How to hedge Asian options in fractional Black-Scholes model

Size: px
Start display at page:

Download "How to hedge Asian options in fractional Black-Scholes model"

Transcription

1 How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki Jena, March 29, 211 Fractional Lévy processes 1/36

2 Outline of the talk 1. Introduction 2. Main results 3. Methodology 4. Conclusions Fractional Lévy processes 2/36

3 1. Introduction Asian options Fractional Brownian motion Fractional Black-Scholes Pathwise stochastic integration Hedging problem Case of European options Fractional Lévy processes 3/36

4 Introduction Change of variables formulas [Itô formulas] for both arithmetic and geometric averages of geometric fractional Brownian motion. Valid for all convex functions, not only for smooth ones. Can be used for obtaining hedges (but not prices) for Asian options in fractional Black-Scholes model. Explicit hedges in some cases where hedges are not known explicitely even in the ordinary Black-Scholes model. Fractional Lévy processes 4/36

5 Asian options Let S(t) be the price of the underlying asset. Asian options depend on the time average of the underlying. he payoff of the arithmetic Asian option is ( 1 ) f S(s)ds and the payoff of the geometric Asian option ( ( 1 )) f exp log S(s)ds. Fractional Lévy processes 5/36

6 Asian options (continued) Arithmetic Asian options are important in practise. Used for example in commodity markets. Geometric Asian options are easier to consider analytically e.g. in ordinary Black-Scholes model. he problem with arithmetic Asian options is that sum of lognormals is not lognormal. Here we overcome this problem by using pathwise methods. Fractional Lévy processes 6/36

7 Fractional Brownian motion Fractional Brownian motion (fbm) B H with Hurst index H (, 1) is a Gaussian process satisfying EB H (t) = B H () and having the following covariance structure Cov(B H (t), B H (s)) = 1 2 ( t 2H + s 2H t s 2H). If H = 1 2, we are in the case of ordinary BM. Fractional Lévy processes 7/36

8 FBM (continued) For H > 1 2 the process has long range dependence property and for H < 1 2 the increments are negatively correlated. FBM is self-similar with parameter H. FBM is not semi-martingale nor Markov process (unless H = 1 2 ). B H has Hölder continuous sample paths of any order δ (, H). For H > 1 2, fbm BH has zero quadratic variation over a sequence of subdivisions where the mesh goes to zero. Fractional Lévy processes 8/36

9 Fractional Black-Scholes he price of the underlying is modeled as S(t) = exp B H (t), where 1 2 < H < 1. S has Hölder continuous sample paths of any order δ (, H). S has zero quadratic variation property. he hedging results remain true if we add any deterministic drift to B H as long as the path properties (Hölder continuity and quadratic variation) are not changed. Fractional Lévy processes 9/36

10 Pathwise integration he stochastic integrals considered here are pathwise: Riemann-Stieltjes integrals (RS) generalized Lebesgue-Stieltjes integrals (gls) If not mentioned otherwise the integrals are gls. Fractional Lévy processes 1/36

11 Hedging problem Given claim F(S) = f ((S(s) s [, ])). Find adapted (H(s)) s [, ] such that F(S) = A + H(s)dS(s). Integral should be economically justified. Separate problem of mathematical finance compared to pricing. Fractional Lévy processes 11/36

12 Case of European options heorem Let f be convex function. hen f (S( )) = f (S()) + in generalized Lebesgue-Stieltjes sense. Note that ds(t) = S(t)dB H (t). (Azmoodeh-Mishura-Valkeila 29). f (S(t))S(t)dB H (t) Fractional Lévy processes 12/36

13 2. Main results Replication of the averages Options depending on geometric average Options depending on arithmetic average Fractional Bachelier model Fractional Lévy processes 13/36

14 Replication of geometric average Proposition G(t) = exp ( 1 t ) log S(s)ds S(t) t. For all t [, ] it holds almost surely that t G(t) = S() + in Riemann-Stieltjes sense. s G(s)dBH (s), Fractional Lévy processes 14/36

15 Replication of geometric average (continued) Corollary In particular ( 1 exp =S() + B H (s)ds s exp ) ( 1 s B H (u)du + s ) BH (s) db H (s). Fractional Lévy processes 15/36

16 Replication of arithmetic average Proposition For all t [, ] it holds almost surely that t S(t) + 1 t t S(s)ds = S() + in Riemann-Stieltjes sense. Corollary In particular 1 S(s)ds = S() + s S(s)dBH (s), s S(s)dBH (s). Fractional Lévy processes 16/36

17 Geometric Asian options G(t) = exp ( 1 t ) B H (s)ds S(t) t. heorem Let f be a convex function. hen it holds almost surely that t f (G(t)) = f (S()) + s f (G(s)) G(s)dB H (s), where the stochastic integral in the right side is understood in generalized Lebesgue-Stieltjes sense. Fractional Lévy processes 17/36

18 Geometric Asian options (continued) Corollary In particular, ( ( 1 f exp =f (S()) + B H (s)ds )) s f (G(s)) G(s)dB H (s). Fractional Lévy processes 18/36

19 Arithmetic Asian options heorem Let f be a convex function. hen it holds almost surely that ( t f S(t) + 1 t ) S(s)ds t ( s =f (S()) + f S(s) + 1 s ) s S(u)du S(s)dBH (s), where the stochastic integral in the right side is understood in the sense of generalized Lebesgue-Stieltjes integral. Fractional Lévy processes 19/36

20 Arithmetic Asian options (continued) Corollary In particular, ( 1 ) f S(s)ds ( s =f (S()) + f S(s) + 1 s ) s S(u)du S(s)dBH (s). Fractional Lévy processes 2/36

21 Fractional Bachelier model he case of arithmetic average can be written also when the geometric price process S is replaced by a fractional Brownian motion B H with H ( 1 2, 1). In that case we obtain for a convex function f that ( t f BH (t) + 1 t ) B H (s)ds =f (B H ()) + t s f ( s BH (s) + 1 s B H (u)du almost surely as a generalized Lebesgue-Stieltjes integral. ) db H (s) Fractional Lévy processes 21/36

22 3. Methodology Pathwise philosophy Functional change of variables formula Fractional Besov space techniques and generalized Lebesgue-Stieltjes integral Fractional Lévy processes 22/36

23 Pathwise philosophy Stochastic integrals are pathwise. In practise one observes the path, not distribution. Drift can be added, if path properties do not change. In practise one does not observe the drift. Arithmetic Asian options can be considered. he problem in classical Black-Scholes is that sum of lognormals is not lognormal anymore. Here it does not matter. Fractional Lévy processes 23/36

24 Functional change of variables formula Let Bt H = (B H (s) s (, t)) be the whole path of B H up to t. hen by (Cont-Fournié 21) F (B H ) = F (B H ()) + D t F t (Bu H )du + x F u (Bu H )db H (u) ( ) x F t(bu H )d[b H ](u) in Riemann-Stieltjes sense. F t is called non-anticipative functional and (F t ) is so called non-anticipative flow. D t is horizontal and x vertical derivative. [ ] denotes the pathwise quadratic variation. Fractional Lévy processes 24/36

25 Functional change of variables formula and fbm In the fbm setup the quadratic variation term vanishes. In the case of geometric Asian options, change of variables formula is applied to non-anticipative functional ( 1 t ) F t (x t ) = exp x(s)ds e t x(t). And in the case of arithmetic Asian options F t (x t ) = t ex(t) + 1 t e x(s) ds. Fractional Lévy processes 25/36

26 Horizontal derivative he horizontal extension of x t for h > is defined as x t,h (u) = x(u), u [, t] and x t,h (u) = x(t), u (t, t + h]. Now the horizontal derivative of F at x C([, ]) is defined as F t+h (x t,h ) F t (x) D t F(x) = lim, h h if the limit exists. Fractional Lévy processes 26/36

27 Vertical derivative he vertical perturbation of path x t is defined for h R as x h t (u) = x(u), u [, t) and x h t (t) = x(t) + h. he vertical derivative is defined in the following way. A non-anticipative functional F is vertically differentiable at x C([, t]) if limit exists. x F t (x) = lim h F t (x h t ) F t(x) h Fractional Lévy processes 27/36

28 Fractional Besov spaces Definition Let f : [, ] R be measurable. hen f W β 1 ([, ]) if f 1,β = sup s<t ( f (t) f (s) t (t s) β + s ) f (u) f (s) du <. (u s) β+1 Definition Let f : [, ] R be measurable. hen f W β 2 ([, ]) if f 2,β = f (t) t t β dt + f (t) f (s) dsdt <. (t s) β+1 Fractional Lévy processes 28/36

29 Generalized Lebesgue-Stieltjes integral Let β (, 1). Generalized Lebesgue-Stieltjes integral is defined as t t ) ( ) fdg := (D β + f (x) (x)dx. D 1 β t g t Operators D β + and Dβ t are Riemann-Liouville fractional derivatives. f W β 1 β 2 ([, ]), g W1 ([, ]). g t (x) = (g(t ) g(x))1 (,t) (x). Fractional Lévy processes 29/36

30 Remarks Remark s t t + =. s Remark he integral is the same for all β for which it can be defined. Remark For < β < H the trajectories of fbm B H belong to W β 1 ([, ]) almost surely by Hölder continuity. Fractional Lévy processes 3/36

31 Convergence theorem heorem Let f, (f n ) n=1 W β 1 β 2 ([, ]) and g W1 ([, ]). If then f n f 2,β, t f n dg t fdg, in generalized Lebesgue-Stieltjes sense for all t (, ]. Fractional Lévy processes 31/36

32 4. Conclusions Extended the functional Itô formula of (Cont-Fournié 21) for non-smooth convex functions in the special case of driving gfbm or fbm and functional depending on the average of the driving process. Obtained hedging strategies for Asian options in fractional Black-Scholes model. We were able to find hedges also for Asian options depending on the ordinary arithmetic average. Explicit hedges for such options are not known even in the case of Black-Scholes model. Fractional Lévy processes 32/36

33 Conclusions (continued) In the case of Asian options, fbm behaves as continuous function of bounded variation. However, this is not the case for all path-dependent options: see for example the case of lookback options (Azmoodeh-ikanmäki-Valkeila 21). Some related models behave differently. For example in exponential mixed Brownian motion and fractional Brownian motion market model the hedges of Asian options are the same as in ordinary Black-Scholes model, (Bender-Sottinen-Valkeila 28). Fractional Lévy processes 33/36

34 References [1] E. Azmoodeh, Yu. Mishura, and E. Valkeila. On hedging European options in geometric fractional Brownian motion market model. Statist. Decisions, 27(2): , 29. [2] E. Azmoodeh, H. ikanmäki, and E. Valkeila. When does fractional Brownian motion not behave as a continuous function with bounded variation? Statist. Probab. Lett., 8: , 21. [3] C. Bender,. Sottinen, and E. Valkeila. Pricing by hedging and no-arbitrage beyond semimartingales. Finance Stoch., 12(4): , 28. Fractional Lévy processes 34/36

35 References (continued) [4] R. Cont, and D.-A. Fournié. Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal., 259(4): , 21. [5] H. ikanmäki. How to hedge Asian options in fractional Black-Scholes model arxiv: , 211. Fractional Lévy processes 35/36

36 hanks for your attention! Fractional Lévy processes 36/36

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki St. Petersburg, April 12, 211 Fractional Lévy processes 1/26 Outline of the talk 1. Introduction 2. Main results 3. Conclusions

More information

Replication and Absence of Arbitrage in Non-Semimartingale Models

Replication and Absence of Arbitrage in Non-Semimartingale Models Replication and Absence of Arbitrage in Non-Semimartingale Models Matematiikan päivät, Tampere, 4-5. January 2006 Tommi Sottinen University of Helsinki 4.1.2006 Outline 1. The classical pricing model:

More information

Are stylized facts irrelevant in option-pricing?

Are stylized facts irrelevant in option-pricing? Are stylized facts irrelevant in option-pricing? Kyiv, June 19-23, 2006 Tommi Sottinen, University of Helsinki Based on a joint work No-arbitrage pricing beyond semimartingales with C. Bender, Weierstrass

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Fractional Brownian Motion as a Model in Finance

Fractional Brownian Motion as a Model in Finance Fractional Brownian Motion as a Model in Finance Tommi Sottinen, University of Helsinki Esko Valkeila, University of Turku and University of Helsinki 1 Black & Scholes pricing model In the classical Black

More information

Martingale Approach to Pricing and Hedging

Martingale Approach to Pricing and Hedging Introduction and echniques Lecture 9 in Financial Mathematics UiO-SK451 Autumn 15 eacher:s. Ortiz-Latorre Martingale Approach to Pricing and Hedging 1 Risk Neutral Pricing Assume that we are in the basic

More information

Fractional Brownian Motion as a Model in Finance

Fractional Brownian Motion as a Model in Finance Fractional Brownian Motion as a Model in Finance Tommi Sottinen, University of Helsinki Esko Valkeila, University of Turku and University of Helsinki 1 Black & Scholes pricing model In the classical Black

More information

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance

Stochastic calculus Introduction I. Stochastic Finance. C. Azizieh VUB 1/91. C. Azizieh VUB Stochastic Finance Stochastic Finance C. Azizieh VUB C. Azizieh VUB Stochastic Finance 1/91 Agenda of the course Stochastic calculus : introduction Black-Scholes model Interest rates models C. Azizieh VUB Stochastic Finance

More information

Enlargement of filtration

Enlargement of filtration Enlargement of filtration Bernardo D Auria email: bernardo.dauria@uc3m.es web: www.est.uc3m.es/bdauria July 6, 2017 ICMAT / UC3M Enlargement of Filtration Enlargement of Filtration ([1] 5.9) If G is a

More information

Continuous Time Finance. Tomas Björk

Continuous Time Finance. Tomas Björk Continuous Time Finance Tomas Björk 1 II Stochastic Calculus Tomas Björk 2 Typical Setup Take as given the market price process, S(t), of some underlying asset. S(t) = price, at t, per unit of underlying

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Stochastic Calculus - An Introduction

Stochastic Calculus - An Introduction Stochastic Calculus - An Introduction M. Kazim Khan Kent State University. UET, Taxila August 15-16, 17 Outline 1 From R.W. to B.M. B.M. 3 Stochastic Integration 4 Ito s Formula 5 Recap Random Walk Consider

More information

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components:

1 Mathematics in a Pill 1.1 PROBABILITY SPACE AND RANDOM VARIABLES. A probability triple P consists of the following components: 1 Mathematics in a Pill The purpose of this chapter is to give a brief outline of the probability theory underlying the mathematics inside the book, and to introduce necessary notation and conventions

More information

STOCHASTIC INTEGRALS

STOCHASTIC INTEGRALS Stat 391/FinMath 346 Lecture 8 STOCHASTIC INTEGRALS X t = CONTINUOUS PROCESS θ t = PORTFOLIO: #X t HELD AT t { St : STOCK PRICE M t : MG W t : BROWNIAN MOTION DISCRETE TIME: = t < t 1

More information

Lecture 11: Ito Calculus. Tuesday, October 23, 12

Lecture 11: Ito Calculus. Tuesday, October 23, 12 Lecture 11: Ito Calculus Continuous time models We start with the model from Chapter 3 log S j log S j 1 = µ t + p tz j Sum it over j: log S N log S 0 = NX µ t + NX p tzj j=1 j=1 Can we take the limit

More information

Introduction to Stochastic Calculus With Applications

Introduction to Stochastic Calculus With Applications Introduction to Stochastic Calculus With Applications Fima C Klebaner University of Melbourne \ Imperial College Press Contents Preliminaries From Calculus 1 1.1 Continuous and Differentiable Functions.

More information

Stochastic Dynamical Systems and SDE s. An Informal Introduction

Stochastic Dynamical Systems and SDE s. An Informal Introduction Stochastic Dynamical Systems and SDE s An Informal Introduction Olav Kallenberg Graduate Student Seminar, April 18, 2012 1 / 33 2 / 33 Simple recursion: Deterministic system, discrete time x n+1 = f (x

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES

CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES CONTINUOUS TIME PRICING AND TRADING: A REVIEW, WITH SOME EXTRA PIECES THE SOURCE OF A PRICE IS ALWAYS A TRADING STRATEGY SPECIAL CASES WHERE TRADING STRATEGY IS INDEPENDENT OF PROBABILITY MEASURE COMPLETENESS,

More information

Recent Advances in Fractional Stochastic Volatility Models

Recent Advances in Fractional Stochastic Volatility Models Recent Advances in Fractional Stochastic Volatility Models Alexandra Chronopoulou Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign IPAM National Meeting of Women in

More information

How to hedge Asian options in fractional Black-Scholes model

How to hedge Asian options in fractional Black-Scholes model How to hedge Asian options in fractional Black-Scholes model Heikki ikanmäki heikki.tikanmaki@tkk.fi 25.2.2 Abstract arxiv:2.582v [math.pr] 25 Feb 2 We prove change of variables formulas [Itô formulas]

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 19 11/20/2013. Applications of Ito calculus to finance MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 19 11/2/213 Applications of Ito calculus to finance Content. 1. Trading strategies 2. Black-Scholes option pricing formula 1 Security

More information

Risk Neutral Measures

Risk Neutral Measures CHPTER 4 Risk Neutral Measures Our aim in this section is to show how risk neutral measures can be used to price derivative securities. The key advantage is that under a risk neutral measure the discounted

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advanced Stochastic Processes. David Gamarnik LECTURE 16 Applications of Ito calculus to finance Lecture outline Trading strategies Black Scholes option pricing formula 16.1. Security price processes,

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models

Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Stochastic Processes and Stochastic Calculus - 9 Complete and Incomplete Market Models Eni Musta Università degli studi di Pisa San Miniato - 16 September 2016 Overview 1 Self-financing portfolio 2 Complete

More information

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli

Remarks: 1. Often we shall be sloppy about specifying the ltration. In all of our examples there will be a Brownian motion around and it will be impli 6 Martingales in continuous time Just as in discrete time, the notion of a martingale will play a key r^ole in our continuous time models. Recall that in discrete time, a sequence ; 1 ;::: ; n for which

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1

The discounted portfolio value of a selffinancing strategy in discrete time was given by. δ tj 1 (s tj s tj 1 ) (9.1) j=1 Chapter 9 The isk Neutral Pricing Measure for the Black-Scholes Model The discounted portfolio value of a selffinancing strategy in discrete time was given by v tk = v 0 + k δ tj (s tj s tj ) (9.) where

More information

Conditional Full Support and No Arbitrage

Conditional Full Support and No Arbitrage Gen. Math. Notes, Vol. 32, No. 2, February 216, pp.54-64 ISSN 2219-7184; Copyright c ICSRS Publication, 216 www.i-csrs.org Available free online at http://www.geman.in Conditional Full Support and No Arbitrage

More information

Hedging of Contingent Claims under Incomplete Information

Hedging of Contingent Claims under Incomplete Information Projektbereich B Discussion Paper No. B 166 Hedging of Contingent Claims under Incomplete Information by Hans Föllmer ) Martin Schweizer ) October 199 ) Financial support by Deutsche Forschungsgemeinschaft,

More information

Beyond the Black-Scholes-Merton model

Beyond the Black-Scholes-Merton model Econophysics Lecture Leiden, November 5, 2009 Overview 1 Limitations of the Black-Scholes model 2 3 4 Limitations of the Black-Scholes model Black-Scholes model Good news: it is a nice, well-behaved model

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Stochastic Calculus, Application of Real Analysis in Finance

Stochastic Calculus, Application of Real Analysis in Finance , Application of Real Analysis in Finance Workshop for Young Mathematicians in Korea Seungkyu Lee Pohang University of Science and Technology August 4th, 2010 Contents 1 BINOMIAL ASSET PRICING MODEL Contents

More information

Lévy models in finance

Lévy models in finance Lévy models in finance Ernesto Mordecki Universidad de la República, Montevideo, Uruguay PASI - Guanajuato - June 2010 Summary General aim: describe jummp modelling in finace through some relevant issues.

More information

Hedging under Arbitrage

Hedging under Arbitrage Hedging under Arbitrage Johannes Ruf Columbia University, Department of Statistics Modeling and Managing Financial Risks January 12, 2011 Motivation Given: a frictionless market of stocks with continuous

More information

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao

CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report. B. L. S. Prakasa Rao CRRAO Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) Research Report Author (s): B. L. S. Prakasa Rao Title of the Report: Option pricing for processes driven by mixed fractional

More information

The valuation of currency options by fractional Brownian motion

The valuation of currency options by fractional Brownian motion Shokrollahi and Kılıçman SpringerPlus 065:45 DOI 0.86/s40064-06-784- RESEARC Open Access The valuation of currency options by fractional Brownian motion Foad Shokrollahi * and Adem Kılıçman *Correspondence:

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Illiquidity, Credit risk and Merton s model

Illiquidity, Credit risk and Merton s model Illiquidity, Credit risk and Merton s model (joint work with J. Dong and L. Korobenko) A. Deniz Sezer University of Calgary April 28, 2016 Merton s model of corporate debt A corporate bond is a contingent

More information

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE

OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE DOI: 1.1214/ECP.v7-149 Elect. Comm. in Probab. 7 (22) 79 83 ELECTRONIC COMMUNICATIONS in PROBABILITY OPTION PRICE WHEN THE STOCK IS A SEMIMARTINGALE FIMA KLEBANER Department of Mathematics & Statistics,

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE

EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE Advances and Applications in Statistics Volume, Number, This paper is available online at http://www.pphmj.com 9 Pushpa Publishing House EMPIRICAL EVIDENCE ON ARBITRAGE BY CHANGING THE STOCK EXCHANGE JOSÉ

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance.

Kim Weston (Carnegie Mellon University) Market Stability and Indifference Prices. 1st Eastern Conference on Mathematical Finance. 1st Eastern Conference on Mathematical Finance March 216 Based on Stability of Utility Maximization in Nonequivalent Markets, Finance & Stochastics (216) Basic Problem Consider a financial market consisting

More information

Bluff Your Way Through Black-Scholes

Bluff Your Way Through Black-Scholes Bluff our Way Through Black-Scholes Saurav Sen December 000 Contents What is Black-Scholes?.............................. 1 The Classical Black-Scholes Model....................... 1 Some Useful Background

More information

Stochastic Modelling Unit 3: Brownian Motion and Diffusions

Stochastic Modelling Unit 3: Brownian Motion and Diffusions Stochastic Modelling Unit 3: Brownian Motion and Diffusions Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 3 1 Introduction 2 Brownian Motion

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

BLACK SCHOLES THE MARTINGALE APPROACH

BLACK SCHOLES THE MARTINGALE APPROACH BLACK SCHOLES HE MARINGALE APPROACH JOHN HICKSUN. Introduction hi paper etablihe the Black Schole formula in the martingale, rik-neutral valuation framework. he intent i two-fold. One, to erve a an introduction

More information

Statistacal Self-Similarity:Fractional Brownian Motion

Statistacal Self-Similarity:Fractional Brownian Motion Statistacal Self-Similarity:Fractional Brownian Motion Geofrey Wingi Sikazwe Lappeenranta University of Technology March 10, 2010 G. W. Sikazwe (Time Series Seminar, 2010) Statistacal Self-Similarity:Fractional

More information

Risk-Neutral Valuation

Risk-Neutral Valuation N.H. Bingham and Rüdiger Kiesel Risk-Neutral Valuation Pricing and Hedging of Financial Derivatives W) Springer Contents 1. Derivative Background 1 1.1 Financial Markets and Instruments 2 1.1.1 Derivative

More information

Polynomial processes in stochastic portofolio theory

Polynomial processes in stochastic portofolio theory Polynomial processes in stochastic portofolio theory Christa Cuchiero University of Vienna 9 th Bachelier World Congress July 15, 2016 Christa Cuchiero (University of Vienna) Polynomial processes in SPT

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Risk Neutral Valuation

Risk Neutral Valuation copyright 2012 Christian Fries 1 / 51 Risk Neutral Valuation Christian Fries Version 2.2 http://www.christian-fries.de/finmath April 19-20, 2012 copyright 2012 Christian Fries 2 / 51 Outline Notation Differential

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

STOCHASTIC VOLATILITY AND OPTION PRICING

STOCHASTIC VOLATILITY AND OPTION PRICING STOCHASTIC VOLATILITY AND OPTION PRICING Daniel Dufresne Centre for Actuarial Studies University of Melbourne November 29 (To appear in Risks and Rewards, the Society of Actuaries Investment Section Newsletter)

More information

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate

No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Fuzzy Optim Decis Making 217 16:221 234 DOI 117/s17-16-9246-8 No-arbitrage theorem for multi-factor uncertain stock model with floating interest rate Xiaoyu Ji 1 Hua Ke 2 Published online: 17 May 216 Springer

More information

Equivalence between Semimartingales and Itô Processes

Equivalence between Semimartingales and Itô Processes International Journal of Mathematical Analysis Vol. 9, 215, no. 16, 787-791 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.411358 Equivalence between Semimartingales and Itô Processes

More information

Basic Concepts in Mathematical Finance

Basic Concepts in Mathematical Finance Chapter 1 Basic Concepts in Mathematical Finance In this chapter, we give an overview of basic concepts in mathematical finance theory, and then explain those concepts in very simple cases, namely in the

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE.

We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. Risk Neutral Pricing Thursday, May 12, 2011 2:03 PM We discussed last time how the Girsanov theorem allows us to reweight probability measures to change the drift in an SDE. This is used to construct a

More information

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus.

Introduction Taylor s Theorem Einstein s Theory Bachelier s Probability Law Brownian Motion Itô s Calculus. Itô s Calculus. Itô s Calculus Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 21, 2016 Christopher Ting QF 101 Week 10 October

More information

Functional Ito calculus. hedging of path-dependent options

Functional Ito calculus. hedging of path-dependent options and hedging of path-dependent options Laboratoire de Probabilités et Modèles Aléatoires CNRS - Université de Paris VI-VII and Columbia University, New York Background Hans Föllmer (1979) Calcul d Itô sans

More information

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models

Partial differential approach for continuous models. Closed form pricing formulas for discretely monitored models Advanced Topics in Derivative Pricing Models Topic 3 - Derivatives with averaging style payoffs 3.1 Pricing models of Asian options Partial differential approach for continuous models Closed form pricing

More information

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework

Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Hedging of swaptions in a Lévy driven Heath-Jarrow-Morton framework Kathrin Glau, Nele Vandaele, Michèle Vanmaele Bachelier Finance Society World Congress 2010 June 22-26, 2010 Nele Vandaele Hedging of

More information

Pricing in markets modeled by general processes with independent increments

Pricing in markets modeled by general processes with independent increments Pricing in markets modeled by general processes with independent increments Tom Hurd Financial Mathematics at McMaster www.phimac.org Thanks to Tahir Choulli and Shui Feng Financial Mathematics Seminar

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Drawdowns, Drawups, their joint distributions, detection and financial risk management

Drawdowns, Drawups, their joint distributions, detection and financial risk management Drawdowns, Drawups, their joint distributions, detection and financial risk management June 2, 2010 The cases a = b The cases a > b The cases a < b Insuring against drawing down before drawing up Robust

More information

Convergence of Discretized Stochastic (Interest Rate) Processes with Stochastic Drift Term.

Convergence of Discretized Stochastic (Interest Rate) Processes with Stochastic Drift Term. Convergence of Discretized Stochastic (Interest Rate) Processes with Stochastic Drift Term. G. Deelstra F. Delbaen Free University of Brussels, Department of Mathematics, Pleinlaan 2, B-15 Brussels, Belgium

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Analytical formulas for local volatility model with stochastic. Mohammed Miri

Analytical formulas for local volatility model with stochastic. Mohammed Miri Analytical formulas for local volatility model with stochastic rates Mohammed Miri Joint work with Eric Benhamou (Pricing Partners) and Emmanuel Gobet (Ecole Polytechnique Modeling and Managing Financial

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Hedging under arbitrage

Hedging under arbitrage Hedging under arbitrage Johannes Ruf Columbia University, Department of Statistics AnStAp10 August 12, 2010 Motivation Usually, there are several trading strategies at one s disposal to obtain a given

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Optimal trading strategies under arbitrage

Optimal trading strategies under arbitrage Optimal trading strategies under arbitrage Johannes Ruf Columbia University, Department of Statistics The Third Western Conference in Mathematical Finance November 14, 2009 How should an investor trade

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

An Introduction to Stochastic Calculus

An Introduction to Stochastic Calculus An Introduction to Stochastic Calculus Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2-3 Haijun Li An Introduction to Stochastic Calculus Week 2-3 1 / 24 Outline

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information