BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

Size: px
Start display at page:

Download "BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin"

Transcription

1 BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1

2 Topics Utility-based measurement of performance Utilities and market dynamics Optimal allocations and their stochastic evolution Efficient frontier 2

3 References Joint work with M. Musiela (BNP Paribas, London) Investments and forward utilities Preprint 26 Backward and forward dynamic utilities and their associated pricing systems: Case study of the binomial model Indifference Pricing, PUP (23, 25) Investment and valuation under backward and forward dynamic utilities in a stochastic factor model to appear in Dilip Madan s Festschrift (26) 3

4 Utility-based measurement of performance 4

5 Dynamic utility measurement time t 1,informationF t1 asset returns 11 constraints 19.8 market view away from equilibrium benchmark calendar time numeraire subordination u(x,t 1 ) Time Wealth.8 1 MI(t 1 ) + u(x, t 1 ) U(x, t 1 ; MI) F t1 π(x, t 1 ; MI) F t1

6 Dynamic utility measurement time t 2,informationF t2 asset returns constraints market view away from equilibrium benchmark numeraire u(x,t 2 ) calendar time subordination Time Wealth.8 1 MI(t 2 ) + u(x, t 2 ) U(x, t 2 ; MI) F t2 π(x, t 2 ; MI) F t2

7 Dynamic utility measurement time t 3,informationF t3 asset returns 11 constraints market view away from equilibrium benchmark calendar time numeraire subordination u(x,t 3 ) Time Wealth.8 1 MI(t 3 ) + u(x, t 3 ) U(x, t 3 ; MI) F t3 π(x, t 3 ; MI) F t3

8 Forward utility measurement time t, informationf t u(x,t) asset returns additional market input Time Wealth MI(t) + u(x, t) U(X t,t) F t π (X t,t) F t

9 Forward utility measurement time t 1,informationF t1 u(x,t) asset returns additional market input Time Wealth MI(t 1 ) + u(x, t 1 ) U(X t 1,t 1 ) F t1 π (X t 1,t 1 ) F t1

10 Forward utility measurement time t 2,informationF t2 u(x,t) asset returns additional market input Time Wealth MI(t 2 ) + u(x, t 2 ) U(X t 2,t 2 ) F t2 π (X t 2,t 2 ) F t2

11 Forward utility measurement time t 3,informationF t3 u(x,t) asset returns additional market input Time Wealth MI(t 3 ) + u(x, t 3 ) U(X t 3,t 3 ) F t3 π (X t 3,t 3 ) F t3

12 Utility traits u(x, t) : x wealth and t time Monotonicty u x (x, t) > Risk aversion u xx (x, t) < Impatience u t (x, t) < Fisher (1913, 1918), Koopmans (1951), Koopmans-Diamond-Williamson (1964)... 12

13 Modelling and management of uncertainty 13

14 Investment universe Riskless and risky assets (Ω, F, P) ; W =(W 1,...,W d ) standard Brownian Motion Prices 1 i k ds i t = S i t(µ i tdt + σ i t dw t ), S i > db t = r t B t dt, B =1 µ t,r t R, σ i t Rd bounded and F t -measurable stochastic processes Postulate existence of a F t -measurable stochastic process λ t R d satisfying µ t r t 1=σ T t λ t 14

15 Investment universe Self-financing investment strategies π t,πi t, i =1,...,k Present value of this allocation X t = k πt i i= dx t = k i= π i t(µ i t r t ) dt + k i= π i tσ i t dw t = σ t π t (λ t dt + dw t ) π t =(π 1 t,...,πk t ), µ t r t 1=σ T t λ t 15

16 Forward dynamic utilities 16

17 Fundamental characteristics of a forward dynamic utility structure Time evolution concurrent with the one of the investment universe Consistency with up to date information Incorporation of available opportunities and constraints Meaningful optimal utility volume 17

18 Forward dynamic utility U(x, t) is an F t -adapted process As a function of x, U is increasing and concave Utility datum U(x, ) = u (x) assigned at forward normalization point t = For each self-financing strategy, represented by π, the associated (discounted) wealth X t satisfies E P (U(X π t,t) F s ) U(X π s,s) s t There exists a self-financing strategy, represented by π,forwhich the associated (discounted) wealth Xt π satisfies E P (U(Xt π,t) F s ) = U(Xs π,s) s t 18

19 Construction of forward dynamic utilities 19

20 Forward dynamic utilities Creating the martingale that yields the optimal utility volume No Markovian assumptions Stochastic optimization problem inverse in time Stochastic input Market Key idea Variational input Individual Maximal utility Optimal allocation 2

21 Forward dynamic utilities Stochastic input : (Y t,z t,a t ) Variational input : u(x, t) Time change A t Benchmark Y t utility surface u(x, t) Market view Z t U(x, t) =u( x Y t,a t )Z t 21

22 Market input processes 22

23 Market input processes (Y t,z t,a t ) These F t -mble processes do not depend on the investor s variational utility They reflect and represent, respectively Y t : benchmark numeraire Z t : market view away from market equilibrium feasibility and trading constraints A t : subordination 23

24 Market input processes Market environment 1 i k dst i = St i ( µ i t dt + σt i ) dw t db t = r t B t dt µ t r t 1=σt T λ t, µ t,σ t,r t F t σ + t : Moore-Penrose matrix inverse σ + t = lim ε (σ t σ t + εi) 1 σ t, σ t : conjugate transpose of σ t Properties : σ t σ + t σ t = σ t, σ + t σ tσ + t = σ + t (σ t σ + t )T = σ t σ + t, (σ + t σ t) T = σ + t σ t 24

25 Market input processes Asset price coefficients λ t, σ t F t Benchmark and/or numeraire A replicable process Y t satisfying dy t = Y t δ t (λ t dt + dw t ) Y =1 δ t F t, σ t σ + t δ t = δ t 25

26 Market input processes Market views, feasibility and trading constraints An exponential martingale Z t satisfying dz t = Z t φ t dw t Z =1, φ t F t Subordination A non-decreasing process A t solving da t = δ t σ t σ + t (λ t + φ t ) 2 dt A = 26

27 Variational input utility surfaces 27

28 Utility surface A model independent variational constraint on impatience, risk aversion and monotonicity Initial utility datum u (x) =u(x, ) Fully non-linear pde u t u xx = 1 2 u2 x u(x, ) = u (x) 28

29 Utility transport equation The utility equation can be alternatively viewed as a transport equation with slope of its characteristics equal to (half of) the risk tolerance r(x, t) = u x(x, t) u xx (x, t) u t r(x, t)u x = u(x, ) = u (x) Characteristic curves: dx(t) dt = 1 2 r(x(t),t) 29

30 Construction of utility surface u(x, t) using characteristics dx(t) dt = 1 2 r(x(t),t) Utility datum u (x) 3

31 Construction of characteristics dx(t) dt = 1 2 r(x(t),t) Utility datum u(x, ) Characteristic curves 31

32 Propagation of utility datum along characteristics 32

33 Propagation of utility datum along characteristics 33

34 Utility surface u(x, t) 34

35 Two related pdes Fast diffusion equation for risk tolerance r t r2 r xx = r(x, ) = r (x) (FDE) Conductivity : r 2 Porous medium equation for risk aversion γ t = γ(x, t) = 1 r(x, t) ( ) 1 γ xx γ(x, ) = 1 r (x) (PME) Pressure : r 2 and (PME) exponent: m = 1 35

36 Difficulties Utility equation: u t u xx = 1 2 u2 x Inverse problem and fully nonlinear Utility transport equation: u t r(x, t)u x = Shocks, solutions past singularities Fast diffusion equation: r t r2 r xx = Inverse problem and backward parabolic, solutions might not exist, locally integrable data might not produce locally bounded slns in finite time Porous medium equation: γ t =( γ 1) xx Majority of results for (PME), γ t =(γ m ) xx, are for m>1, partialresultsfor 1 <m< 36

37 A rich class of risk tolerance inputs Addititively separable risk tolerance r 2 (x, t; α, β) =m(x; α, β)+n(t; α, β) m(x; α, β) =αx 2 r(x, t; α, β) = Example n(x; α, β) =βe αt αx 2 + βe αt α, β > (Very) special cases r(x, t;,β)= β u(x, t) = e x β +t r(x, t;1, ) = x u(x, t) =log x t r(x, t; α, ) = α x u(x, t) = γ 1xγ e 2(1 γ) t, γ = α 1 γ α 37

38 Risk tolerance r(x, t) =.5x e.5t Time Wealth

39 Utility surface u(x, t) generated by risk tolerance r(x, t) =.5x e.5t Time Wealth Characteristics: dx(t) dt = 1 2.5x(t) e.5t 39

40 Risk tolerance r(x, t) = 1x 2 + e 1t Time Wealth 5 1 4

41 Utility surface u(x, t) generated by risk tolerance r(x, t) = 1x 2 + e 1t Time Wealth Characteristics: dx(t) dt = 1 2 1x(t) 2 + e 1t 41

42 Risk tolerance r(x, t) = x 2 +1= Time Wealth

43 Utility surface u(x, t) = e x+t generated by risk tolerance r(x, t) = Time Wealth Characteristics: dx(t) dt =

44 Risk tolerance r(x, t) = x 2 +e t = x Time Wealth

45 Utility surface u(x, t) =logx t, x> generated by risk tolerance r(x) =x Time Wealth 15 2 Characteristics: dx(t) dt = 1 2 x(t) 45

46 Risk tolerance r(x, t) = 4x 2 +e 4t =2 x Time Wealth

47 Utility surface u(x, t) =2 xe t 2, x> generated by risk tolerance r(x, t) =2x Time Wealth 15 2 Characteristics: dx(t) dt = x(t) 47

48 Multiplicatively separable risk tolerance r(x, t; α, β) =m(x; α)n(t; β) Example m(x; α) =ϕ(φ 1 (x; α)) n(t; β) = t + β, β> Φ(x; α) = x α ez2 /2 dz ϕ =Φ r(x, t; α, β) =ϕ(φ 1 (x; α)) (Very) special cases m(x; α) =α, n(t; β) =1 u(x, t) = e x α +t m(x; α) =x, n(t; β) =1 u(x, t) =log x t m(x; α) =αx, n(t; β) =1 u(x, t) = 1 γ xγ e γ 2(1 γ) t, γ = α 1 α 81

49 Risk tolerance r(x, t) = ϕ(φ 1 (x;.5) t Time Wealth

50 Utility surface u(x, t) =Φ(Φ 1 (x;.5) t +5) generated by risk tolerance r(x, t) = ϕ(φ 1 (x;.5)) t Time Wealth 15 2 Characteristics: dx(t) dt = ϕ(φ 1 (x(t);.5)) t +5 5

51 Utility function u(x, t ) (fixed time) t = Utility Wealth 51

52 Utility function u(x,t) (fixed wealth level) x = Utility Time 52

53 Optimal utility volume Optimal asset allocation 53

54 Optimal utility volume Stochastic market input λ t,σ t benchmark, views subordination Variational input x, r (x) = u (x) u (x) fast diffusion eqn transport eqn (Y t,z t,a t ) u(x, t) 7 U(x, t) =u( x A t,y t )Z t Model independent construction! 54

55 What is the optimal allocation? Optimal portfolio processes π t =(π t,π 1 t,...,π k t ) can be directly and explicitly characterized along with the construction of the forward utility! 55

56 Stochastic input Market The structure of optimal portfolios dx t = σ t π t (λ t dt + dw t ) Variational input Individual (Y t,z t,a t ) wealth x λ t,σ t,δ t,φ t risk tolerance r(x, t) 7 1 πt is a linear combination Y t of (benchmarked) optimal wealth and subordinated (benchmarked) risk tolerance 56

57 Optimal asset allocation Let X t be the optimal wealth, Y t the benchmark and A t the subordination processes dx t = σ tπ t (λ tdt + dw t ) dy t = Y t δ t (λ t dt + dw t ) da t = σ t σ + t (λ t + φ t ) δ t 2 dt Define r t the subordinated (benchmarked) risk tolerance r t = r ( X t Y t,a t ) Optimal (benchmarked) portfolios 1 Y t π t = σ + t ( (λ t + φ t )r t + δ t ( X t Y t r t )) 57

58 Wealth-risk tolerance stochastic evolution 58

59 A system of SDEs at optimum utility volume X t = X t Y t and r t = r( X t,a t ) d X t = r t (σ t σ + t (λ t + φ t ) δ t ) ((λ t δ t ) dt + dw t ) d r t = r x ( X t,a t )d X t Separability of wealth dynamics in terms of risk tolerance and market input Sensitivity of risk tolerance in terms of its spatial gradient and changes in optimal wealth Utility functional has essentially vanished Universal representation, no Markovian assumptions 59

60 An efficient frontier Optimal wealth-risk tolerance ( X t, r t ) system of SDEs in original market configuration d X t = r t (σ tσ + t (λ t + φ t ) δ t ) ((λ t δ t ) dt + dw t ) d r t = r x ( X t,a t ) d X t change of measure historical benchmarked change of time Levy s theorem 6

61 An efficient frontier Optimal wealth-risk tolerance (x 1 t,x2 t ) system of SDEs in canonical market configuration x 1 t = ( X t Y t ) A ( 1) t ( ) x 2 X t = r t,a t Y t A ( 1) t M t = A t w t = M A ( 1) dx 1 t = x2 t dw t dx 2 t = r x(x 1 t,t)x2 t dw t x 1 = x y, x2 = r x( x y, ) 61

62 Analytic solution of the efficient frontier SDE system dx 1 t = x2 t dw t dx 2 t = r x(x 1 t,t)x2 t dw t Define the budget capacity function h(x, t) via x = h(x,t) x du h(x,t) r(u, t) = γ(u, t)du x x : related to symmetry properties of risk tolerance, reflection point of its spatial derivative and risk aversion front 62

63 Analytic solutions The budget capacity function h solves the (inverse) heat equation h t h xx 1 2 r x(x,t)h x = h(x, ) = h (x), x = h (x) x du r(u, ) Solution of the efficient frontier SDE system x 1 t = h(z t,t) x 2 t = h z(z t,t) z t = h 1 (x) t 1 2 r x(x,s)ds + w t Using equivalent measure transformations and time change we recover the original pair of optimal (benchmarked) wealth and (benchmark) risk tolerance 63

64 Utility-based performance measurement Market Benchmark, views, constraints Investor Wealth, risk tolerance Market input processes Subordination Fast diffusion eqn Transport eqn Forward evolution > Y t,z t,a t < x, r(x, t), u(x, t) Optimal utility volume and optimal portfolios measure change time change Efficient frontier SDE system Heat eqn Fast diffusion eqn Universal analytic solutions

65 T h a n k y o u!

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007

Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Optimal asset allocation under forward performance criteria Oberwolfach, February 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 References Indifference valuation in binomial models (with

More information

Optimal investments under dynamic performance critria. Lecture IV

Optimal investments under dynamic performance critria. Lecture IV Optimal investments under dynamic performance critria Lecture IV 1 Utility-based measurement of performance 2 Deterministic environment Utility traits u(x, t) : x wealth and t time Monotonicity u x (x,

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou

Stochastic Partial Differential Equations and Portfolio Choice. Crete, May Thaleia Zariphopoulou Stochastic Partial Differential Equations and Portfolio Choice Crete, May 2011 Thaleia Zariphopoulou Oxford-Man Institute and Mathematical Institute University of Oxford and Mathematics and IROM, The University

More information

Control Improvement for Jump-Diffusion Processes with Applications to Finance

Control Improvement for Jump-Diffusion Processes with Applications to Finance Control Improvement for Jump-Diffusion Processes with Applications to Finance Nicole Bäuerle joint work with Ulrich Rieder Toronto, June 2010 Outline Motivation: MDPs Controlled Jump-Diffusion Processes

More information

Forward Dynamic Utility

Forward Dynamic Utility Forward Dynamic Utility El Karoui Nicole & M RAD Mohamed UnivParis VI / École Polytechnique,CMAP elkaroui@cmapx.polytechnique.fr with the financial support of the "Fondation du Risque" and the Fédération

More information

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin

Spot and forward dynamic utilities. and their associated pricing systems. Thaleia Zariphopoulou. UT, Austin Spot and forward dynamic utilities and their associated pricing systems Thaleia Zariphopoulou UT, Austin 1 Joint work with Marek Musiela (BNP Paribas, London) References A valuation algorithm for indifference

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

A note on the term structure of risk aversion in utility-based pricing systems

A note on the term structure of risk aversion in utility-based pricing systems A note on the term structure of risk aversion in utility-based pricing systems Marek Musiela and Thaleia ariphopoulou BNP Paribas and The University of Texas in Austin November 5, 00 Abstract We study

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes

Fourier Space Time-stepping Method for Option Pricing with Lévy Processes FST method Extensions Indifference pricing Fourier Space Time-stepping Method for Option Pricing with Lévy Processes Vladimir Surkov University of Toronto Computational Methods in Finance Conference University

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption

Problem Set 3. Thomas Philippon. April 19, Human Wealth, Financial Wealth and Consumption Problem Set 3 Thomas Philippon April 19, 2002 1 Human Wealth, Financial Wealth and Consumption The goal of the question is to derive the formulas on p13 of Topic 2. This is a partial equilibrium analysis

More information

Time-Consistent and Market-Consistent Actuarial Valuations

Time-Consistent and Market-Consistent Actuarial Valuations Time-Consistent and Market-Consistent Actuarial Valuations Antoon Pelsser 1 Mitja Stadje 2 1 Maastricht University & Kleynen Consultants & Netspar Email: a.pelsser@maastrichtuniversity.nl 2 Tilburg University

More information

Robust Portfolio Choice and Indifference Valuation

Robust Portfolio Choice and Indifference Valuation and Indifference Valuation Mitja Stadje Dep. of Econometrics & Operations Research Tilburg University joint work with Roger Laeven July, 2012 http://alexandria.tue.nl/repository/books/733411.pdf Setting

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

VII. Incomplete Markets. Tomas Björk

VII. Incomplete Markets. Tomas Björk VII Incomplete Markets Tomas Björk 1 Typical Factor Model Setup Given: An underlying factor process X, which is not the price process of a traded asset, with P -dynamics dx t = µ (t, X t ) dt + σ (t, X

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Introduction to Affine Processes. Applications to Mathematical Finance

Introduction to Affine Processes. Applications to Mathematical Finance and Its Applications to Mathematical Finance Department of Mathematical Science, KAIST Workshop for Young Mathematicians in Korea, 2010 Outline Motivation 1 Motivation 2 Preliminary : Stochastic Calculus

More information

An example of indifference prices under exponential preferences

An example of indifference prices under exponential preferences Finance Stochast. 8, 229 239 (2004) DOI: 0.007/s00780-003-02-5 c Springer-Verlag 2004 An example of indifference prices under exponential preferences Marek Musiela, Thaleia Zariphopoulou 2 BNP Paribas,

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

Portfolio Optimization Under Fixed Transaction Costs

Portfolio Optimization Under Fixed Transaction Costs Portfolio Optimization Under Fixed Transaction Costs Gennady Shaikhet supervised by Dr. Gady Zohar The model Market with two securities: b(t) - bond without interest rate p(t) - stock, an Ito process db(t)

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models

Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Optimal Asset Allocation with Stochastic Interest Rates in Regime-switching Models Ruihua Liu Department of Mathematics University of Dayton, Ohio Joint Work With Cheng Ye and Dan Ren To appear in International

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Part 1: q Theory and Irreversible Investment

Part 1: q Theory and Irreversible Investment Part 1: q Theory and Irreversible Investment Goal: Endogenize firm characteristics and risk. Value/growth Size Leverage New issues,... This lecture: q theory of investment Irreversible investment and real

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

PDE Approach to Credit Derivatives

PDE Approach to Credit Derivatives PDE Approach to Credit Derivatives Marek Rutkowski School of Mathematics and Statistics University of New South Wales Joint work with T. Bielecki, M. Jeanblanc and K. Yousiph Seminar 26 September, 2007

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Martingale representation theorem

Martingale representation theorem Martingale representation theorem Ω = C[, T ], F T = smallest σ-field with respect to which B s are all measurable, s T, P the Wiener measure, B t = Brownian motion M t square integrable martingale with

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models

Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Generalized Multi-Factor Commodity Spot Price Modeling through Dynamic Cournot Resource Extraction Models Bilkan Erkmen (joint work with Michael Coulon) Workshop on Stochastic Games, Equilibrium, and Applications

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Multiple Defaults and Counterparty Risks by Density Approach

Multiple Defaults and Counterparty Risks by Density Approach Multiple Defaults and Counterparty Risks by Density Approach Ying JIAO Université Paris 7 This presentation is based on joint works with N. El Karoui, M. Jeanblanc and H. Pham Introduction Motivation :

More information

is a standard Brownian motion.

is a standard Brownian motion. Stochastic Calculus Final Examination Solutions June 7, 25 There are 2 problems and points each.. (Property of Brownian Bridge) Let Bt = {B t, t B = } be a Brownian bridge, and define dx t = Xt dt + db

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

Portfolio Variation. da f := f da i + (1 f ) da. If the investment at time t is w t, then wealth at time t + dt is

Portfolio Variation. da f := f da i + (1 f ) da. If the investment at time t is w t, then wealth at time t + dt is Return Working in a small-risk context, we derive a first-order condition for optimum portfolio choice. Let da denote the return on the optimum portfolio the return that maximizes expected utility. A one-dollar

More information

Expected utility models. and optimal investments. Lecture III

Expected utility models. and optimal investments. Lecture III Expected utility models and optimal investments Lecture III 1 Market uncertainty, risk preferences and investments 2 Portfolio choice and stochastic optimization Maximal expected utility models Preferences

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel)

All Investors are Risk-averse Expected Utility Maximizers. Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) First Name: Waterloo, April 2013. Last Name: UW ID #:

More information

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Norbert Hilber Seminar of Applied Mathematics ETH Zürich Workshop on Financial Modeling with Jump Processes p. 1/18 Outline

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

Optimal asset allocation in a stochastic factor model - an overview and open problems

Optimal asset allocation in a stochastic factor model - an overview and open problems Optimal asset allocation in a stochastic factor model - an overview and open problems Thaleia Zariphopoulou March 25, 2009 Abstract This paper provides an overview of the optimal investment problem in

More information

A Quadratic Gradient Equation for pricing Mortgage-Backed Securities

A Quadratic Gradient Equation for pricing Mortgage-Backed Securities A Quadratic Gradient Equation for pricing Mortgage-Backed Securities Marco Papi Institute for Applied Computing - CNR Rome (Italy) A Quadratic Gradient Equation for pricing Mortgage-Backed Securities p.1

More information

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences

Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects. The Fields Institute for Mathematical Sciences Incorporating Managerial Cash-Flow Estimates and Risk Aversion to Value Real Options Projects The Fields Institute for Mathematical Sciences Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Yuri Lawryshyn

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution.

The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution. The Life Cycle Model with Recursive Utility: Defined benefit vs defined contribution. Knut K. Aase Norwegian School of Economics 5045 Bergen, Norway IACA/PBSS Colloquium Cancun 2017 June 6-7, 2017 1. Papers

More information

The Self-financing Condition: Remembering the Limit Order Book

The Self-financing Condition: Remembering the Limit Order Book The Self-financing Condition: Remembering the Limit Order Book R. Carmona, K. Webster Bendheim Center for Finance ORFE, Princeton University November 6, 2013 Structural relationships? From LOB Models to

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Non-Time-Separable Utility: Habit Formation

Non-Time-Separable Utility: Habit Formation Finance 400 A. Penati - G. Pennacchi Non-Time-Separable Utility: Habit Formation I. Introduction Thus far, we have considered time-separable lifetime utility specifications such as E t Z T t U[C(s), s]

More information

Choice under Uncertainty

Choice under Uncertainty Chapter 7 Choice under Uncertainty 1. Expected Utility Theory. 2. Risk Aversion. 3. Applications: demand for insurance, portfolio choice 4. Violations of Expected Utility Theory. 7.1 Expected Utility Theory

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

Optimal Execution: II. Trade Optimal Execution

Optimal Execution: II. Trade Optimal Execution Optimal Execution: II. Trade Optimal Execution René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Purdue June 21, 212 Optimal Execution

More information

Exponential utility maximization under partial information

Exponential utility maximization under partial information Exponential utility maximization under partial information Marina Santacroce Politecnico di Torino Joint work with M. Mania AMaMeF 5-1 May, 28 Pitesti, May 1th, 28 Outline Expected utility maximization

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Are the Azéma-Yor processes truly remarkable?

Are the Azéma-Yor processes truly remarkable? Are the Azéma-Yor processes truly remarkable? Jan Obłój j.obloj@imperial.ac.uk based on joint works with L. Carraro, N. El Karoui, A. Meziou and M. Yor Swiss Probability Seminar, 5 Dec 2007 Are the Azéma-Yor

More information

Parameters Estimation in Stochastic Process Model

Parameters Estimation in Stochastic Process Model Parameters Estimation in Stochastic Process Model A Quasi-Likelihood Approach Ziliang Li University of Maryland, College Park GEE RIT, Spring 28 Outline 1 Model Review The Big Model in Mind: Signal + Noise

More information

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics

MAS452/MAS6052. MAS452/MAS Turn Over SCHOOL OF MATHEMATICS AND STATISTICS. Stochastic Processes and Financial Mathematics t r t r2 r t SCHOOL OF MATHEMATICS AND STATISTICS Stochastic Processes and Financial Mathematics Spring Semester 2017 2018 3 hours t s s tt t q st s 1 r s r t r s rts t q st s r t r r t Please leave this

More information

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking

QI SHANG: General Equilibrium Analysis of Portfolio Benchmarking General Equilibrium Analysis of Portfolio Benchmarking QI SHANG 23/10/2008 Introduction The Model Equilibrium Discussion of Results Conclusion Introduction This paper studies the equilibrium effect of

More information

High Frequency Trading in a Regime-switching Model. Yoontae Jeon

High Frequency Trading in a Regime-switching Model. Yoontae Jeon High Frequency Trading in a Regime-switching Model by Yoontae Jeon A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics University

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

On Using Shadow Prices in Portfolio optimization with Transaction Costs

On Using Shadow Prices in Portfolio optimization with Transaction Costs On Using Shadow Prices in Portfolio optimization with Transaction Costs Johannes Muhle-Karbe Universität Wien Joint work with Jan Kallsen Universidad de Murcia 12.03.2010 Outline The Merton problem The

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Prospect Theory: A New Paradigm for Portfolio Choice

Prospect Theory: A New Paradigm for Portfolio Choice Prospect Theory: A New Paradigm for Portfolio Choice 1 Prospect Theory Expected Utility Theory and Its Paradoxes Prospect Theory 2 Portfolio Selection Model and Solution Continuous-Time Market Setting

More information

Dynamic Mean Semi-variance Portfolio Selection

Dynamic Mean Semi-variance Portfolio Selection Dynamic Mean Semi-variance Portfolio Selection Ali Lari-Lavassani and Xun Li The Mathematical and Computational Finance Laboratory Department of Mathematics and Statistics University of Calgary Calgary,

More information

What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations?

What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations? What Can Rational Investors Do About Excessive Volatility and Sentiment Fluctuations? Bernard Dumas INSEAD, Wharton, CEPR, NBER Alexander Kurshev London Business School Raman Uppal London Business School,

More information

Optimal Securitization via Impulse Control

Optimal Securitization via Impulse Control Optimal Securitization via Impulse Control Rüdiger Frey (joint work with Roland C. Seydel) Mathematisches Institut Universität Leipzig and MPI MIS Leipzig Bachelier Finance Society, June 21 (1) Optimal

More information

A Structural Model for Carbon Cap-and-Trade Schemes

A Structural Model for Carbon Cap-and-Trade Schemes A Structural Model for Carbon Cap-and-Trade Schemes Sam Howison and Daniel Schwarz University of Oxford, Oxford-Man Institute The New Commodity Markets Oxford-Man Institute, 15 June 2011 Introduction The

More information

Martingales & Strict Local Martingales PDE & Probability Methods INRIA, Sophia-Antipolis

Martingales & Strict Local Martingales PDE & Probability Methods INRIA, Sophia-Antipolis Martingales & Strict Local Martingales PDE & Probability Methods INRIA, Sophia-Antipolis Philip Protter, Columbia University Based on work with Aditi Dandapani, 2016 Columbia PhD, now at ETH, Zurich March

More information

Risk, Return, and Ross Recovery

Risk, Return, and Ross Recovery Risk, Return, and Ross Recovery Peter Carr and Jiming Yu Courant Institute, New York University September 13, 2012 Carr/Yu (NYU Courant) Risk, Return, and Ross Recovery September 13, 2012 1 / 30 P, Q,

More information

Information, Interest Rates and Geometry

Information, Interest Rates and Geometry Information, Interest Rates and Geometry Dorje C. Brody Department of Mathematics, Imperial College London, London SW7 2AZ www.imperial.ac.uk/people/d.brody (Based on work in collaboration with Lane Hughston

More information

Indifference fee rate 1

Indifference fee rate 1 Indifference fee rate 1 for variable annuities Ricardo ROMO ROMERO Etienne CHEVALIER and Thomas LIM Université d Évry Val d Essonne, Laboratoire de Mathématiques et Modélisation d Evry Second Young researchers

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

Optimal liquidation with market parameter shift: a forward approach

Optimal liquidation with market parameter shift: a forward approach Optimal liquidation with market parameter shift: a forward approach (with S. Nadtochiy and T. Zariphopoulou) Haoran Wang Ph.D. candidate University of Texas at Austin ICERM June, 2017 Problem Setup and

More information

Conditional Certainty Equivalent

Conditional Certainty Equivalent Conditional Certainty Equivalent Marco Frittelli and Marco Maggis University of Milan Bachelier Finance Society World Congress, Hilton Hotel, Toronto, June 25, 2010 Marco Maggis (University of Milan) CCE

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Initial Value Problem for the European Call The main objective of this lesson is solving

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

A New Class of Non-linear Term Structure Models. Discussion

A New Class of Non-linear Term Structure Models. Discussion A New Class of Non-linear Term Structure Models by Eraker, Wang and Wu Discussion Pietro Veronesi The University of Chicago Booth School of Business Main Contribution and Outline of Discussion Main contribution

More information

An Introduction to Point Processes. from a. Martingale Point of View

An Introduction to Point Processes. from a. Martingale Point of View An Introduction to Point Processes from a Martingale Point of View Tomas Björk KTH, 211 Preliminary, incomplete, and probably with lots of typos 2 Contents I The Mathematics of Counting Processes 5 1 Counting

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information