let s assume that we trade only daily and that we don t really know market volatility. 0

21 Delta Hedging Example Let s suppose that we sell an option for $818K (option priced at 0% volatility) and delta hedge assuming that market volatility is 15%. If market volatility is actually 15%, on average, our delta hedge will cost about $540K. If the market volatility really is 15%, we hope to make some money. 1

22 How might our delta hedging work out? If market volatility is 15%, we are almost assured of making money. But it could be 10% (even better!) or 0% (uh oh!) or even 5% (ouch!) Realized Hedge Costs with 15% Hedge Vol Thousands,000 1,800 1,600 1,400 1,00 1, Avg Cost = $75K Std Dev = $95K Avg Cost = $540K Std Dev = $41K Avg Cost = $818K Std Dev = $139K Avg Cost = $1,100K Std Dev = $88K % Realized Vol 15% Realized Vol 0% Realized Vol 5% Realized Vol

23 Now, let s hedge with options We buy put options with strikes slightly higher than our put sold and others with strikes slightly lower The amount of delta hedging is minimized Option Payoffs 5,000,000 4,000,000 3,000,000,000,000 1,000, ,700 1,660 1,60 1,580 1,540 1,500 1,460 1,40 1,380 1,340 1,300 1,60 1,0 1,180 1,140 1,100 Stock Price Put Sold Hedged Position 3

24 How might our option strategy work out? We are relatively immune to the level of realized volatility. The realized hedge cost is in a narrow boundary. Realized Hedge Costs with 15% Hedge Vol,000 Thousands 1,800 1,600 1,400 1,00 1,000 Avg Cost = $814K Std Dev = $13K Avg Cost = $817K Std Dev = $13K Avg Cost = $816K Std Dev = $11K Avg Cost = $817K Std Dev = $16K 0 10% Realized Vol 15% Realized Vol 0% Realized Vol 5% Realized Vol 4

25 Implications on the real world There are rarely true arbitrage opportunities. At best, traders can define ranges of likely market outcomes and look for prices that fall outside those ranges. By hedging with options, traders can narrow hedging results. This gives some insight into why there are bid ask spreads. More exotic options have wider bid ask spreads in part to account for the fact that there are few traded assets with which to hedge. 5

26 How do market participants model? Rich valuation, simple hedging Value positions using a rich model (stochastic volatility, interest rates, etc.) Hedge using a simple model Uncertain parameters Another approach is to not explicitly model all variables but to treat some of them as uncertain We might say, for instance that volatility is likely to be between 10% and 0%. For contracts that can change the sign of gamma, valuation requires finite differences. Volatility assumption in hedging (Forecast or Implied?) 6

27 Summary Dynamic hedging is: Matching the first derivative of the option value with stock Putting the rest of the money into a risk free bank account The total amount invested is the model option value The math of dynamic hedging may be understood by considering the cash flows of the hedge portfolio Dynamic hedging costs are: Random even when we omnisciently know future realized volatility Even more uncertain considering that we don t know what will be realized volatility 7

28 Homework Assignments Given geometric Brownian motion and when trading discretely, what is the distribution of hedge error over a single dt? Assuming realized and implied volatility (both constant, known and not equal to each other), what is the pattern of P&L for hedging with each in pricing equations? How do the distributions of realized hedge costs compare to each other? What tradeoffs and practical considerations are there for deciding which to use? How do the considerations change when we account for the fact that neither realized nor implied volatility is known or constant? 8

29 Questions or comments? Joe Stoutenburg One Nationwide Plaza Columbus, OH 4315 (614)

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

2.3 Mathematical Finance: Option pricing

2.3 Mathematical Finance: Option pricing CHAPTR 2. CONTINUUM MODL 8 2.3 Mathematical Finance: Option pricing Options are some of the commonest examples of derivative securities (also termed financial derivatives or simply derivatives). A uropean

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

The Black-Scholes Equation

The Black-Scholes Equation The Black-Scholes Equation MATH 472 Financial Mathematics J. Robert Buchanan 2018 Objectives In this lesson we will: derive the Black-Scholes partial differential equation using Itô s Lemma and no-arbitrage

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan

Hedging. MATH 472 Financial Mathematics. J. Robert Buchanan Hedging MATH 472 Financial Mathematics J. Robert Buchanan 2018 Introduction Definition Hedging is the practice of making a portfolio of investments less sensitive to changes in market variables. There

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

The Black-Scholes PDE from Scratch

The Black-Scholes PDE from Scratch The Black-Scholes PDE from Scratch chris bemis November 27, 2006 0-0 Goal: Derive the Black-Scholes PDE To do this, we will need to: Come up with some dynamics for the stock returns Discuss Brownian motion

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems

Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Math489/889 Stochastic Processes and Advanced Mathematical Finance Solutions to Practice Problems Steve Dunbar No Due Date: Practice Only. Find the mode (the value of the independent variable with the

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

7.1 Volatility Simile and Defects in the Black-Scholes Model

7.1 Volatility Simile and Defects in the Black-Scholes Model Chapter 7 Beyond Black-Scholes Model 7.1 Volatility Simile and Defects in the Black-Scholes Model Before pointing out some of the flaws in the assumptions of the Black-Scholes world, we must emphasize

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

Actuarial Models : Financial Economics

Actuarial Models : Financial Economics ` Actuarial Models : Financial Economics An Introductory Guide for Actuaries and other Business Professionals First Edition BPP Professional Education Phoenix, AZ Copyright 2010 by BPP Professional Education,

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility

Option Pricing. Simple Arbitrage Relations. Payoffs to Call and Put Options. Black-Scholes Model. Put-Call Parity. Implied Volatility Simple Arbitrage Relations Payoffs to Call and Put Options Black-Scholes Model Put-Call Parity Implied Volatility Option Pricing Options: Definitions A call option gives the buyer the right, but not the

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 and Lecture Quantitative Finance Spring Term 2015 Prof. Dr. Erich Walter Farkas Lecture 06: March 26, 2015 1 / 47 Remember and Previous chapters: introduction to the theory of options put-call parity fundamentals

More information

FIN FINANCIAL INSTRUMENTS SPRING 2008

FIN FINANCIAL INSTRUMENTS SPRING 2008 FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Greeks Introduction We have studied how to price an option using the Black-Scholes formula. Now we wish to consider how the option price changes, either

More information

Deriving and Solving the Black-Scholes Equation

Deriving and Solving the Black-Scholes Equation Introduction Deriving and Solving the Black-Scholes Equation Shane Moore April 27, 2014 The Black-Scholes equation, named after Fischer Black and Myron Scholes, is a partial differential equation, which

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Greek parameters of nonlinear Black-Scholes equation

Greek parameters of nonlinear Black-Scholes equation International Journal of Mathematics and Soft Computing Vol.5, No.2 (2015), 69-74. ISSN Print : 2249-3328 ISSN Online: 2319-5215 Greek parameters of nonlinear Black-Scholes equation Purity J. Kiptum 1,

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

On the Cost of Delayed Currency Fixing Announcements

On the Cost of Delayed Currency Fixing Announcements On the Cost of Delayed Currency Fixing Announcements Uwe Wystup and Christoph Becker HfB - Business School of Finance and Management Frankfurt am Main mailto:uwe.wystup@mathfinance.de June 8, 2005 Abstract

More information

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly).

B. Combinations. 1. Synthetic Call (Put-Call Parity). 2. Writing a Covered Call. 3. Straddle, Strangle. 4. Spreads (Bull, Bear, Butterfly). 1 EG, Ch. 22; Options I. Overview. A. Definitions. 1. Option - contract in entitling holder to buy/sell a certain asset at or before a certain time at a specified price. Gives holder the right, but not

More information

A Lower Bound for Calls on Quadratic Variation

A Lower Bound for Calls on Quadratic Variation A Lower Bound for Calls on Quadratic Variation PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Chicago,

More information

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance

WITH SKETCH ANSWERS. Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance WITH SKETCH ANSWERS BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) Postgraduate Certificate in Finance Postgraduate Certificate in Economics and Finance SCHOOL OF ECONOMICS,

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options

Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan Options Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Definitions and Terminology Definition An option is the right, but not the obligation, to buy or sell a security such

More information

Youngrok Lee and Jaesung Lee

Youngrok Lee and Jaesung Lee orean J. Math. 3 015, No. 1, pp. 81 91 http://dx.doi.org/10.11568/kjm.015.3.1.81 LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES Youngrok Lee and Jaesung Lee Abstract. This paper

More information

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility

LECTURE 12. Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The time series of implied volatility LECTURE 12 Review Options C = S e -δt N (d1) X e it N (d2) P = X e it (1- N (d2)) S e -δt (1 - N (d1)) Volatility is the question on the B/S which assumes constant SD throughout the exercise period - The

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

Derivative Securities

Derivative Securities Derivative Securities he Black-Scholes formula and its applications. his Section deduces the Black- Scholes formula for a European call or put, as a consequence of risk-neutral valuation in the continuous

More information

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2. Derivative Securities Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial trees. This

More information

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E

Put-Call Parity. Put-Call Parity. P = S + V p V c. P = S + max{e S, 0} max{s E, 0} P = S + E S = E P = S S + E = E P = E. S + V p V c = (1/(1+r) t )E Put-Call Parity l The prices of puts and calls are related l Consider the following portfolio l Hold one unit of the underlying asset l Hold one put option l Sell one call option l The value of the portfolio

More information

OULU BUSINESS SCHOOL. Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION

OULU BUSINESS SCHOOL. Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION OULU BUSINESS SCHOOL Ilkka Rahikainen DIRECT METHODOLOGY FOR ESTIMATING THE RISK NEUTRAL PROBABILITY DENSITY FUNCTION Master s Thesis Finance March 2014 UNIVERSITY OF OULU Oulu Business School ABSTRACT

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

Financial Risk Management

Financial Risk Management Risk-neutrality in derivatives pricing University of Oulu - Department of Finance Spring 2018 Portfolio of two assets Value at time t = 0 Expected return Value at time t = 1 Asset A Asset B 10.00 30.00

More information

The Impact of Volatility Estimates in Hedging Effectiveness

The Impact of Volatility Estimates in Hedging Effectiveness EU-Workshop Series on Mathematical Optimization Models for Financial Institutions The Impact of Volatility Estimates in Hedging Effectiveness George Dotsis Financial Engineering Research Center Department

More information

Hedging with Life and General Insurance Products

Hedging with Life and General Insurance Products Hedging with Life and General Insurance Products June 2016 2 Hedging with Life and General Insurance Products Jungmin Choi Department of Mathematics East Carolina University Abstract In this study, a hybrid

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

Department of Mathematics. Mathematics of Financial Derivatives

Department of Mathematics. Mathematics of Financial Derivatives Department of Mathematics MA408 Mathematics of Financial Derivatives Thursday 15th January, 2009 2pm 4pm Duration: 2 hours Attempt THREE questions MA408 Page 1 of 5 1. (a) Suppose 0 < E 1 < E 3 and E 2

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

LECTURE 4: BID AND ASK HEDGING

LECTURE 4: BID AND ASK HEDGING LECTURE 4: BID AND ASK HEDGING 1. Introduction One of the consequences of incompleteness is that the price of derivatives is no longer unique. Various strategies for dealing with this exist, but a useful

More information

Simulation Analysis of Option Buying

Simulation Analysis of Option Buying Mat-.108 Sovelletun Matematiikan erikoistyöt Simulation Analysis of Option Buying Max Mether 45748T 04.0.04 Table Of Contents 1 INTRODUCTION... 3 STOCK AND OPTION PRICING THEORY... 4.1 RANDOM WALKS AND

More information

Option Hedging with Transaction Costs

Option Hedging with Transaction Costs Option Hedging with Transaction Costs Sonja Luoma Master s Thesis Spring 2010 Supervisor: Erik Norrman Abstract This thesis explores how transaction costs affect the optimality of hedging when using Black-Scholes

More information

Stochastic Volatility (Working Draft I)

Stochastic Volatility (Working Draft I) Stochastic Volatility (Working Draft I) Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu 1 Introduction When using the Black-Scholes-Merton model to price derivative

More information

Introduction to Financial Mathematics

Introduction to Financial Mathematics Department of Mathematics University of Michigan November 7, 2008 My Information E-mail address: marymorj (at) umich.edu Financial work experience includes 2 years in public finance investment banking

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

The Uncertain Volatility Model

The Uncertain Volatility Model The Uncertain Volatility Model Claude Martini, Antoine Jacquier July 14, 008 1 Black-Scholes and realised volatility What happens when a trader uses the Black-Scholes (BS in the sequel) formula to sell

More information

Uncertain Parameters, an Empirical Stochastic Volatility Model and Confidence Limits

Uncertain Parameters, an Empirical Stochastic Volatility Model and Confidence Limits Uncertain Parameters, an Empirical Stochastic Volatility Model and Confidence Limits by Asli Oztukel and Paul Wilmott, Mathematical Institute, Oxford and Department of Mathematics, Imperial College, London.

More information

Geometric Brownian Motion

Geometric Brownian Motion Geometric Brownian Motion Note that as a model for the rate of return, ds(t)/s(t) geometric Brownian motion is similar to other common statistical models: ds(t) S(t) = µdt + σdw(t) or response = systematic

More information

Chapter 9 - Mechanics of Options Markets

Chapter 9 - Mechanics of Options Markets Chapter 9 - Mechanics of Options Markets Types of options Option positions and profit/loss diagrams Underlying assets Specifications Trading options Margins Taxation Warrants, employee stock options, and

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

The End-of-the-Year Bonus: How to Optimally Reward a Trader?

The End-of-the-Year Bonus: How to Optimally Reward a Trader? The End-of-the-Year Bonus: How to Optimally Reward a Trader? Hyungsok Ahn Jeff Dewynne Philip Hua Antony Penaud Paul Wilmott February 14, 2 ABSTRACT Traders are compensated by bonuses, in addition to their

More information

A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche

A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche A Classical Approach to the Black-and-Scholes Formula and its Critiques, Discretization of the model - Ingmar Glauche Physics Department Duke University Durham, North Carolina 30th April 2001 3 1 Introduction

More information

Evaluating the Black-Scholes option pricing model using hedging simulations

Evaluating the Black-Scholes option pricing model using hedging simulations Bachelor Informatica Informatica Universiteit van Amsterdam Evaluating the Black-Scholes option pricing model using hedging simulations Wendy Günther CKN : 6052088 Wendy.Gunther@student.uva.nl June 24,

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Ind AS 102 Share-based Payments

Ind AS 102 Share-based Payments Ind AS 102 Share-based Payments Mayur Ankolekar FIAI, FIA, FCA Consulting Actuary MCACPESC June 26, 2015 Page 1 Session Objectives 1. To appreciate in principle, Ind AS 102 2. To understand the implementation

More information

Financial Markets & Risk

Financial Markets & Risk Financial Markets & Risk Dr Cesario MATEUS Senior Lecturer in Finance and Banking Room QA259 Department of Accounting and Finance c.mateus@greenwich.ac.uk www.cesariomateus.com Session 3 Derivatives Binomial

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Completeness and Hedging. Tomas Björk

Completeness and Hedging. Tomas Björk IV Completeness and Hedging Tomas Björk 1 Problems around Standard Black-Scholes We assumed that the derivative was traded. How do we price OTC products? Why is the option price independent of the expected

More information

Mixing Di usion and Jump Processes

Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes Mixing Di usion and Jump Processes 1/ 27 Introduction Using a mixture of jump and di usion processes can model asset prices that are subject to large, discontinuous changes,

More information

Hedging Errors for Static Hedging Strategies

Hedging Errors for Static Hedging Strategies Hedging Errors for Static Hedging Strategies Tatiana Sushko Department of Economics, NTNU May 2011 Preface This thesis completes the two-year Master of Science in Financial Economics program at NTNU. Writing

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Lecture 11: Stochastic Volatility Models Cont.

Lecture 11: Stochastic Volatility Models Cont. E4718 Spring 008: Derman: Lecture 11:Stochastic Volatility Models Cont. Page 1 of 8 Lecture 11: Stochastic Volatility Models Cont. E4718 Spring 008: Derman: Lecture 11:Stochastic Volatility Models Cont.

More information

Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a

Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a Options Week 7 What is a derivative asset? Any asset that derives its value from another underlying asset is called a derivative asset. The underlying asset could be any asset - for example, a stock, bond,

More information

MORNING SESSION. Date: Wednesday, April 30, 2014 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES

MORNING SESSION. Date: Wednesday, April 30, 2014 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES SOCIETY OF ACTUARIES Quantitative Finance and Investment Core Exam QFICORE MORNING SESSION Date: Wednesday, April 30, 2014 Time: 8:30 a.m. 11:45 a.m. INSTRUCTIONS TO CANDIDATES General Instructions 1.

More information

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory).

5. Itô Calculus. Partial derivative are abstractions. Usually they are called multipliers or marginal effects (cf. the Greeks in option theory). 5. Itô Calculus Types of derivatives Consider a function F (S t,t) depending on two variables S t (say, price) time t, where variable S t itself varies with time t. In stard calculus there are three types

More information

A Cost of Capital Approach to Extrapolating an Implied Volatility Surface

A Cost of Capital Approach to Extrapolating an Implied Volatility Surface A Cost of Capital Approach to Extrapolating an Implied Volatility Surface B. John Manistre, FSA, FCIA, MAAA, CERA January 17, 010 1 Abstract 1 This paper develops an option pricing model which takes cost

More information

non linear Payoffs Markus K. Brunnermeier

non linear Payoffs Markus K. Brunnermeier Institutional Finance Lecture 10: Dynamic Arbitrage to Replicate non linear Payoffs Markus K. Brunnermeier Preceptor: Dong Beom Choi Princeton University 1 BINOMIAL OPTION PRICING Consider a European call

More information

Valuation of Equity Derivatives

Valuation of Equity Derivatives Valuation of Equity Derivatives Dr. Mark W. Beinker XXV Heidelberg Physics Graduate Days, October 4, 010 1 What s a derivative? More complex financial products are derived from simpler products What s

More information

Math 239 Homework 1 solutions

Math 239 Homework 1 solutions Math 239 Homework 1 solutions Question 1. Delta hedging simulation. (a) Means, standard deviations and histograms are found using HW1Q1a.m with 100,000 paths. In the case of weekly rebalancing: mean =

More information

Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull)

Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull) Math 181 Lecture 15 Hedging and the Greeks (Chap. 14, Hull) One use of derivation is for investors or investment banks to manage the risk of their investments. If an investor buys a stock for price S 0,

More information