Application of Stochastic Calculus to Price a Quanto Spread

Size: px
Start display at page:

Download "Application of Stochastic Calculus to Price a Quanto Spread"

Transcription

1 Application of Stochastic Calculus to Price a Quanto Spread Christopher Ting Algorithmic Quantitative Finance July 15, 2017 Christopher Ting July 15, /33

2 Table of Contents Introduction Theory Information Contents Co-Variance Swaps Takeaways Christopher Ting July 15, /33

3 Introduction Cross-asset investment and trading strategies Management of currency risks Quanto spread trading of NKD-NIY pair Implied co-volatility is a superior forecast of future co-volatility Co-variance swap Christopher Ting July 15, /33

4 A Market Behavior CNBC Asian markets finished mostly higher on (this) Monday, searching for direction... Japan s Nikkei 225 index finished near flat at 19,251.08, reversing earlier losses of nearly 0.6 percent as the yen weakened against the dollar to trade at at 3:12 p.m. HK/SGP, falling from an earlier high of A stronger yen generally weighs on export-oriented stocks in Japan as it affects their overseas profit margins when funds are converted to the local currency. Christopher Ting July 15, /33

5 A Very Brief Review Variance swap: trade volatility as an asset class Co-variance risk: in crisis, markets tend to move in the same direction: Less research on co-variance swap Carr and Madan (1999) Carr and Corso (2001) Da Fonseca, Grasselli, and Ielpo (2011) What about using forwards or futures to price and hedge co-variance swaps? Christopher Ting July 15, /33

6 Quanto Futures & Spread On CME, two different futures contracts, NIY and NKD, on the same underlying Nikkei 225 index are traded. The quanto spread is defined as Q t = F $,t F,t. Short position in NKD NIY spread on day t is, in dollars, A t = $5 F $,t + R 500 F,t S t, (1) where the spot exchange rate S t is yens per dollar. Christopher Ting July 15, /33

7 Spread Trading Strategy Christopher Ting July 15, /33

8 Proposition 1 Assuming that S t remains constant, the quanto spread position is hedged against Nikkei index movements if and only if the ratio is given by R = S t 100. Proof: By substituting this R into equation 1, we obtain A t = $5 F $,t + $5 F,t = $5 ( F,t Q t + F,t ) = $5 Q t. Suppose both NKD and NIY move up by x index points. The net notional amount becomes B t (x), and B t (x) = $5 ( F $,t + x ) + R 500 ( F,t + x ) = A t $5 x + S t x S t = A t $5 x + $5 x = A t. Christopher Ting July 15, /33 S t

9 Marked-to-Market Value The quanto spread seller is directly exposed to currency risk. If yen weakens, equivalently dollar strengthens, i.e., S u > S t, then the quanto seller may end up having sold the NKD-NIY spread at a low value of Q t in comparison to Q u + (1 S t /S u )F,u, where Q u = F $,u F,u, u > t. ( A u = $5 F $,u + S ) ( t F,u = $5 F,u Q u + S ) t F,u S u S ( ( u = $5 Q u + 1 S ) ) t F,u. S u Christopher Ting July 15, /33

10 P&L of a Quanto Spread Seller By unwinding the position at a later time u: ( ( P&L(t, u) = 5 Q t Q u 1 S ) ) t F,u S u (2) for every NKD contract. If the short quanto spread is held to maturity, ( P&L(t, T) = 5Q t S ) t ) (NT t F,t S T (3) where N T is the value of Nikkei 225 Index at maturity T. Christopher Ting July 15, /33

11 P&L in Different Scenarios for Q = 20 Christopher Ting July 15, /33

12 Proposition 2 Nikkei index N t and the exchange rate U t (dollars per yen) are taken to be geometric Brownian motions, which correlate with a correlation coefficient of ρ: N t = N 0 exp ( µ t + σ 1 W 1 (t) ), (4) ( U t = U 0 exp ν t + ρ σ 2 W 1 (t) + ) 1 ρ 2 σ 2 W 2 (t). (5) Under the assumptions that N t and U t are correlated geometric Brownian motions as in equations 4 and 5, the theoretical (fair) price of the quanto futures F $,t maturing on day T is given by F $,t = exp ( C τ ) F,t, (6) where τ = T t, and C is the rate of co-variance. Christopher Ting July 15, /33

13 Geometric Brownian Motion If an asset V t follows the geometric Brownian motion V t = V 0 exp ( ) µ dt + σ W t, then the log price X t = ln(v t ) is an arithmetic Brownian motion dx t = µ dt + σ dw t. Treat V t = exp(x t ) as a function of X t. By Itô s formula, dv t = V t dx t V t( dxt ) 2 = Vt µ dt V t σ 2 dt + V t σ dw t, leading to the stochastic differential equation, dv t = (µ + 12 ) V σ2 dt + σ dw t. t Christopher Ting July 15, /33

14 Proof Setup Risk-free rate r for money market account and yen money market account D t = exp(ut) of risk-free rate u for yen Yen cash bond in dollars U t D t, and the Nikkei index in dollars, U t N t. Discounted money market account and Nikkei 225 Index in dollars: Y t = e rt U t D t Z t = e rt U t N t Stochastic differential equations dy t = ( ν + σ 2 2 Y /2 + u r) dt + ρ σ 2 dw 1 (t) + 1 ρ 2 σ 2 dw 2 (t), t dz t = ( µ + ν + σ 2 1 Z /2 + ρ σ 1σ 2 + σ 2 2 /2 r) dt + ( σ 1 + ρ σ 2 )dw 1 (t) t + 1 ρ 2 σ 2 dw 2 (t). Christopher Ting July 15, /33

15 Drift Vector, Volatility Matrix, Market Price of Risk Drift vector ( ν + 1 Θ = 2 σ2 2 + u r ) µ + ν σ2 1 + ρ σ 1σ σ2 2 r Volatility matrix ( ) ρ σ2 1 ρ2 σ Σ = 2 σ 1 + ρ σ 2 1 ρ2 σ 2 Two-dimensional market price of risk m = Σ 1( Θ r1 ) = ( m1 m 2 ) Christopher Ting July 15, /33

16 Let Martingales Girsanov s Theorem d W i (t) = dw i (t) + m i dt, for i = 1, 2 dy t Y t = ρ σ 2 d W 1 (t) + 1 ρ 2 σ 2 d W 2 (t). dz t Z t = (σ 1 + ρ σ 2 )d W 1 (t) + 1 ρ 2 σ 2 d W 2 (t). By Girsanov s Theorem, there exists an equivalent risk-neutral measure Q associated with these martingales. Christopher Ting July 15, /33

17 Nikkei 225 Index Under Q The stochastic differential equation for N t is dn t N t = ( µ + σ 2 1 /2) dt + σ 1 dw 1 (t). Under Q with d W 1 (t) = dw 1 (t) + m 1 dt, this stochastic differential equation becomes dn t N t = σ 1 d W 1 (t) ( µ + σ 2 1 /2 + ρ σ 1σ 2 u ) dt + ( µ + σ 2 1 /2) dt = σ 1 d W 1 (t) + ( u ρ σ 1 σ 2 ) dt. The solution is N t = N 0 exp ( σ 1 W1 (t) + ( ) u ρ σ 1 σ 2 σ 2 1 /2) t. Christopher Ting July 15, /33

18 Finally At time t = 0, the theoretical forward price of Nikkei index is F,0 = N 0 exp ( ut ). The solution is re-written as N T = exp ( ρ σ 1 σ 2 T ) ) F,T exp (σ 1 W1 (T) σ 2 1 T/2. Let F $,0 be the forward price of the dollar-denominated forward. The value v 0 of this quanto forward at initiation is zero. Namely v 0 = E Q ( NT F $,0 ) = ( exp( ρ σ1 σ 2 T)F,0 F $,0 ) = 0. Consequently, under the risk-neutral measure Q, F $,0 = exp ( ρ σ 1 σ 2 T ) F,0. Since C = ρ σ 1 σ 2, the pricing formula of the quanto forward for any t T is therefore given by F $,t = exp ( C (T t) ) F,t. Christopher Ting July 15, /33

19 Corollary The theoretical value Q th t of the quanto spread is well approximated by Q th t = ( Cτ + 12 ) (Cτ)2 F,t. (7) Given the theoretical formula for the quanto spread (equation 7), one can define the notion of implied co-variance γ t by using the observed quanto spread traded in the futures market. Namely Q t = ( γ t τ + 12 ) (γ tτ) 2 F,t. Here F,t is the observable market price of NIY. Christopher Ting July 15, /33

20 Implied Co-Variance This equation is rewritten as 1 2 (γ tτ) 2 γ t τ Q t F,t = 0. Solving this quadratic equation with respect to γ t τ results in Implied co-volatility ω t : γ t = Q t /F,t τ. (8) ω t := sign ( γ t ) γt. (9) The other solution γ t τ = Q t /F,t is not admissible because it is strictly larger than 1, which is incompatible with the fact that the magnitude of the co-variance between two returns on financial assets is usually less than 1. Christopher Ting July 15, /33

21 Co-Variance Swap Consider the returns of two assets and their respective volatilities σ 1 and σ 2. The covariance is C = ρσ 1 σ 2 Covariance swap is similar to variance swap: Covariance realized over the tenor T Risk-Neutral Covariance Key idea: use the quanto spread traded in the market to back out a risk-neutral co-variance with the proposed model. Christopher Ting July 15, /33

22 Total Number of Contracts Traded by Maturity Maturity NIY NKD JY ,883 27, ,430 21, , ,825 25, , ,526 39, , ,394 42, , ,419 53, , ,415 48, , ,756 84, , , , , , , , , , , , , , , , , , , , , ,151 1,415, , ,649 1,442,391 Christopher Ting July 15, /33

23 Total Number of Contracts Traded by Maturity (cont d) Maturity NIY NKD JY , ,836 1,636, , ,772 1,934, , ,665 1,862, , ,419 2,684, , ,139 1,765, , ,567 1,630, , ,205 1,786, , ,614 1,948, , ,175 1,908, , ,617 2,577, , ,527 2,413, , ,425 2,210,321 Christopher Ting July 15, /33

24 Average Quanto Spreads Maturity Days Mean Std Min Med Max Christopher Ting July 15, /33

25 Average Quanto Spreads (cont d) Maturity Days Mean Std Min Med Max Christopher Ting July 15, /33

26 Daily Time Series of Average Quanto Spreads of December 2010 Maturity Christopher Ting July 15, /33

27 Daily Time Series of Implied Co-Volatility of December 2010 Maturity Christopher Ting July 15, /33

28 Christopher Ting July 15, /33

29 Rolling Historical Daily Co-Volatility Christopher Ting July 15, /33

30 Realized Co-Volatility Regressed on ICV t and HCV t σ t (τ) = a + b 1 ICV t (τ) + b 2 HCV t (τ) + u t. Days to Ave Num Adjusted maturity (τ) τ Obs a t-stat b 1 t-stat b 2 t-stat R 2 45 τ < τ < τ < τ < τ < τ < τ < τ < τ < τ < τ < Christopher Ting July 15, /33

31 Co-Variance Swap On the maturity date T, the payoff to the swap buyer is Payoff = Ĉ(t, T) γ t. (10) Here the fixed leg is the risk-neutral implied co-variance γ t, which is determined by equation 8, and the floating leg is the co-variance Ĉ(t, T) realized over the swap tenor. Ĉ(t, T) = 365 T t 1 T i=t+1 R N,i R U,i R N R U, Christopher Ting July 15, /33

32 Average P&L of A Long Position in Co-Variance Swap Christopher Ting July 15, /33

33 Takeaways A method to obtain implied co-variance from a pair of forwards Implied co-volatility is a superior forecast compared to historical forecast Shorting quanto spread on average does not gain over the sample period 2005 through 2010 Co-variance swaps are fair to both buyers and sellers A new method to price and hedge co-variance swaps. Christopher Ting July 15, /33

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU CBOE Conference on Derivatives and Volatility, Chicago, Nov. 10, 2017 Peter Carr (NYU) Volatility Smiles and Yield Frowns 11/10/2017 1 / 33 Interest Rates

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

QF 101 Revision. Christopher Ting. Christopher Ting. : : : LKCSB 5036

QF 101 Revision. Christopher Ting. Christopher Ting.   : : : LKCSB 5036 QF 101 Revision Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November 12, 2016 Christopher Ting QF 101 Week 13 November

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Stochastic Differential equations as applied to pricing of options

Stochastic Differential equations as applied to pricing of options Stochastic Differential equations as applied to pricing of options By Yasin LUT Supevisor:Prof. Tuomo Kauranne December 2010 Introduction Pricing an European call option Conclusion INTRODUCTION A stochastic

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson

Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson. Funeral by funeral, theory advances Paul Samuelson Economics has never been a science - and it is even less now than a few years ago. Paul Samuelson Funeral by funeral, theory advances Paul Samuelson Economics is extremely useful as a form of employment

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University

Optimal Hedging of Variance Derivatives. John Crosby. Centre for Economic and Financial Studies, Department of Economics, Glasgow University Optimal Hedging of Variance Derivatives John Crosby Centre for Economic and Financial Studies, Department of Economics, Glasgow University Presentation at Baruch College, in New York, 16th November 2010

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Hedging Basket Credit Derivatives with CDS

Hedging Basket Credit Derivatives with CDS Hedging Basket Credit Derivatives with CDS Wolfgang M. Schmidt HfB - Business School of Finance & Management Center of Practical Quantitative Finance schmidt@hfb.de Frankfurt MathFinance Workshop, April

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

16. Inflation-Indexed Swaps

16. Inflation-Indexed Swaps 6. Inflation-Indexed Swaps Given a set of dates T,...,T M, an Inflation-Indexed Swap (IIS) is a swap where, on each payment date, Party A pays Party B the inflation rate over a predefined period, while

More information

Youngrok Lee and Jaesung Lee

Youngrok Lee and Jaesung Lee orean J. Math. 3 015, No. 1, pp. 81 91 http://dx.doi.org/10.11568/kjm.015.3.1.81 LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES Youngrok Lee and Jaesung Lee Abstract. This paper

More information

Weighted Variance Swap

Weighted Variance Swap Weighted Variance Swap Roger Lee University of Chicago February 17, 9 Let the underlying process Y be a semimartingale taking values in an interval I. Let ϕ : I R be a difference of convex functions, and

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1. THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** Abstract The change of numeraire gives very important computational

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

M.I.T Fall Practice Problems

M.I.T Fall Practice Problems M.I.T. 15.450-Fall 2010 Sloan School of Management Professor Leonid Kogan Practice Problems 1. Consider a 3-period model with t = 0, 1, 2, 3. There are a stock and a risk-free asset. The initial stock

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Hedging of Credit Derivatives in Models with Totally Unexpected Default

Hedging of Credit Derivatives in Models with Totally Unexpected Default Hedging of Credit Derivatives in Models with Totally Unexpected Default T. Bielecki, M. Jeanblanc and M. Rutkowski Carnegie Mellon University Pittsburgh, 6 February 2006 1 Based on N. Vaillant (2001) A

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

Structural Models of Credit Risk and Some Applications

Structural Models of Credit Risk and Some Applications Structural Models of Credit Risk and Some Applications Albert Cohen Actuarial Science Program Department of Mathematics Department of Statistics and Probability albert@math.msu.edu August 29, 2018 Outline

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

The Black-Scholes Equation using Heat Equation

The Black-Scholes Equation using Heat Equation The Black-Scholes Equation using Heat Equation Peter Cassar May 0, 05 Assumptions of the Black-Scholes Model We have a risk free asset given by the price process, dbt = rbt The asset price follows a geometric

More information

(A note) on co-integration in commodity markets

(A note) on co-integration in commodity markets (A note) on co-integration in commodity markets Fred Espen Benth Centre of Mathematics for Applications (CMA) University of Oslo, Norway In collaboration with Steen Koekebakker (Agder) Energy & Finance

More information

Hedging under arbitrage

Hedging under arbitrage Hedging under arbitrage Johannes Ruf Columbia University, Department of Statistics AnStAp10 August 12, 2010 Motivation Usually, there are several trading strategies at one s disposal to obtain a given

More information

2.1 Mean-variance Analysis: Single-period Model

2.1 Mean-variance Analysis: Single-period Model Chapter Portfolio Selection The theory of option pricing is a theory of deterministic returns: we hedge our option with the underlying to eliminate risk, and our resulting risk-free portfolio then earns

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

The Mathematics of Currency Hedging

The Mathematics of Currency Hedging The Mathematics of Currency Hedging Benoit Bellone 1, 10 September 2010 Abstract In this note, a very simple model is designed in a Gaussian framework to study the properties of currency hedging Analytical

More information

Pricing Variance Swaps on Time-Changed Lévy Processes

Pricing Variance Swaps on Time-Changed Lévy Processes Pricing Variance Swaps on Time-Changed Lévy Processes ICBI Global Derivatives Volatility and Correlation Summit April 27, 2009 Peter Carr Bloomberg/ NYU Courant pcarr4@bloomberg.com Joint with Roger Lee

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that

CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS. In all of these X(t) is Brownian motion. 1. By considering X 2 (t), show that CHAPTER 5 ELEMENTARY STOCHASTIC CALCULUS In all of these X(t is Brownian motion. 1. By considering X (t, show that X(τdX(τ = 1 X (t 1 t. We use Itô s Lemma for a function F(X(t: Note that df = df dx dx

More information

The Self-financing Condition: Remembering the Limit Order Book

The Self-financing Condition: Remembering the Limit Order Book The Self-financing Condition: Remembering the Limit Order Book R. Carmona, K. Webster Bendheim Center for Finance ORFE, Princeton University November 6, 2013 Structural relationships? From LOB Models to

More information

Jaime Frade Dr. Niu Interest rate modeling

Jaime Frade Dr. Niu Interest rate modeling Interest rate modeling Abstract In this paper, three models were used to forecast short term interest rates for the 3 month LIBOR. Each of the models, regression time series, GARCH, and Cox, Ingersoll,

More information

Stochastic Volatility

Stochastic Volatility Stochastic Volatility A Gentle Introduction Fredrik Armerin Department of Mathematics Royal Institute of Technology, Stockholm, Sweden Contents 1 Introduction 2 1.1 Volatility................................

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives

LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives Weierstrass Institute for Applied Analysis and Stochastics LIBOR models, multi-curve extensions, and the pricing of callable structured derivatives John Schoenmakers 9th Summer School in Mathematical Finance

More information

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as: Continuous Time Finance Notes, Spring 2004 Section 1. 1/21/04 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connection with the NYU course Continuous Time Finance. This

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Implementing an Agent-Based General Equilibrium Model

Implementing an Agent-Based General Equilibrium Model Implementing an Agent-Based General Equilibrium Model 1 2 3 Pure Exchange General Equilibrium We shall take N dividend processes δ n (t) as exogenous with a distribution which is known to all agents There

More information

American Spread Option Models and Valuation

American Spread Option Models and Valuation Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2013-05-31 American Spread Option Models and Valuation Yu Hu Brigham Young University - Provo Follow this and additional works

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Calculating Implied Volatility

Calculating Implied Volatility Statistical Laboratory University of Cambridge University of Cambridge Mathematics and Big Data Showcase 20 April 2016 How much is an option worth? A call option is the right, but not the obligation, to

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

DYNAMIC CDO TERM STRUCTURE MODELLING

DYNAMIC CDO TERM STRUCTURE MODELLING DYNAMIC CDO TERM STRUCTURE MODELLING Damir Filipović (joint with Ludger Overbeck and Thorsten Schmidt) Vienna Institute of Finance www.vif.ac.at PRisMa 2008 Workshop on Portfolio Risk Management TU Vienna,

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Supplementary Appendix to The Risk Premia Embedded in Index Options

Supplementary Appendix to The Risk Premia Embedded in Index Options Supplementary Appendix to The Risk Premia Embedded in Index Options Torben G. Andersen Nicola Fusari Viktor Todorov December 214 Contents A The Non-Linear Factor Structure of Option Surfaces 2 B Additional

More information

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus.

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus. Itô s Calculus Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 21, 2016 Christopher Ting QF 101 Week 10 October

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

PAPER 211 ADVANCED FINANCIAL MODELS

PAPER 211 ADVANCED FINANCIAL MODELS MATHEMATICAL TRIPOS Part III Friday, 27 May, 2016 1:30 pm to 4:30 pm PAPER 211 ADVANCED FINANCIAL MODELS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry equal

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Logarithmic derivatives of densities for jump processes

Logarithmic derivatives of densities for jump processes Logarithmic derivatives of densities for jump processes Atsushi AKEUCHI Osaka City University (JAPAN) June 3, 29 City University of Hong Kong Workshop on Stochastic Analysis and Finance (June 29 - July

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

Multi-dimensional Term Structure Models

Multi-dimensional Term Structure Models Multi-dimensional Term Structure Models We will focus on the affine class. But first some motivation. A generic one-dimensional model for zero-coupon yields, y(t; τ), looks like this dy(t; τ) =... dt +

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013

MSc Financial Engineering CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL. To be handed in by monday January 28, 2013 MSc Financial Engineering 2012-13 CHRISTMAS ASSIGNMENT: MERTON S JUMP-DIFFUSION MODEL To be handed in by monday January 28, 2013 Department EMS, Birkbeck Introduction The assignment consists of Reading

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information