Martingale Approach to Pricing and Hedging

Size: px
Start display at page:

Download "Martingale Approach to Pricing and Hedging"

Transcription

1 Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic Black-Scholes model. We have one riskless asset and one risky asset with prices given, respectively, by B = fb t = e rt g t[; ] and S t = fs t g t[; ] satisfying ds t = S t + SdW t ; S > : We can setup strategies = f t ; 1 t g with value V t () = t B t + 1 t S t and that satisfy the self- nancing condition dv t () = t db t + 1 t ds t = re rt t dt + 1 t ds t ; or equivalently 1.1 Change of Numeraire V t () = V () + sdb s + 1 sds s : As the price processes are strictly positive, in particular B t > ; one can always normalize the market by considering ~B t = Bt 1 B t = 1 and S ~ t = Bt 1 S t = e rt S t : hus normalization corresponds to regarding the price B t of the safe investment (riskless asset) as the unit of price (the numeraire) and computing the other prices in terms of this unit. Alternatively, one can look at the normalized market as a discounted market where all assets are quoted (priced) in terms of its the present value. Moreover, we can consider the discounted portfolio ~V t () = B 1 t V t () = e rt t B t + 1 t S t = t + 1 t ~ S t ; and, applying integration by parts, one has that d V ~ t () = Bt 1 dv t () re rt V t ()dt + dbt 1 (dvt ()) {z } = = e rt dv t () r ~ V t ()dt: (1) If we assume that dv t () = t db t + 1 t ds t ; i.e., is self- nancing, then d V ~ t () = e rt fr t e rt dt + 1 t ds t g r n t + 1 ~ o t S t dt = 1 t e rt ds t r 1 t e rt S t dt = 1 t e rt ds t + d(e rt )S t = 1 t d S ~ t ; which yields that V ~ t () is self- nancing because d B ~ t = d(1) = : Using formula (1) and assuming that d V ~ t () = 1 t d S ~ t (i.e. is self- nancing in the normalized market) one gets that is self- nancing in the unnormalized market. Hence, self- nancing portfolios are invariant by a change of numeraire or discounting, in other words, a portfolio is self- nancing if and only if is self- nancing in the normalized market. From a nancial point of view this makes sense because the self- nancing property, that is, the fact that changes in the value of the portfolio are due only to changes in the asset prices, does not depend on which unit we measure the prices. Note that, in the discounted market, a self- nancing portfolio is written in integral form as ~V t () = V () + 1 sd ~ S s : 1 Last updated: November 3, 15

2 1. Equivalent Martingale Measures and Arbitrage he process M t = exp = exp r r dw s W t 1 r ds! r t! ; is a martingale with respect to P. By Girsanov s theorem, we can de ne a probability measure Q by setting dq dp = M and the process 1 ~W t = r t + W t; is a Brownian motion under Q: In addition, as M > ; we have that Q P: In the previous lecture, we showed that the dynamics of S under Q is that of a geometric Brownian motion with drift r and volatility ; i.e., ds t = rs t dt + S t d W ~ t : If we now compute d ~ S t ; we get that or in explicit form d S ~ t = d(e rt S t ) = re rt S t dt + e rt ds t = r S ~ t dt + e rt rs t dt + S t d W ~ t = r ~ S t dt + r ~ S t dt + ~ S t d ~ W t = ~ S t d ~ W t ; () ~S t = S ~ exp W ~ t t ; which is a martingale under Q: his motivates the following general de nition. De nition 1 An equivalent martingale measure (EMM) is a probability measure Q equivalent to P (P Q) such that the discounted price of any asset in the market is a martingale under Q: Remark We just have shown that in the basic Black-Scholes model there is at least one equivalent probability measure Q, given by! dq dp = exp r W 1 r : Note also that the discounted price of the riskless asset is constant and, hence, a martingale under any probability measure. Moreover, we have that ~V t () = ~ V () + 1 sd ~ S s = ~ V () + 1 s ~ S s d ~ W t ; and V ~ t () is a stochastic integral with respect to a Brownian motion under Q. Hence, under the integrability condition " Z # E Q 1 t S ~ t dt < 1; we have that ~ V t () is a martingale under Q: his property motivates the following de nition of admissibility. Last updated: November 3, 15

3 De nition 3 A self- nancing trading strategy is called admissible if ~ V t () is a martingale under Q. he next proposition shows that the class of admissible strategies is a good class in terms of arbitrage. Proposition 4 he Black-Scholes model is free of arbitrage in the sense that there exists no admissible arbitrage portfolios. Proof. Assume that is an arbitrage portfolio, i.e. V () ; V () ; P -a.s. and P (V () > ) > : As Q P; we also have that V () ; Q-a.s. and Q(V () > ) > : hen, h i Z # E ~V Q () = E Q "V () + 1 sd S ~ s " Z # = V () + E Q 1 t d S ~ t = V () ; because the integral is a martingale with zero expectation, h under i Q. his is a contradiction, because V () ; Q-a.s. and Q(V () > ) > yields that E ~V Q () > : he following, imprecisely stated, theorem is one of the cornerstones of mathematical nance. heorem 5 (First Fundamental heorem of Asset Pricing) A market model is free of arbitrage if and only if there exists at least one equivalent martingale measure. he di cult part is to show that if the model is free of arbitrage then there exists an equivalent martingale measure. 1.3 Equivalent Martingale Measures and Completeness Our goal is to give an arbitrage free price to any sensible contingent claim H (a positive F - measurable random variable satisfying some integrability constraints) that pays some amount at time : We just have shown that in the Black-Scholes model there are no arbitrage opportunities because there exists an EMM Q: Moreover, we have seen that if is admissible then ~ V () is a martingale under Q: hen, if we combine these facts with the martingale representation theorem we have all the ingredients for pricing and hedging. heorem 6 (Risk Neutral Pricing) Let H L (; F ; Q) be a contingent claim. arbitrage free price of H is given by hen the t (H) = E Q [e r( t) HjF t ]; (3) and the price at time is given by Moreover, the hedging strategy is given by (H) = E Q [e r H]: t = t (H) 1 t ~ S t ; 1 t = h t ~ S t ; where h is the unique process in L a; such that Z e r H = E Q [e r H] + h s d W ~ s : Proof. We have that t (H); the arbitrage free price at time t of any replicable contingent claim H; is given by V t () the value of its admissible hedging portfolio at time t. Hence, if is a hedging strategy for H we have that Z Z H = V () + t db t + 1 t ds t ; 3 Last updated: November 3, 15

4 and the discounted portfolio will be a replicating portfolio for the claim ~ H = e r H; i.e., Z ~H = V ~ () = V () + 1 t d S ~ t : It follows from the martingale properties of ~ V () under Q that E Q [e r HjF t ] = E Q [ ~ V ()jf t ] = ~ V t () = e rt V t (); which yields V t () = E Q [e r( t) HjF t ]: he equality t (H) = V t () yields the pricing formula (3) : he second step is to prove that a su cient condition for a claim H to be replicable is that H L (; F ; Q): Consider the discounted claim ~ H = e r H; which also belongs to L (; F ; Q): Consider the square integrable martingale M t = E Q [e r HjF t ] under Q: As ~ W is a F-Brownian motion under Q we can apply the martingale representation theorem to write M t = E Q [e r H] + for h L a; : De ne the trading strategy given by h s d ~ W s ; he discounted value of this portfolio is t = M t 1 t ~ S t ; 1 t = h t ~ S t : ~V t () = t + 1 t ~ S t = M t ; which is a martingale under Q; so it is admissible. Its nal value will be V () = e r ~ V () = e r M = E Q [HjF ] = H; therefore V t () replicates H: Finally, is self- nancing because and, on the other hand, by equation () we get d ~ V t () = dm t = h t d ~ W t ; 1 t d ~ S t = h t ~ S t d ~ S = h t d ~ W t : Remark 7 he previous theorem provides a very general pricing and hedging formulae and it is very useful to prove theoretical results in the eld of mathematical nance. However, in practical terms, it may be di cult to use because it involves the computation of a conditional expectation. he computation of the hedging strategy is even more di cult as there are no general formulas for computing the kernels in a martingale representation. If the random variable H is smooth in the sense of Malliavin, then one can use the Clark-Ocone formula for those kernels but even in that case it appears a conditional expectation to compute. Remark 8 A su cient condition for H L (; F ; Q) is that H L +" (; F ; P ) for some " > : Remark 9 In the basic Black-Scholes model the ltration F W = F ~W and, hence, we can apply directly the martingale representation theorem with ~ W. In more general cases, when the drift and volatility of S are random, we only have that F ~W F W and in order to apply the martingale representation theorem with ~ W we would need H to be ~ F -measurable. Nevertheless, one can prove that such martingale representation still holds in those cases but it needs additional proof. 4 Last updated: November 3, 15

5 Example 1 Assume that H = h(s ) then t (H) = E Q h e r( t) h(s )jf t i : S t solves the following s.d.e. ds t = rs t + S t d ~ W t ; under Q: Hence, S t is a Markov process, and we have that h i h E Q e r( t) h(s )jf t = E Q e r( i t) h(s t;x ) j x=st : Moreover, by the Feynman-Kac representation, v(t; x) := E Q e r( Scholes PDE with terminal condition h(x): t) f(s t;x ) solves the Black- herefore, the Black-Scholes market is complete for all contingent claims that are square integrable under an equivalent martingale measure. Up till now we have proved that in Black-Scholes model there exists an EMM measure Q given by! dq dp = exp r W 1 r : But, does there exist another ^Q P such that under ^Q the discounted price process ~ S t = e rt S t is a martingale? he answer is no. Lemma 11 In the Black-Scholes model Q is the unique EMM. Proof. I m going to sketch the proof. Assume that ^Q is another h probability i measure such that ^Q P: hen, we can consider the density process D t = E d ^Q dp jf t : Assume that d ^Q dp L (P ). herefore, by the martingale representation theorem we have that " d D t = E ^Q # + s dw s = 1 + s dw s : dp By a similar reasonings as in the Girsanov s theorem, one can prove that a process X t is a martingale under ^Q if and only if D t X t is a martingale under P: Assume that ~ S t is martingale under ^Q then D t ~ St must be a martingale under P: Let us compute the dynamics of D t ~ St under P: First, we have that d ~ S t = ( dd t = t dw t : hen, by the integration by parts formula, we get d(d t ~ St ) = D t d ~ S t + ~ S t dd t + dd t d ~ S t r) ~ S t dt + ~ S t dw t = D t ( r) S ~ t dt + D t S ~ t dw t + S ~ t t dw t + t S ~ t dt = nd t ( r) S ~ t + t S ~ o t dt + nd t S ~ t + S ~ o t t dw t : Hence, for D t ~ St to be a martingale we must have that D t ( r) ~ S t + t ~ S t = ; P ; a.e. which is equivalent to have hus, D t has the representation ( r) t = D t : D t = 1 ( r) D s dw s : 5 Last updated: November 3, 15

6 But the unique solution of this s.d.e. is D t = exp ( r) 1 W t r t! : As D = dq dp we get that, actually, ^Q = Q: he only point left is the assumption that d ^Q dp L (P ); but this is just a technical point that can be addressed. here exists a deep result that links the uniqueness of a martingale measure and the completeness of a market model. heorem 1 (Second Fundamental heorem of Asset Pricing) If a market model admits an EMM Q; then the market is complete if and only if Q is the unique EMM. 6 Last updated: November 3, 15

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Arbitrage, Martingales, and Pricing Kernels

Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels Arbitrage, Martingales, and Pricing Kernels 1/ 36 Introduction A contingent claim s price process can be transformed into a martingale process by 1 Adjusting

More information

Basic Arbitrage Theory KTH Tomas Björk

Basic Arbitrage Theory KTH Tomas Björk Basic Arbitrage Theory KTH 2010 Tomas Björk Tomas Björk, 2010 Contents 1. Mathematics recap. (Ch 10-12) 2. Recap of the martingale approach. (Ch 10-12) 3. Change of numeraire. (Ch 26) Björk,T. Arbitrage

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Valuation of derivative assets Lecture 8

Valuation of derivative assets Lecture 8 Valuation of derivative assets Lecture 8 Magnus Wiktorsson September 27, 2018 Magnus Wiktorsson L8 September 27, 2018 1 / 14 The risk neutral valuation formula Let X be contingent claim with maturity T.

More information

Basic Concepts and Examples in Finance

Basic Concepts and Examples in Finance Basic Concepts and Examples in Finance Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M The Financial Market The Financial Market We assume there are

More information

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as:

************* with µ, σ, and r all constant. We are also interested in more sophisticated models, such as: Continuous Time Finance Notes, Spring 2004 Section 1. 1/21/04 Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connection with the NYU course Continuous Time Finance. This

More information

25857 Interest Rate Modelling

25857 Interest Rate Modelling 25857 UTS Business School University of Technology Sydney Chapter 20. Change of Numeraire May 15, 2014 1/36 Chapter 20. Change of Numeraire 1 The Radon-Nikodym Derivative 2 Option Pricing under Stochastic

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE DOI: 1.1214/ECP.v7-149 Elect. Comm. in Probab. 7 (22) 79 83 ELECTRONIC COMMUNICATIONS in PROBABILITY OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE FIMA KLEBANER Department of Mathematics & Statistics,

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Risk Neutral Modelling Exercises

Risk Neutral Modelling Exercises Risk Neutral Modelling Exercises Geneviève Gauthier Exercise.. Assume that the rice evolution of a given asset satis es dx t = t X t dt + X t dw t where t = ( + sin (t)) and W = fw t : t g is a (; F; P)

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Exam Quantitative Finance (35V5A1)

Exam Quantitative Finance (35V5A1) Exam Quantitative Finance (35V5A1) Part I: Discrete-time finance Exercise 1 (20 points) a. Provide the definition of the pricing kernel k q. Relate this pricing kernel to the set of discount factors D

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

Dynamic Hedging and PDE Valuation

Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation Dynamic Hedging and PDE Valuation 1/ 36 Introduction Asset prices are modeled as following di usion processes, permitting the possibility of continuous trading. This environment

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Lecture 8: The Black-Scholes theory

Lecture 8: The Black-Scholes theory Lecture 8: The Black-Scholes theory Dr. Roman V Belavkin MSO4112 Contents 1 Geometric Brownian motion 1 2 The Black-Scholes pricing 2 3 The Black-Scholes equation 3 References 5 1 Geometric Brownian motion

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki Jena, March 29, 211 Fractional Lévy processes 1/36 Outline of the talk 1. Introduction 2. Main results 3. Methodology 4. Conclusions

More information

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that.

RMSC 4005 Stochastic Calculus for Finance and Risk. 1 Exercises. (c) Let X = {X n } n=0 be a {F n }-supermartingale. Show that. 1. EXERCISES RMSC 45 Stochastic Calculus for Finance and Risk Exercises 1 Exercises 1. (a) Let X = {X n } n= be a {F n }-martingale. Show that E(X n ) = E(X ) n N (b) Let X = {X n } n= be a {F n }-submartingale.

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

Beyond the Black-Scholes-Merton model

Beyond the Black-Scholes-Merton model Econophysics Lecture Leiden, November 5, 2009 Overview 1 Limitations of the Black-Scholes model 2 3 4 Limitations of the Black-Scholes model Black-Scholes model Good news: it is a nice, well-behaved model

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

An overview of some financial models using BSDE with enlarged filtrations

An overview of some financial models using BSDE with enlarged filtrations An overview of some financial models using BSDE with enlarged filtrations Anne EYRAUD-LOISEL Workshop : Enlargement of Filtrations and Applications to Finance and Insurance May 31st - June 4th, 2010, Jena

More information

BLACK SCHOLES THE MARTINGALE APPROACH

BLACK SCHOLES THE MARTINGALE APPROACH BLACK SCHOLES HE MARINGALE APPROACH JOHN HICKSUN. Introduction hi paper etablihe the Black Schole formula in the martingale, rik-neutral valuation framework. he intent i two-fold. One, to erve a an introduction

More information

Fractional Brownian Motion as a Model in Finance

Fractional Brownian Motion as a Model in Finance Fractional Brownian Motion as a Model in Finance Tommi Sottinen, University of Helsinki Esko Valkeila, University of Turku and University of Helsinki 1 Black & Scholes pricing model In the classical Black

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

THE MARTINGALE METHOD DEMYSTIFIED

THE MARTINGALE METHOD DEMYSTIFIED THE MARTINGALE METHOD DEMYSTIFIED SIMON ELLERSGAARD NIELSEN Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk s Arbitrage Theory

More information

Stochastic Volatility

Stochastic Volatility Stochastic Volatility A Gentle Introduction Fredrik Armerin Department of Mathematics Royal Institute of Technology, Stockholm, Sweden Contents 1 Introduction 2 1.1 Volatility................................

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser

Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Lecture: Continuous Time Finance Lecturer: o. Univ. Prof. Dr. phil. Helmut Strasser Part 1: Introduction Chapter 1: Review of discrete time finance Part 2: Stochastic analysis Chapter 2: Stochastic processes

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Dynamic Principal Agent Models: A Continuous Time Approach Lecture II

Dynamic Principal Agent Models: A Continuous Time Approach Lecture II Dynamic Principal Agent Models: A Continuous Time Approach Lecture II Dynamic Financial Contracting I - The "Workhorse Model" for Finance Applications (DeMarzo and Sannikov 2006) Florian Ho mann Sebastian

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1 Chapter 9 The isk Neutral Pricing Measure for the Black-Scholes Model The discounted portfolio value of a selffinancing strategy in discrete time was given by v tk = v 0 + k δ tj (s tj s tj ) (9.) where

More information

Martingale invariance and utility maximization

Martingale invariance and utility maximization Martingale invariance and utility maximization Thorsten Rheinlander Jena, June 21 Thorsten Rheinlander () Martingale invariance Jena, June 21 1 / 27 Martingale invariance property Consider two ltrations

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs. Zhenjiang Qin. CREATES Research Paper

Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs. Zhenjiang Qin. CREATES Research Paper Continuous Trading Dynamically Effectively Complete Market with Heterogeneous Beliefs Zhenjiang Qin CREATES Research Paper -4 Department of Economics and Business Aarhus University Bartholins Allé DK-8

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Completeness and Hedging. Tomas Björk

Completeness and Hedging. Tomas Björk IV Completeness and Hedging Tomas Björk 1 Problems around Standard Black-Scholes We assumed that the derivative was traded. How do we price OTC products? Why is the option price independent of the expected

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Youngrok Lee and Jaesung Lee

Youngrok Lee and Jaesung Lee orean J. Math. 3 015, No. 1, pp. 81 91 http://dx.doi.org/10.11568/kjm.015.3.1.81 LOCAL VOLATILITY FOR QUANTO OPTION PRICES WITH STOCHASTIC INTEREST RATES Youngrok Lee and Jaesung Lee Abstract. This paper

More information

A note on the term structure of risk aversion in utility-based pricing systems

A note on the term structure of risk aversion in utility-based pricing systems A note on the term structure of risk aversion in utility-based pricing systems Marek Musiela and Thaleia ariphopoulou BNP Paribas and The University of Texas in Austin November 5, 00 Abstract We study

More information

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester

Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Derivative Securities Fall 2012 Final Exam Guidance Extended version includes full semester Our exam is Wednesday, December 19, at the normal class place and time. You may bring two sheets of notes (8.5

More information

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6

Lecture 3. Sergei Fedotov Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) / 6 Lecture 3 Sergei Fedotov 091 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 091 010 1 / 6 Lecture 3 1 Distribution for lns(t) Solution to Stochastic Differential Equation

More information

Change of Measure (Cameron-Martin-Girsanov Theorem)

Change of Measure (Cameron-Martin-Girsanov Theorem) Change of Measure Cameron-Martin-Girsanov Theorem Radon-Nikodym derivative: Taking again our intuition from the discrete world, we know that, in the context of option pricing, we need to price the claim

More information

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree

Lecture Notes for Chapter 6. 1 Prototype model: a one-step binomial tree Lecture Notes for Chapter 6 This is the chapter that brings together the mathematical tools (Brownian motion, Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the derivative

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing. 1 Introduction. Mrinal K. Ghosh Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

More information

Financial Markets with a Large Trader: an Approach via Carmona-Nualart Integration

Financial Markets with a Large Trader: an Approach via Carmona-Nualart Integration Financial Markets with a Large Trader: an Approach via Carmona-Nualart Integration Jan Kallsen Christian-Albrechts-Universität zu Kiel Christian-Albrechts-Platz 4 D-498 Kiel kallsen@math.uni-kiel.de Thorsten

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki St. Petersburg, April 12, 211 Fractional Lévy processes 1/26 Outline of the talk 1. Introduction 2. Main results 3. Conclusions

More information

Ṽ t (H) = e rt V t (H)

Ṽ t (H) = e rt V t (H) liv10.tex Week 10: 31.3.2014 The Black-Scholes Model (continued) The discounted value process is and the interest rate is r. So Ṽ t (H) = e rt V t (H) dṽt(h) = re rt dt.v t (H) + e rt dv t (H) (since e

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark).

1. 2 marks each True/False: briefly explain (no formal proofs/derivations are required for full mark). The University of Toronto ACT460/STA2502 Stochastic Methods for Actuarial Science Fall 2016 Midterm Test You must show your steps or no marks will be awarded 1 Name Student # 1. 2 marks each True/False:

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

LECTURE 4: BID AND ASK HEDGING

LECTURE 4: BID AND ASK HEDGING LECTURE 4: BID AND ASK HEDGING 1. Introduction One of the consequences of incompleteness is that the price of derivatives is no longer unique. Various strategies for dealing with this exist, but a useful

More information

The Black-Scholes Model

The Black-Scholes Model IEOR E4706: Foundations of Financial Engineering c 2016 by Martin Haugh The Black-Scholes Model In these notes we will use Itô s Lemma and a replicating argument to derive the famous Black-Scholes formula

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

Option Pricing under Delay Geometric Brownian Motion with Regime Switching

Option Pricing under Delay Geometric Brownian Motion with Regime Switching Science Journal of Applied Mathematics and Statistics 2016; 4(6): 263-268 http://www.sciencepublishinggroup.com/j/sjams doi: 10.11648/j.sjams.20160406.13 ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online)

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT)

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Pricing Black-Scholes Formula Lecture 19 Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Valuation: Two-Horse Race Example One horse has 20% chance to win another has 80% chance $10000

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Finance II. May 27, F (t, x)+αx f t x σ2 x 2 2 F F (T,x) = ln(x).

Finance II. May 27, F (t, x)+αx f t x σ2 x 2 2 F F (T,x) = ln(x). Finance II May 27, 25 1.-15. All notation should be clearly defined. Arguments should be complete and careful. 1. (a) Solve the boundary value problem F (t, x)+αx f t x + 1 2 σ2 x 2 2 F (t, x) x2 =, F

More information

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS

PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS MATHEMATICAL TRIPOS Part III Thursday, 5 June, 214 1:3 pm to 4:3 pm PAPER 27 STOCHASTIC CALCULUS AND APPLICATIONS Attempt no more than FOUR questions. There are SIX questions in total. The questions carry

More information

Mean-Variance Hedging under Additional Market Information

Mean-Variance Hedging under Additional Market Information Mean-Variance Hedging under Additional Market Information Frank hierbach Department of Statistics University of Bonn Adenauerallee 24 42 53113 Bonn, Germany email: thierbach@finasto.uni-bonn.de Abstract

More information

Girsanov s Theorem. Bernardo D Auria web: July 5, 2017 ICMAT / UC3M

Girsanov s Theorem. Bernardo D Auria   web:   July 5, 2017 ICMAT / UC3M Girsanov s Theorem Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 5, 2017 ICMAT / UC3M Girsanov s Theorem Decomposition of P-Martingales as Q-semi-martingales Theorem

More information

3.1 Itô s Lemma for Continuous Stochastic Variables

3.1 Itô s Lemma for Continuous Stochastic Variables Lecture 3 Log Normal Distribution 3.1 Itô s Lemma for Continuous Stochastic Variables Mathematical Finance is about pricing (or valuing) financial contracts, and in particular those contracts which depend

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels

Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels Basics of Asset Pricing Theory {Derivatives pricing - Martingales and pricing kernels Yashar University of Illinois July 1, 2012 Motivation In pricing contingent claims, it is common not to have a simple

More information

Hedging Credit Derivatives in Intensity Based Models

Hedging Credit Derivatives in Intensity Based Models Hedging Credit Derivatives in Intensity Based Models PETER CARR Head of Quantitative Financial Research, Bloomberg LP, New York Director of the Masters Program in Math Finance, Courant Institute, NYU Stanford

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks Instructor Information Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor: Daniel Bauer Office: Room 1126, Robinson College of Business (35 Broad Street) Office Hours: By appointment (just

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

The Capital Asset Pricing Model as a corollary of the Black Scholes model

The Capital Asset Pricing Model as a corollary of the Black Scholes model he Capital Asset Pricing Model as a corollary of the Black Scholes model Vladimir Vovk he Game-heoretic Probability and Finance Project Working Paper #39 September 6, 011 Project web site: http://www.probabilityandfinance.com

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information