Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Size: px
Start display at page:

Download "Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as"

Transcription

1 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential Examples: mean, variance, mgf, relationship Examples: Applications of these distributions Chapter 3 Common Families of Distributions 34 Exponential Families Definition 34: A family of pmfs or pdfs is called exponential family if it can be expressed as (34) f ( x θ) = h( x) c( θ)exp( k wi( θ) ti( x)), where hx ( ) 0 and t ( x),, tk ( x) are real-valued functions of the observation x they cannot depend on θ, and c( θ ) and w ( ),, ( ) θ w k θ are real-valued functions of the possibly vector-valued parameter θ they cannot depend on x i= Important Notes: To verify that a family of pdfs or pmfs is an exponential family, Identify the functions hx ( ), c( θ ), t( x), and w( x ) and check that they satisfy the conditions Show that the family has the form of (34) i i

2 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Example 34: Several examples for exponential families - Binomial, Poisson, Exponential, normal Solution: n x n x n n p x n n p n () f ( x n, p) = p ( p) ( p) ( ) ( p) exp( xlog( )) x = = x p x, then hx ( ) = p x, c( p) = ( p) n, tx ( ) = x, and wp ( ) = log( p/( p)) Note: 0 < p <, and f ( x p ) is different for p = 0, 0< p <, and p = The above formula must matches all x Therefore, f ( x n, p ) is an exponential family only if 0 < p < λ λ xe λ () f ( x λ) = = e exp( λlog( x)), then hx ( ) = / x!, c( λ) = e λ, tx ( ) = log( x), and w( λ) = λ x! x! x (3) f ( x β ) = exp( ), x 0 β β >, then hx ( ) =, c( β ) = / β,() tx= x,and w( β ) = β ( x μ) x xμ μ (4) f ( x μσ, ) = exp( ) = exp( + ), then hx ( ) =, πσ σ πσ σ σ σ μ c( μσ, ) = exp( ) πσ σ, t ( x) = x /, w ( μ, σ ) = / σ, t ( x) = x, and w ( μ, σ ) = μ/ σ Theorem 34: If is a random variable with pdf or pmf of the form (34), then k wi ( ) E( θ t ( )) log( ( )) i i = c θ = θ θ j j k wi( θ) k wi( θ) i i = θ = i= i θ j θ j θ j Var( t ( )) log( c( )) E( t ( ))

3 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Proof: Omitted Example 343 (Binomial mean and variance) Solution: d wp ( ) = d log( p ) =, dp dp p p( p) d p wp ( ) = + = dp p ( p) p ( p) d log( c( p)) = d nlog( p) = n, dp dp p, d dp n log( c( p)) = ( p) Therefore, we have n E( ) E np p( p) = p =, n p Var( ) = E( ) Var( ) = np( p) p( p) ( p) p ( p) Example (Normal mean and variance) Solution: 3

4 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 w (, ) (/ ) μσ σ = = 0, μ μ w (, ) ( / ) μσ μ σ = = / σ, μ μ w (, ) (/ ) μσ σ 3 = = / σ, σ σ w (, ) ( / ) μσ μ σ 3 = = μ / σ, σ σ log( c( μ, σ )) = ( 05log( π) log( σ) μ /( σ )) = μ/ σ, μ μ 3 log( c( μ, σ )) = ( 05log( π) log( σ) μ /( σ )) = / σ + μ / σ σ σ Therefore, we have μ E( ) = and σ σ μ μ E( ( ) ) =, then we have σ σ σ σ E = μ and E = σ + μ Definition 345: The indicator function of a set A, most often denoted by I ( x ), is the function A 4

5 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Alternatively, we can use I( x A) I A, x A ( x) = 0, x A Example: Let have a pdf given by Show that this is not an exponential family Solution: f x = I x x ( θ ) θ [ θ, ) ( )exp( ( / θ)) f x x x ( θ) = θ exp( ( / θ)),0 < θ < < Example 34: Several examples for exponential families - Binomial, Poisson, Exponential, normal Solution: () f x n p = I n n p n p x p p I x p I x p x x = x = p x p n then hx ( ) = I{0,,, n} ( x) x, c( p) = ( p) n, tx ( ) = x, and wp ( ) = log( p/( p)) Note: 0 < p <, and f ( x p ) is different for p = 0, 0< p <, and p = The above formula must matches all x Therefore, f ( x n, p ) is an exponential family only if 0 < p < x n x n x n (, ) {0,,, n} ( ) ( ) {0,,, n} ( ) ( ) ( ) {0,,, n} ( ) ( ) exp( log( )), 5

6 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 xe λ f ( x ) I ( x) I ( x) e exp( λlog( x)), then hx ( ) = I{0,, }( x)/ x!, c( λ) = e λ, tx ( ) = log( x), x! x! = λ λ λ () λ = {0,, } = {0,, } and w( λ) (3) x f ( x β ) = exp( ), x 0 β β >, then hx ( ) = I ( x) (0,, c( β ) = / β,() tx ) = x,and w( β ) = β ( x μ) x xμ μ (4) f ( x μσ, ) = exp( ) = exp( + ), then hx ( ) =, πσ σ πσ σ σ σ μ c( μσ, ) = exp( ) πσ σ, t ( x) = x /, w ( μ, σ ) = / σ, t ( x) = x, and w ( μ, σ ) = μ/ σ A Re-parameterization of Exponential Families (Canonical Form): f ( x η) = h( x) c( η*)exp( ηt ( x)), where hx ( ) and t ( x) are the same as in the original parameterization The set i k i= k H = { η = ( η,, η ): hx ( )exp( ηt( x)) dx < }, which is called the natural parameter space for the family i i k i = i i Example 346 (Re-parameterization of the Normal Distribution) Solution: f ( x η η η η, η ) = exp( )exp( x + x ), where η = μ/ σ and η = / σ η π η 6

7 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Definition 347: A Curved exponential family is a family of densities of the form (34) for which the dimension of the vector θ is equal to d < k If d = k, the family is a full exponential family Example 348: Normal with mean μ and variance σ = μ Notes: Theorem 34 also applied to curved exponential families Exponential families have nice properties that are very useful in statistical inference Section 35: Location and Scale Families Three types of families of interest: location families scale families 3 location-scale families Notes: Each of these families is constructed from a single pdf (or pmf) known as the standard pdf (pmf) for the family All other pdfs (or pmfs) in the family are obtained by transforming the standard pdf (or pmf) in a prescribed way 7

8 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Theorem 35: Let f ( x) be any pdf and let μ and σ > 0 be any given constants Then the function is a valid pdf Proof: x μ gx ( μσ, ) = f( ) 0 and σ σ x μ gx ( μσ, ) = f( ) σ σ x μ x μ gx ( μσ, ) dx= f( ) dx= f( ydy ) = ( y= ) σ σ σ Definition 35: Let f ( x ) be any pdf Then the family of pdfs f ( x μ), indexed by the parameter μ ( < μ < ), is called the location family with standard pdf f ( x) and μ is called the location parameter for the family Notes: The effect of location parameter shifts the density to the left or right but the shape remains unchanged If Z has a pdf f ( z ), then = Z + μ has density f ( x μ) x Example 353 (Exponential location family) Let f( x) = e, x 0, and f ( x) = 0, x< 0 To form a location family we replace x with x μ to obtain ( x μ) ( x μ) e, x μ 0 e, x μ f( x μ) = = 0, x μ < 0 0, x< μ 8

9 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 If we use the indicator function to represent this, we have f ( x μ) = e I ( x μ) = e I ( x) ( x μ) ( x μ) [0, ) [ μ, ) Definition 354: Let f ( x) be any pdf Then for any σ > 0, the family of pdfs / σ f ( x / σ ), indexed by the parameter σ, is called the scale family with standard pdf f ( x) and σ is called the scale parameter of the family Note: The effect of scale parameter σ is either to stretch or to contract the graph f ( x ) maintaining the same basic shape of the graph Example (Normal Distribution): x f( x σ) = exp( ), x, σ 0 πσ σ < < > Definition 355: Let f ( x ) be any pdf Then for any μ( < μ < ), and any σ > 0, the family of pdfs / σ f (( x μ)/ σ), indexed by the parameter ( μ, σ ), is called the location-scale family with standard pdf f ( x ) ; μ is called the location parameter and σ is called the scale parameter Examples (Normal and double exponential distributions) ( x μ) f( x μσ, ) = exp( ), < x<, < μ<, σ> 0 πσ σ x μ f( x μσ, ) = exp( ), < x<, < μ<, σ> 0 σ σ 9

10 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Theorem 356: Let f ( x ) be any pdf Let μ be any real number, and let σ be any positive real number Then is a random variable with pdf / σ f (( x μ)/ σ) if and only if there exists a random variable Z with pdf f ( z ) and = σ Z + μ Proof; To prove the if part, define gz ( ) = σ z+ μ and let = g( Z) gz ( ) is the a monotone function, d g ( x) = ( x μ)/ σ and g ( x ) = Thus by Theorem 5, we have dx σ μ f( x) = fz( g ( x)) g ( x) = f( ) dx σ σ = and let Z = g( ) It is similar to prove only if part: define gx ( ) ( x μ)/ σ d x Theorem 357: Let Z be a random variable with pdf f ( z ) Suppose EZ and VarZ exist If is a random variable with pdf / σ f (( x μ)/ σ), then E = EZ + μ and Var = σ VarZ Proof: = σ Z + μ Section 36 Inequalities and Identities Theorem 36 (Chebychev s Inequality): Let be a random variable and let g( x ) be a nonnegative function Then, for any r > 0, we have Eg( ) Pg ( ( ) r) r 0

11 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Proof: {: xg( x) r} {: xg( x) r} Eg( ) = gxf ( ) ( xdx ) gxf ( ) ( xdx ) r f ( xdx ) = rpg ( ( ) r) Example 36: Let gx ( ) ( x μ) / σ =, where E μ = and Var = σ And let r = t for convenience Then ( μ) ( μ) P( t ) E = σ t σ t Therefore, it follows that P( μ tσ) and P( μ < tσ) t t For instance, if t = 3, then P( μ < 3 σ ) / 9 = Hence, the probability that any random variable will be within 3 standard deviation of its mean is at least 8889% Example 344 (A normal probability inequality) If Z ~ n (0,), then t / e P( Z t) ( t > 0) π t Proof: t x e = = π π t π t x / x / PZ ( t) e dx e dx t t /

12 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Note: Chebychev s Inequality is widely applicable but very conservative For example, if ~ n (0,), and t =, then according to the Chebychev s Inequality, we have P( Z t) / = 05 According to this example, we / e have P( Z t) = 0054 While P( Z t) = Actually, you can prove that π t / e t / t / t e t e t π t π π Lemma 365 (Stein s Lemma): Let Then Proof: ~ n( μ, σ ), and let g be a differentiable function satisfying E g'( ) < E g Eg [ ( )( μ)] = σ '( ) ( x μ) Eg [ ( )( μ)] = gx ( )( x μ)exp( ) dx πσ σ ( x μ) ( x μ) = [ σ gx ( )exp( ) σ g'( x)exp( ) dx] + πσ σ σ = σ Eg '( ) Example 366 (Higher-order normal moments) If ~ n( μ, σ ), then E = E( μ + μ) = E( μ) + μ = μ, E = E ( μ + μ) = E ( μ) + μe = σ + μ,

13 Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 E = E ( μ + μ) = E ( μ) + μe = σ E + μe 3 = + + = + 3 μσ μ( σ μ ) 3 μσ μ 3

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Section 7.1: Continuous Random Variables

Section 7.1: Continuous Random Variables Section 71: Continuous Random Variables Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 71: Continuous Random Variables

More information

What was in the last lecture?

What was in the last lecture? What was in the last lecture? Normal distribution A continuous rv with bell-shaped density curve The pdf is given by f(x) = 1 2πσ e (x µ)2 2σ 2, < x < If X N(µ, σ 2 ), E(X) = µ and V (X) = σ 2 Standard

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Point Estimation. Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 6 Point Estimation Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Point Estimation Statistical inference: directed toward conclusions about one or more parameters. We will use the generic

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is:

**BEGINNING OF EXAMINATION** A random sample of five observations from a population is: **BEGINNING OF EXAMINATION** 1. You are given: (i) A random sample of five observations from a population is: 0.2 0.7 0.9 1.1 1.3 (ii) You use the Kolmogorov-Smirnov test for testing the null hypothesis,

More information

STAT 111 Recitation 4

STAT 111 Recitation 4 STAT 111 Recitation 4 Linjun Zhang http://stat.wharton.upenn.edu/~linjunz/ September 29, 2017 Misc. Mid-term exam time: 6-8 pm, Wednesday, Oct. 11 The mid-term break is Oct. 5-8 The next recitation class

More information

NORMAL APPROXIMATION. In the last chapter we discovered that, when sampling from almost any distribution, e r2 2 rdrdϕ = 2π e u du =2π.

NORMAL APPROXIMATION. In the last chapter we discovered that, when sampling from almost any distribution, e r2 2 rdrdϕ = 2π e u du =2π. NOMAL APPOXIMATION Standardized Normal Distribution Standardized implies that its mean is eual to and the standard deviation is eual to. We will always use Z as a name of this V, N (, ) will be our symbolic

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Continuous Distributions

Continuous Distributions Quantitative Methods 2013 Continuous Distributions 1 The most important probability distribution in statistics is the normal distribution. Carl Friedrich Gauss (1777 1855) Normal curve A normal distribution

More information

Lecture Stat 302 Introduction to Probability - Slides 15

Lecture Stat 302 Introduction to Probability - Slides 15 Lecture Stat 30 Introduction to Probability - Slides 15 AD March 010 AD () March 010 1 / 18 Continuous Random Variable Let X a (real-valued) continuous r.v.. It is characterized by its pdf f : R! [0, )

More information

Central limit theorems

Central limit theorems Chapter 6 Central limit theorems 6.1 Overview Recall that a random variable Z is said to have a standard normal distribution, denoted by N(0, 1), if it has a continuous distribution with density φ(z) =

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Basic notions of probability theory: continuous probability distributions. Piero Baraldi

Basic notions of probability theory: continuous probability distributions. Piero Baraldi Basic notions of probability theory: continuous probability distributions Piero Baraldi Probability distributions for reliability, safety and risk analysis: discrete probability distributions continuous

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

MA 490. Senior Project

MA 490. Senior Project MA 490 Senior Project Project: Prove that the cumulative binomial distributions and the Poisson distributions can be approximated by the Normal distribution and that that approximation gets better as the

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Central Limit Theorem, Joint Distributions Spring 2018

Central Limit Theorem, Joint Distributions Spring 2018 Central Limit Theorem, Joint Distributions 18.5 Spring 218.5.4.3.2.1-4 -3-2 -1 1 2 3 4 Exam next Wednesday Exam 1 on Wednesday March 7, regular room and time. Designed for 1 hour. You will have the full

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x).

4-2 Probability Distributions and Probability Density Functions. Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Figure 4-2 Probability determined from the area under f(x). 4-2 Probability Distributions and Probability Density Functions Definition 4-2

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

Capital Allocation Principles

Capital Allocation Principles Capital Allocation Principles Maochao Xu Department of Mathematics Illinois State University mxu2@ilstu.edu Capital Dhaene, et al., 2011, Journal of Risk and Insurance The level of the capital held by

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Lecture 7: Computation of Greeks

Lecture 7: Computation of Greeks Lecture 7: Computation of Greeks Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline 1 The log-likelihood approach Motivation The pathwise method requires some restrictive regularity assumptions

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

6 Central Limit Theorem. (Chs 6.4, 6.5)

6 Central Limit Theorem. (Chs 6.4, 6.5) 6 Central Limit Theorem (Chs 6.4, 6.5) Motivating Example In the next few weeks, we will be focusing on making statistical inference about the true mean of a population by using sample datasets. Examples?

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Statistics 431 Spring 2007 P. Shaman. Preliminaries

Statistics 431 Spring 2007 P. Shaman. Preliminaries Statistics 4 Spring 007 P. Shaman The Binomial Distribution Preliminaries A binomial experiment is defined by the following conditions: A sequence of n trials is conducted, with each trial having two possible

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

Probability Distributions II

Probability Distributions II Probability Distributions II Summer 2017 Summer Institutes 63 Multinomial Distribution - Motivation Suppose we modified assumption (1) of the binomial distribution to allow for more than two outcomes.

More information

Chapter 9: Sampling Distributions

Chapter 9: Sampling Distributions Chapter 9: Sampling Distributions 9. Introduction This chapter connects the material in Chapters 4 through 8 (numerical descriptive statistics, sampling, and probability distributions, in particular) with

More information

The Normal Distribution

The Normal Distribution Will Monroe CS 09 The Normal Distribution Lecture Notes # July 9, 207 Based on a chapter by Chris Piech The single most important random variable type is the normal a.k.a. Gaussian) random variable, parametrized

More information

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data

SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data SYSM 6304 Risk and Decision Analysis Lecture 2: Fitting Distributions to Data M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 5, 2015

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES Curriculum 2019 SPECIMEN EXAMINATION Subject CS1A Actuarial Statistics Time allowed: Three hours and fifteen minutes INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate

More information

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions.

ASSIGNMENT - 1, MAY M.Sc. (PREVIOUS) FIRST YEAR DEGREE STATISTICS. Maximum : 20 MARKS Answer ALL questions. (DMSTT 0 NR) ASSIGNMENT -, MAY-04. PAPER- I : PROBABILITY AND DISTRIBUTION THEORY ) a) State and prove Borel-cantelli lemma b) Let (x, y) be jointly distributed with density 4 y(+ x) f( x, y) = y(+ x)

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

Optimal reinsurance for variance related premium calculation principles

Optimal reinsurance for variance related premium calculation principles Optimal reinsurance for variance related premium calculation principles Guerra, M. and Centeno, M.L. CEOC and ISEG, TULisbon CEMAPRE, ISEG, TULisbon ASTIN 2007 Guerra and Centeno (ISEG, TULisbon) Optimal

More information

Chapter 7 - Lecture 1 General concepts and criteria

Chapter 7 - Lecture 1 General concepts and criteria Chapter 7 - Lecture 1 General concepts and criteria January 29th, 2010 Best estimator Mean Square error Unbiased estimators Example Unbiased estimators not unique Special case MVUE Bootstrap General Question

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics.

Lecture 12. Some Useful Continuous Distributions. The most important continuous probability distribution in entire field of statistics. ENM 207 Lecture 12 Some Useful Continuous Distributions Normal Distribution The most important continuous probability distribution in entire field of statistics. Its graph, called the normal curve, is

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

GPD-POT and GEV block maxima

GPD-POT and GEV block maxima Chapter 3 GPD-POT and GEV block maxima This chapter is devoted to the relation between POT models and Block Maxima (BM). We only consider the classical frameworks where POT excesses are assumed to be GPD,

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006

Random Samples. Mathematics 47: Lecture 6. Dan Sloughter. Furman University. March 13, 2006 Random Samples Mathematics 47: Lecture 6 Dan Sloughter Furman University March 13, 2006 Dan Sloughter (Furman University) Random Samples March 13, 2006 1 / 9 Random sampling Definition We call a sequence

More information

Conjugate Models. Patrick Lam

Conjugate Models. Patrick Lam Conjugate Models Patrick Lam Outline Conjugate Models What is Conjugacy? The Beta-Binomial Model The Normal Model Normal Model with Unknown Mean, Known Variance Normal Model with Known Mean, Unknown Variance

More information

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90.

Two hours UNIVERSITY OF MANCHESTER. 23 May :00 16:00. Answer ALL SIX questions The total number of marks in the paper is 90. Two hours MATH39542 UNIVERSITY OF MANCHESTER RISK THEORY 23 May 2016 14:00 16:00 Answer ALL SIX questions The total number of marks in the paper is 90. University approved calculators may be used 1 of

More information

EE641 Digital Image Processing II: Purdue University VISE - October 29,

EE641 Digital Image Processing II: Purdue University VISE - October 29, EE64 Digital Image Processing II: Purdue University VISE - October 9, 004 The EM Algorithm. Suffient Statistics and Exponential Distributions Let p(y θ) be a family of density functions parameterized by

More information

Statistics for Business and Economics: Random Variables:Continuous

Statistics for Business and Economics: Random Variables:Continuous Statistics for Business and Economics: Random Variables:Continuous STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Murray Bourne (interactive

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

Point Estimation. Copyright Cengage Learning. All rights reserved.

Point Estimation. Copyright Cengage Learning. All rights reserved. 6 Point Estimation Copyright Cengage Learning. All rights reserved. 6.2 Methods of Point Estimation Copyright Cengage Learning. All rights reserved. Methods of Point Estimation The definition of unbiasedness

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information