Random Variables Handout. Xavier Vilà

Size: px
Start display at page:

Download "Random Variables Handout. Xavier Vilà"

Transcription

1 Random Variables Handout Xavier Vilà Course

2 1 Discrete Random Variables. 1.1 Introduction Definition of Random Variable A random variable X is a function that maps each possible outcome of a random experiment to a real number Hence, if Ω is the set of all possible outcomes 1 of a random experiment, then: X : Ω R A random variable is said to be discrete if the set Ω of possible values is a finite or infinite countable set Probabilities associated to X. Since a random variable takes different values depending on some random outcomes, the probability of each of these values will equal the probability of those outcomes that induce that value P (X = x) = P ({ω i Ω/X(ω i ) = x}) Example 1.1 For instance, if we toss two dices and consider the random variable X defined by the sum of the two top faces we have P (X = 2) = P ({ω i Ω/X(ω i ) = 2}) = P ({(1, 1)}) = 1 36 P (X = 3) = P ({ω i Ω/X(ω i ) = 3}) = P ({(1, 2), (2, 1)}) = P (X = 7) = P ({ω i Ω/X(ω i ) = 7}) = P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) = 6 36 etc Mass Probability Function of a discrete random variable. Once we know all the values a random variable can take and the corresponding probabilities, we can somehow forget about the random experiment upon which the variable was constructed. The mass probability function contains all the information we need to know about the random variable. Definition 1.2 Given a random variable X, and the probabilities of each of its values, the mass probability function f X of X is defined as f X : R [0, 1] such that p(x = x) if x is one of the values X takes 0 otherwise 1 You might recall that this set is what is called the sample space. 1

3 Notice that with this function we have all the information we need about the variable. This function completely characterizes the random variable Example 1.3 For instance, the function 6 7 x 36 0 is the mass probability function for example 1.1 if 2 x 12 otherwise 1.2 Moments of a discrete random variable Expectation. Definition 1.4 The expectation (expected value, or mean) of the discrete random variable X is defined as: E(X) = f X (x) x = p(x = x) x x x The expectation has the following properties: (i) E(a) = a (ii) E(aX) = ae(x) (iii) E(X + Y ) = E(X) + E(Y ) (iv) E(XY ) = E(X) E(Y ) if X and Y are independent Variance. Definition 1.5 The variance of the discrete random variable X is defined as: V (X) = f X (x)(x E(X)) 2 = E(X E(X)) 2 x The variance has the following properties: (i) V (a) = 0 (ii) V (ax) = a 2 V (X) (iii) V (X + Y ) = V (X) + V (Y ) if X and Y are independent (iv) V (X + a) = V (X) (v) V (X) 0 A different (and more useful) formula to compute the variance is: V (X) = E(X 2 ) (E(X)) 2 2 Two random variables X and Y are independent if p(x = x Y = y) = p(x = x)p(y = y) = f X (x) f y(y) 2

4 1.3 Main discrete distributions Bernoulli distribution. Definition 1.6 A random variable X is said to have a Bernoulli distribution with parameter p (X Ber(p)) if only takes the values 1 and 0 with probabilities p and 1 p respectively { 1 with probability p 0 with probability 1 p : E(X) = p V (X) = p(1 p) This distribution is the simplest case of a discrete random variable. It corresponds to a random experiment that may result in 1 (success) with probability p or 0 (failure) with probability 1 p Binomial distribution Definition 1.7 A random variable X is said to have a Binomial distribution with parameters n and p (X B(n, p)) if only takes values 0, 1, 2,... with probabilities given by ( ) n P (X = x) = p x (1 p) n x x : E(X) = np V (X) = np(1 p) This variable X counts the number of successes after n repetitions of an experiment that may result in success with probability p or failure with probability 1 p. For instance, flip a coin 10 times (n = 10) and count the number of heads (p = 0.5). In other words, a Binomial random variable is the summation of n independent Bernoulli random variables Geometric distribution. Definition 1.8 A random variable X is said to have a Geometric distribution with parameter p (X G(p)) if only takes values 1, 2, 3,... with probabilities given by: P (X = x) = p(1 p) x 1 : E(X) = 1 p V (X) = (1 p) p 2 This variable X counts how many times we need to repeat a Bernoulli experiment until the first success is obtained. For instance, how many times we need to flip a coin to get the first head. 3

5 1.3.4 Poisson distribution. Definition 1.9 A random variable X is said to have a Poisson distribution with parameter λ (X P (λ)) if only takes values 0, 1, 2,... with probabilities given by: P (X = x) = e λ λ x E(X) = λ V (X) = λ This variable X is like a Binomial but without knowing the exact number of repetitions (or assuming infinite repetitions). That is, X counts how many times we will obtain success in a given time interval. For instance, how many phone calls we will get Friday afternoon if the average number of phone calls is 1.3 (λ = 1.3). x! 4

6 2 Continuous Random Variables. 2.1 Introduction Definition of a continuous random variable Definition 2.1 A random variable X is said to be continuous it the set of values it takes with positive probability is a non countable infinite set. Example 2.2 For instance, to randomly choose a number in the interval [0, 1] Probability Density Function. Definition 2.3 Given a continuous random variable X, its probability density function f X (x) is defined as: f X : R R such that p[a X b] = b a f x (x)dx Notice that, as in the case of a discrete random variable, the density probability function is equivalent to the mass probability function in the sense that completely characterizes the random variable. In other words, f X contains all the information we need about the random variable X. One important difference with respect to discrete random variables is that in the case of a continuous random variable the probability that X equals a specific value is ALWAYS ZERO. This is so because a continuous random variable can take a large number of values (an infinite non-countable number of values, to be more precise) and, hence, the probability of each of these values is zero Cumulative Distribution Function. Definition 2.4 Given a continuous random variable X, its cumulative distribution function is defined as: F X : R R such that F X (x) = p[x x] = x f X (t)dt The cumulative distribution function has the following properties: (i) 0 F X (x) 1 (ii) lim x F X (x) = 1; lim x F X (x) = 0 (iii) x 1 x 2 F X (x 1 ) F X (x 2 ) (iv) p[a X b] = F X (b) F X (a) (v) F X (x) = f X(x) (important property). 5

7 2.2 Moments of a continuous random variable Expectation. Definition 2.5 The expectation (expected value, or mean) of the continuous random variable X is defined as: E(X) = f X (x) xdx x R The expectation has the same properties as in the case of discrete random variables: (i) E(a) = a (ii) E(aX) = ae(x) (iii) E(X + Y ) = E(X) + E(Y ) (iv) E(XY ) = E(X) E(Y ) if X and Y are independent Remember that it is possible to compute the expectation not only of a random variable X, but also of any continuous transformation of it g(x). That is, E(g(X)) = f X (x) g(x)dx Variance. Definition 2.6 The variance of the continuous random variable X is defined as: V (X) = f X (x)(x E(X)) 2 dx = E(X E(X)) 2 x R x R The variance has the same properties as in the case of discrete random variables: (i) V (a) = 0 (ii) V (ax) = a 2 V (X) (iii) V (X + Y ) = V (X) + V (Y ) if X and Y are independent (iv) V (X + a) = V (X) (v) V (X) 0 A different (and more useful) formula to compute the variance is: V (X) = E(X 2 ) (E(X)) Main continuous distributions Uniform distribution. Definition 2.7 A random variable X is said to have a uniform distribution on the interval [a, b] (X U[a, b]) if its probability { density function is 1 b a x [a, b] 0 otherwise : E(X) = b+a 2 V (X) = (b a)2 12 6

8 2.3.2 Exponential distribution. Definition 2.8 A random variable X is said to have an exponential distribution with parameter λ if its probability density function { is: λe λx x 0 0 x < 0 E(X) = 1 λ V (X) = 1 λ Normal. distribution. Definition 2.9 A random variable X is said to have a normal distribution with parameters µ and σ (X N(µ, σ 2 )) if its probability density function is 1 σ 2π e 1 2 ( x µ σ )2 < x < E(X) = µ V (X) = σ Standard Normal distribution. Definition 2.10 A random variable X is said to have a standard normal distribution (X N(0, 1), that is, a Normal distribution with µ = 0 and σ = 1) if its probability density function is 1 e 1 2 x2 < x < 2π In this case, we clearly have E(X) = 0 V (X) = 1 Fact 2.11 Let X be a Normal random variable, X N(µ, σ 2 ). Then, the random variable Z defined as follows has a Standard Normal distribution log-normal distribution. Z = x µ σ N(0, 1) Definition 2.12 A random variable X is said to have a log-normal distribution with parameters µ and σ i the variable Y = ln X has a Normal distribution with parameters µ and σ. The probability density function of a log normal random variable is 1 xσ 2π e 1 σ2 µ+ E(X) = e 2 V (X) = e σ2 (e σ2 1)e 2µ ln x µ 2 ( σ ) 2 < x < 7

9 2.3.6 chi-squared distribution. Definition 2.13 A random variable X is said to have a chi-squared distribution with n degrees of freedom (X χ 2 n) if it is the sum of n squared standard normal random variables, X = Y1 2 + Y Y n 2, where Y i N(0, 1). The probability density function of a chi-squared random variable is x n 2 1 e x 2 Γ( 1 2 n)2 n 2 0 x < where Γ(a)is the Gamma function. E(X) = n V (X) = 2n t-student distribution. Definition 2.14 A random variable X is said to have a t-student distribution with n degrees of freedom (X t n ) if X = Z Y n where Z N(0, 1) and Y χ 2 n. The probability density function of a t-student random variable is E(X) = 0 V (X) = n n 2 (n > 2) Γ( 1 2 (n + 1)) nπγ( 1 x2 2n)(1 + n ) n+1 2 < x < 8

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

Probability and Random Variables A FINANCIAL TIMES COMPANY

Probability and Random Variables A FINANCIAL TIMES COMPANY Probability Basics Probability and Random Variables A FINANCIAL TIMES COMPANY 2 Probability Probability of union P[A [ B] =P[A]+P[B] P[A \ B] Conditional Probability A B P[A B] = Bayes Theorem P[A \ B]

More information

STOR Lecture 7. Random Variables - I

STOR Lecture 7. Random Variables - I STOR 435.001 Lecture 7 Random Variables - I Shankar Bhamidi UNC Chapel Hill 1 / 31 Example 1a: Suppose that our experiment consists of tossing 3 fair coins. Let Y denote the number of heads that appear.

More information

Binomial Random Variables. Binomial Random Variables

Binomial Random Variables. Binomial Random Variables Bernoulli Trials Definition A Bernoulli trial is a random experiment in which there are only two possible outcomes - success and failure. 1 Tossing a coin and considering heads as success and tails as

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Random variables. Contents

Random variables. Contents Random variables Contents 1 Random Variable 2 1.1 Discrete Random Variable............................ 3 1.2 Continuous Random Variable........................... 5 1.3 Measures of Location...............................

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Welcome to Stat 410!

Welcome to Stat 410! Welcome to Stat 410! Personnel Instructor: Liang, Feng TA: Gan, Gary (Lingrui) Instructors/TAs from two other sessions Websites: Piazza and Compass Homework When, where and how to submit your homework

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

STAT Chapter 4/6: Random Variables and Probability Distributions

STAT Chapter 4/6: Random Variables and Probability Distributions STAT 251 - Chapter 4/6: Random Variables and Probability Distributions We use random variables (RV) to represent the numerical features of a random experiment. In chapter 3, we defined a random experiment

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

CS145: Probability & Computing

CS145: Probability & Computing CS145: Probability & Computing Lecture 8: Variance of Sums, Cumulative Distribution, Continuous Variables Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Some Discrete Distribution Families

Some Discrete Distribution Families Some Discrete Distribution Families ST 370 Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications. In each family, we need a formula

More information

2. The sum of all the probabilities in the sample space must add up to 1

2. The sum of all the probabilities in the sample space must add up to 1 Continuous Random Variables and Continuous Probability Distributions Continuous Random Variable: A variable X that can take values on an interval; key feature remember is that the values of the variable

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10.

IEOR 3106: Introduction to OR: Stochastic Models. Fall 2013, Professor Whitt. Class Lecture Notes: Tuesday, September 10. IEOR 3106: Introduction to OR: Stochastic Models Fall 2013, Professor Whitt Class Lecture Notes: Tuesday, September 10. The Central Limit Theorem and Stock Prices 1. The Central Limit Theorem (CLT See

More information

E509A: Principle of Biostatistics. GY Zou

E509A: Principle of Biostatistics. GY Zou E509A: Principle of Biostatistics (Week 2: Probability and Distributions) GY Zou gzou@robarts.ca Reporting of continuous data If approximately symmetric, use mean (SD), e.g., Antibody titers ranged from

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

9 Expectation and Variance

9 Expectation and Variance 9 Expectation and Variance Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables ST 370 A random variable is a numerical value associated with the outcome of an experiment. Discrete random variable When we can enumerate the possible values of the variable

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 12: Continuous Distributions Uniform Distribution Normal Distribution (motivation) Discrete vs Continuous

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

M3S1 - Binomial Distribution

M3S1 - Binomial Distribution M3S1 - Binomial Distribution Professor Jarad Niemi STAT 226 - Iowa State University September 28, 2018 Professor Jarad Niemi (STAT226@ISU) M3S1 - Binomial Distribution September 28, 2018 1 / 28 Outline

More information

Probability mass function; cumulative distribution function

Probability mass function; cumulative distribution function PHP 2510 Random variables; some discrete distributions Random variables - what are they? Probability mass function; cumulative distribution function Some discrete random variable models: Bernoulli Binomial

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10

ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 ECO220Y Continuous Probability Distributions: Normal Readings: Chapter 9, section 9.10 Fall 2011 Lecture 8 Part 2 (Fall 2011) Probability Distributions Lecture 8 Part 2 1 / 23 Normal Density Function f

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic Probability Distributions: Binomial and Poisson Distributions Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

MATH MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance

MATH MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance MATH 2030 3.00MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance Tom Salisbury salt@yorku.ca York University, Dept. of Mathematics and Statistics Original version

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B.

Lecture 2. Main Topics: (Part II) Chapter 2 (2-7), Chapter 3. Bayes Theorem: Let A, B be two events, then. The probabilities P ( B), probability of B. STT315, Section 701, Summer 006 Lecture (Part II) Main Toics: Chater (-7), Chater 3. Bayes Theorem: Let A, B be two events, then B A) = A B) B) A B) B) + A B) B) The robabilities P ( B), B) are called

More information

4 Random Variables and Distributions

4 Random Variables and Distributions 4 Random Variables and Distributions Random variables A random variable assigns each outcome in a sample space. e.g. called a realization of that variable to Note: We ll usually denote a random variable

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved.

4-1. Chapter 4. Commonly Used Distributions by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 Chapter 4 Commonly Used Distributions 2014 by The Companies, Inc. All rights reserved. Section 4.1: The Bernoulli Distribution 4-2 We use the Bernoulli distribution when we have an experiment which

More information

2 of PU_2015_375 Which of the following measures is more flexible when compared to other measures?

2 of PU_2015_375 Which of the following measures is more flexible when compared to other measures? PU M Sc Statistics 1 of 100 194 PU_2015_375 The population census period in India is for every:- quarterly Quinqennial year biannual Decennial year 2 of 100 105 PU_2015_375 Which of the following measures

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

Deriving the Black-Scholes Equation and Basic Mathematical Finance

Deriving the Black-Scholes Equation and Basic Mathematical Finance Deriving the Black-Scholes Equation and Basic Mathematical Finance Nikita Filippov June, 7 Introduction In the 97 s Fischer Black and Myron Scholes published a model which would attempt to tackle the issue

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

15.063: Communicating with Data Summer Recitation 3 Probability II

15.063: Communicating with Data Summer Recitation 3 Probability II 15.063: Communicating with Data Summer 2003 Recitation 3 Probability II Today s Goal Binomial Random Variables (RV) Covariance and Correlation Sums of RV Normal RV 15.063, Summer '03 2 Random Variables

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Chapter 3 - Lecture 5 The Binomial Probability Distribution

Chapter 3 - Lecture 5 The Binomial Probability Distribution Chapter 3 - Lecture 5 The Binomial Probability October 12th, 2009 Experiment Examples Moments and moment generating function of a Binomial Random Variable Outline Experiment Examples A binomial experiment

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

Random Variables and Probability Functions

Random Variables and Probability Functions University of Central Arkansas Random Variables and Probability Functions Directory Table of Contents. Begin Article. Stephen R. Addison Copyright c 001 saddison@mailaps.org Last Revision Date: February

More information

Binomial and multinomial distribution

Binomial and multinomial distribution 1-Binomial distribution Binomial and multinomial distribution The binomial probability refers to the probability that a binomial experiment results in exactly "x" successes. The probability of an event

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Reliability and Risk Analysis. Survival and Reliability Function

Reliability and Risk Analysis. Survival and Reliability Function Reliability and Risk Analysis Survival function We consider a non-negative random variable X which indicates the waiting time for the risk event (eg failure of the monitored equipment, etc.). The probability

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Favorite Distributions

Favorite Distributions Favorite Distributions Binomial, Poisson and Normal Here we consider 3 favorite distributions in statistics: Binomial, discovered by James Bernoulli in 1700 Poisson, a limiting form of the Binomial, found

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution.

MA 1125 Lecture 12 - Mean and Standard Deviation for the Binomial Distribution. Objectives: Mean and standard deviation for the binomial distribution. MA 5 Lecture - Mean and Standard Deviation for the Binomial Distribution Friday, September 9, 07 Objectives: Mean and standard deviation for the binomial distribution.. Mean and Standard Deviation of the

More information

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or,

More information

ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section )

ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section ) ECO220Y Introduction to Probability Readings: Chapter 6 (skip section 6.9) and Chapter 9 (section 9.1-9.3) Fall 2011 Lecture 6 Part 2 (Fall 2011) Introduction to Probability Lecture 6 Part 2 1 / 44 From

More information

Statistical Methods for NLP LT 2202

Statistical Methods for NLP LT 2202 LT 2202 Lecture 3 Random variables January 26, 2012 Recap of lecture 2 Basic laws of probability: 0 P(A) 1 for every event A. P(Ω) = 1 P(A B) = P(A) + P(B) if A and B disjoint Conditional probability:

More information

CERTIFICATE IN FINANCE CQF. Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING

CERTIFICATE IN FINANCE CQF. Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING CERTIFICATE IN FINANCE CQF Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING Certificate in Quantitative Finance Probability and Statistics June 2011 1 1 PROBABILITY

More information

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations

II - Probability. Counting Techniques. three rules of counting. 1multiplication rules. 2permutations. 3combinations II - Probability Counting Techniques three rules of counting 1multiplication rules 2permutations 3combinations Section 2 - Probability (1) II - Probability Counting Techniques 1multiplication rules In

More information

Lecture III. 1. common parametric models 2. model fitting 2a. moment matching 2b. maximum likelihood 3. hypothesis testing 3a. p-values 3b.

Lecture III. 1. common parametric models 2. model fitting 2a. moment matching 2b. maximum likelihood 3. hypothesis testing 3a. p-values 3b. Lecture III 1. common parametric models 2. model fitting 2a. moment matching 2b. maximum likelihood 3. hypothesis testing 3a. p-values 3b. simulation Parameters Parameters are knobs that control the amount

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

The Bernoulli distribution

The Bernoulli distribution This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information