Chapter 2. Random variables. 2.3 Expectation

Size: px
Start display at page:

Download "Chapter 2. Random variables. 2.3 Expectation"

Transcription

1 Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation

2 Random processes - Chapter 2. Random variables 2 Among the parameters representing a typical value of a random variable are mode, median, and expectation. Mode The mode of a random variable X is a number x mod satisfying Median f X (x mod ) f X (x), p X (x mod ) p X (x), X is a continuous random variable, X is a discrete random variable. The median of a random variable X is a number x med satisfying P {X x med } = P {X x med }. There may exist several medians and modes for a random variable. 2.3 Expectation

3 Random processes - Chapter 2. Random variables 3 Expectation Expectation, expected value, average Let the cdf of a random variable X be F X. Then, if x df X(x) < -or, x p X (x) < - we call the following the expectation, average, or expected value x of the random variable X. E{X} = = xdf X (x) { xf X(x)dx, X is a continuous random variable, xp X (x), x X is a discrete random variable. Uniform random variable Let the random variable X be distributed uniformly on [a, b), that is, X U[a, b). Then, f X (x) =1/(b a), a<x<b. Thus, E{X} = b a xdx/(b a) = (b 2 a 2 )/{2(b a)} =(a + b)/2. The mode is any real number between a and b, and the median is (a + b)/ Expectation / Expectation

4 Random processes - Chapter 2. Random variables 4 The expected value of a function Y = g(x) of a random variable X is or E{Y } = ydf Y (y), E{Y } = E{g(X)} = = g(x)df X (x) { g(x)f X(x)dx, continuous random variable, g(x)p X (x), Here, F Y is the cdf of Y = g(x). x discrete random variable. 2.3 Expectation / Expectation

5 Random processes - Chapter 2. Random variables 5 We can show the following from the definition of the expectation. We have E(X) 0 when a random variable X is not smaller than 0 (that is, when Pr {X 0} =1). The expectation of a constant is the constant. That is, if Pr {X = c} =1, then E(X) =c. { n } n E a i g i (X) = a i E{g i (X)}. When h 1 (x) h 2 (x), i=1 i=1 E{h(X)} E{ h(x) }. E{h 1 (X)} E{h 2 (X)}. min(h(x)) E{h(X)} max(h(x)). When a and b are constants and X is a random variable, E{aX +b} = ae{x} + b. 2.3 Expectation / Expectation

6 Random processes - Chapter 2. Random variables 6 Conditional expectation The conditional expectation of X when A is given can be evaluated as { E{X A} = xf X A(x A)dx, X is continuous random variable, xp X A (x A), X is discrete random variable. x When the event A is given, the conditional expectation of a function Y = g(x) of a random variable X is E{g(X) A} = = g(x)df X A (x A) { g(x)f X A(x A)dx, continuous random variable, g(x)p X A (x A), x discrete random variable. 2.3 Expectation / Expectation

7 Random processes - Chapter 2. Random variables 7 Moment and variance The expectation of a power of a random variable is called a moment. In other words, a moment is also an expectation of a function of a random variable. Moment Let F X be the cdf of a random variable X. Then, if x n df X (x) <, then the nth moment m n of the random variable X is m n = E{X n } = x n df X (x) { = xn f X (x)dx, continuous random variable, x n p X (x), discrete random variable. x 2.3 Expectation / Moment and variance

8 Random processes - Chapter 2. Random variables 8 Central moment The following parameter µ n is called the nth central moment of the random variable X: µ n = E{(X E{X}) n } = (x m 1 ) n df X (x) { = (x m 1) n f X (x)dx, continuous random variable, (x m 1 ) n p X (x), discrete random variable. x Variance, Standard deviation The second central moment of a random variable is called the variance. σ 2 X = E{(X E{X}) 2 } = E{X 2 } E 2 {X} = m 2 m 2 1 = µ 2. The standard deviation is the nonnegative square root of the variance. 2.3 Expectation / Moment and variance

9 Random processes - Chapter 2. Random variables 9 The expectation and variance of Cauchy random variable do not exist because E{ X } = and E{ X 2 } =. f(r) = α π 1 r 2 + α2, r R. The uniformly distributed random variable X with the pdf f X (r) = 1, r [a, b], b > a b a has the following expectation and variance E{X} = a + b 2 (b a)2, Var{X} = Expectation / Moment and variance

10 Random processes - Chapter 2. Random variables 10 The exponentially distributed random variable X with the pdf f(r) = λe λr,r 0 has E{X} =1/λ and Var{X} =1/λ 2 as the expectation and variance, respectively. The Poisson random variable X with parameter λ has the following expectation, second moment, and variance E{X} = ke λ λ k /k! =e λ kλ k /k! =λ, k=0 E{X 2 } = λ 2 + λ, σ 2 X = λ. The binomial random variable X b(n, p) has the following expectation and variance E{X} = np, k=0 σ 2 X = np(1 p). 2.3 Expectation / Moment and variance

11 Random processes - Chapter 2. Random variables 11 Let us obtain the expectation and variance of the normal random variable X N(m, σ 2 ). Since the pdf of the normal random variable is f X (x) = 1 expectation and second moment are as follows: { } x E{X} = exp (x m)2 dx 2πσ 2 2σ 2 = 2σt + m 2πσ 2 = 1 π { = m π π = m, 2πσ 2 exp{ (x m)2 2σ 2 e t2 2σdt ((x m)/ 2σ = t) } 2σt exp( t 2 )dt + m exp ( t 2 )dt }, the 2.3 Expectation / Moment and variance

12 Random processes - Chapter 2. Random variables 12 E{X 2 } = = 1 2πσ 2 = 1 π { x 2 { exp 2πσ 2 = 1 π (σ 2 π + m 2 π) = σ 2 + m 2. } (x m)2 dx 2σ 2 (2σ 2 t mσt + m 2 )e t2 2σdt 2σ 2 t 2 e t2 dt + m 2 } π Thus, Var{X} = E{X 2 } m 2 = σ 2. We have used exp( t2 )dt = π, t exp( t2 )dt=0,and t2 exp( t 2 )dt= π/ Expectation / Moment and variance

13 Random processes - Chapter 2. Random variables 13 Consider a normal random variable X with the pdf f(x) = { } 1 exp x2 2πσ 2 2σ 2 Using that f(x) is symmetric and taking the kth derivative of π exp{ αx 2 }dx = α with respect to α we can obtain the following results. { 0, n =2k +1, E{X n } = (n 1)σ n, n =2k Expectation / Moment and variance

14 Random processes - Chapter 2. Random variables 14 Characteristic function and moment generating function Characteristic function (cf) The characteristic function ϕ X (ω) of random variable X is ϕ X (ω) = E{e jωx } = = e jωx df X (x) { f X(x)e jωx dx, continuous random variable, p X (x)e jωx, discrete random variable. x The characteristic function has the following properties. ϕ(ω) ϕ(0) = 1. ϕ is uniformly continuous for any real number. ϕ is semi-definite. In other words, for any real numbers ω 1,,ω n and z 1,,z n, ϕ(ω j ω k )z j z k 0. j,k 2.3 Expectation / Characteristic function and moment generating function

15 Random processes - Chapter 2. Random variables 15 Moment generating function (mgf) The mgf M X (t) of a random variable X is defined as M X (t) = E{e tx } = e tx df X (x). If the characteristic function of the random variable X is ϕ X, a, b R, and Y = ax + b, then the characteristic function of Y is ϕ Y (ω) =e iωb ϕ X (aω). 2.3 Expectation / Characteristic function and moment generating function

16 Random processes - Chapter 2. Random variables 16 Moment theorem Moment theorem Let the mgf and cf of a random variable X be M X (t) and ϕ X (ω), respectively. Then the kth moment of X can be evaluated by k k m k = j ω kϕ X(ω) m k = j k k ϕ X (0), ω k = M (k) X (0). ω=0 Let X N(m, σ 2 ). Then, since ϕ X (ω) = exp{ ω2 σ jmω}, E{X} = j 1 ϕ X (0) = m, E{X2 } = j 2 ϕ X (0) = m2 + σ 2, Var{X} = σ Expectation / Moment theorem

17 Random processes - Chapter 2. Random variables 17 Cumulant* Let us expand the natural logarithm ψ(ω) =lnϕ(ω) of the characteristic function ϕ(ω) in Taylor series at ω =0. ψ(ω) = lnϕ(ω) { } = ln 1+ (jω) sm s s! s=1 [ ] [ = (jω) sm s 1 s! 2 s=1 s=1 jω = m 1 1! +(m 2 m 2 1) (jω)2 2! (jω) n = k n. n! n=1 (jω) sm s s! ] 2 [ + 1 ] 3 (jω) sm s + 3 s! s=1 +(m 3 3m 1 m 2 +2m 3 1) (jω)3 3! + The parameter k n in the last line is called a cumulant and is defined as k n = n (jω) nψ(ω). ω=0 2.3 Expectation / Cumulant*

18 Random processes - Chapter 2. Random variables 18 Coefficient of variation, skewness, kurtosis For a random variable X with mean µ and variance σ 2, v 1 = σ µ, v 2 = µ 3 σ 3 = k 3 (k 2 ) 3/2, v 3 = µ 4 σ 4 =3+k 4 k 2 2 are called the coefficient of variation, skewness, and kurtosis, respectively. The symmetry of pdf and skewness v Expectation / Cumulant*

19 Random processes - Chapter 2. Random variables 19 Several inequalities* Markov inequality: If X is a random variable that takes only nonnegative values, then for any value α>0, P {X α} E{X}/α. Chebyshev inequality: For a random variable Y and any positive value ɛ, P { Y E{Y } ɛ} Var{Y } ɛ Expectation / Several inequalities*

20 Random processes - Chapter 2. Random variables 20 Bienayme-Chebyshev inequality: Let the rth absolute moment of a random variable X be finite, that is, E{ X r } <, r>0. Then, for any positive ɛ, we have P { X ɛ} E{ X r } ɛ r. Generalized Bienayme-Chebyshev inequality: Let g(x), x (0, ) be a nondecreasing and nonnegative function. If E{g( X )}/g(ɛ) is defined, for any positive ɛ, wehave P { X ɛ} E{g( X )}. g(ɛ) Jensen s inequality: If f is a convex function, E{f(X)} f(e{x}). 2.3 Expectation / Several inequalities*

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

IEOR 165 Lecture 1 Probability Review

IEOR 165 Lecture 1 Probability Review IEOR 165 Lecture 1 Probability Review 1 Definitions in Probability and Their Consequences 1.1 Defining Probability A probability space (Ω, F, P) consists of three elements: A sample space Ω is the set

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Welcome to Stat 410!

Welcome to Stat 410! Welcome to Stat 410! Personnel Instructor: Liang, Feng TA: Gan, Gary (Lingrui) Instructors/TAs from two other sessions Websites: Piazza and Compass Homework When, where and how to submit your homework

More information

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Predicting FLOODS Flood Frequency Analysis n Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs)

More information

Chapter 3 - Lecture 4 Moments and Moment Generating Funct

Chapter 3 - Lecture 4 Moments and Moment Generating Funct Chapter 3 - Lecture 4 and s October 7th, 2009 Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness Chapter 3 - Lecture 4 and Moment Generating Funct Central Skewness The expected value of

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

NORMAL APPROXIMATION. In the last chapter we discovered that, when sampling from almost any distribution, e r2 2 rdrdϕ = 2π e u du =2π.

NORMAL APPROXIMATION. In the last chapter we discovered that, when sampling from almost any distribution, e r2 2 rdrdϕ = 2π e u du =2π. NOMAL APPOXIMATION Standardized Normal Distribution Standardized implies that its mean is eual to and the standard deviation is eual to. We will always use Z as a name of this V, N (, ) will be our symbolic

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Random variables. Contents

Random variables. Contents Random variables Contents 1 Random Variable 2 1.1 Discrete Random Variable............................ 3 1.2 Continuous Random Variable........................... 5 1.3 Measures of Location...............................

More information

Section 7.1: Continuous Random Variables

Section 7.1: Continuous Random Variables Section 71: Continuous Random Variables Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 71: Continuous Random Variables

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

STOR Lecture 7. Random Variables - I

STOR Lecture 7. Random Variables - I STOR 435.001 Lecture 7 Random Variables - I Shankar Bhamidi UNC Chapel Hill 1 / 31 Example 1a: Suppose that our experiment consists of tossing 3 fair coins. Let Y denote the number of heads that appear.

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

Probability and Random Variables A FINANCIAL TIMES COMPANY

Probability and Random Variables A FINANCIAL TIMES COMPANY Probability Basics Probability and Random Variables A FINANCIAL TIMES COMPANY 2 Probability Probability of union P[A [ B] =P[A]+P[B] P[A \ B] Conditional Probability A B P[A B] = Bayes Theorem P[A \ B]

More information

9 Expectation and Variance

9 Expectation and Variance 9 Expectation and Variance Two numbers are often used to summarize a probability distribution for a random variable X. The mean is a measure of the center or middle of the probability distribution, and

More information

This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data.

This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. Chapter 1 Probability Concepts This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random Variables We start with the basic

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 207 Homework 5 Drew Armstrong Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Section 3., Exercises 3, 0. Section 3.3, Exercises 2, 3, 0,.

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

Covariance and Correlation. Def: If X and Y are JDRVs with finite means and variances, then. Example Sampling

Covariance and Correlation. Def: If X and Y are JDRVs with finite means and variances, then. Example Sampling Definitions Properties E(X) µ X Transformations Linearity Monotonicity Expectation Chapter 7 xdf X (x). Expectation Independence Recall: µ X minimizes E[(X c) ] w.r.t. c. The Prediction Problem The Problem:

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

The Normal Distribution

The Normal Distribution The Normal Distribution The normal distribution plays a central role in probability theory and in statistics. It is often used as a model for the distribution of continuous random variables. Like all models,

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributions Probability distributions Discrete random variables Expected values (mean) Variance Linear functions - mean & standard deviation Standard deviation 1 Probability distributions

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ.

Lecture Notes 6. Assume F belongs to a family of distributions, (e.g. F is Normal), indexed by some parameter θ. Sufficient Statistics Lecture Notes 6 Sufficiency Data reduction in terms of a particular statistic can be thought of as a partition of the sample space X. Definition T is sufficient for θ if the conditional

More information

Chapter 2: Random Variables (Cont d)

Chapter 2: Random Variables (Cont d) Chapter : Random Variables (Cont d) Section.4: The Variance of a Random Variable Problem (1): Suppose that the random variable X takes the values, 1, 4, and 6 with probability values 1/, 1/6, 1/, and 1/6,

More information

Homework Assignments

Homework Assignments Homework Assignments Week 1 (p. 57) #4.1, 4., 4.3 Week (pp 58 6) #4.5, 4.6, 4.8(a), 4.13, 4.0, 4.6(b), 4.8, 4.31, 4.34 Week 3 (pp 15 19) #1.9, 1.1, 1.13, 1.15, 1.18 (pp 9 31) #.,.6,.9 Week 4 (pp 36 37)

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

2.1 Probability, stochastic variables and distribution functions

2.1 Probability, stochastic variables and distribution functions Chapter 2 Probability and statistics 2.1 Probability, stochastic variables and distribution functions The defining characteristic of a stochastic experiment E is that it produces different outcomes under

More information

Introduction to Computational Finance and Financial Econometrics Chapter 1 Asset Return Calculations

Introduction to Computational Finance and Financial Econometrics Chapter 1 Asset Return Calculations Introduction to Computational Finance and Financial Econometrics Chapter 1 Asset Return Calculations Eric Zivot Department of Economics, University of Washington December 31, 1998 Updated: January 7, 2002

More information

2.1 Properties of PDFs

2.1 Properties of PDFs 2.1 Properties of PDFs mode median epectation values moments mean variance skewness kurtosis 2.1: 1/13 Mode The mode is the most probable outcome. It is often given the symbol, µ ma. For a continuous random

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

Basic notions of probability theory: continuous probability distributions. Piero Baraldi

Basic notions of probability theory: continuous probability distributions. Piero Baraldi Basic notions of probability theory: continuous probability distributions Piero Baraldi Probability distributions for reliability, safety and risk analysis: discrete probability distributions continuous

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

ECE 295: Lecture 03 Estimation and Confidence Interval

ECE 295: Lecture 03 Estimation and Confidence Interval ECE 295: Lecture 03 Estimation and Confidence Interval Spring 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 23 Theme of this Lecture What is Estimation? You

More information

Homework Problems Stat 479

Homework Problems Stat 479 Chapter 2 1. Model 1 is a uniform distribution from 0 to 100. Determine the table entries for a generalized uniform distribution covering the range from a to b where a < b. 2. Let X be a discrete random

More information

Exam P September 2014 Study Sheet! copylefted by Jared Nakamura, 9/4/2014!

Exam P September 2014 Study Sheet! copylefted by Jared Nakamura, 9/4/2014! Exam P September 2014 Study Sheet copylefted by Jared Nakamura, 9/4/2014 I. General Probability (15-30%) A. Set functions including set notation and basic elements of probability 1. Set notation: A = {a1,

More information

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is

Normal Distribution. Definition A continuous rv X is said to have a normal distribution with. the pdf of X is Normal Distribution Normal Distribution Definition A continuous rv X is said to have a normal distribution with parameter µ and σ (µ and σ 2 ), where < µ < and σ > 0, if the pdf of X is f (x; µ, σ) = 1

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.30 Introduction to Statistical Methods in Economics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Drunken Birds, Brownian Motion, and Other Random Fun

Drunken Birds, Brownian Motion, and Other Random Fun Drunken Birds, Brownian Motion, and Other Random Fun Michael Perlmutter Department of Mathematics Purdue University 1 M. Perlmutter(Purdue) Brownian Motion and Martingales Outline Review of Basic Probability

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

Applications of Good s Generalized Diversity Index. A. J. Baczkowski Department of Statistics, University of Leeds Leeds LS2 9JT, UK

Applications of Good s Generalized Diversity Index. A. J. Baczkowski Department of Statistics, University of Leeds Leeds LS2 9JT, UK Applications of Good s Generalized Diversity Index A. J. Baczkowski Department of Statistics, University of Leeds Leeds LS2 9JT, UK Internal Report STAT 98/11 September 1998 Applications of Good s Generalized

More information

PROBABILITY AND STATISTICS

PROBABILITY AND STATISTICS Monday, January 12, 2015 1 PROBABILITY AND STATISTICS Zhenyu Ye January 12, 2015 Monday, January 12, 2015 2 References Ch10 of Experiments in Modern Physics by Melissinos. Particle Physics Data Group Review

More information

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or

Expectations. Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or Definition Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, denoted by E(X ) or µ X, is E(X ) = µ X = x D x p(x) Definition Let X be a discrete

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza

Probability Theory. Mohamed I. Riffi. Islamic University of Gaza Probability Theory Mohamed I. Riffi Islamic University of Gaza Table of contents 1. Chapter 2 Discrete Distributions The binomial distribution 1 Chapter 2 Discrete Distributions Bernoulli trials and the

More information

Commonly Used Distributions

Commonly Used Distributions Chapter 4: Commonly Used Distributions 1 Introduction Statistical inference involves drawing a sample from a population and analyzing the sample data to learn about the population. We often have some knowledge

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

Lecture 10: Point Estimation

Lecture 10: Point Estimation Lecture 10: Point Estimation MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 31 Basic Concepts of Point Estimation A point estimate of a parameter θ,

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

2 of PU_2015_375 Which of the following measures is more flexible when compared to other measures?

2 of PU_2015_375 Which of the following measures is more flexible when compared to other measures? PU M Sc Statistics 1 of 100 194 PU_2015_375 The population census period in India is for every:- quarterly Quinqennial year biannual Decennial year 2 of 100 105 PU_2015_375 Which of the following measures

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV Probability Distributions for Discrete RV Probability Distributions for Discrete RV Definition The probability distribution or probability mass function (pmf) of a discrete rv is defined for every number

More information

Populations and Samples Bios 662

Populations and Samples Bios 662 Populations and Samples Bios 662 Michael G. Hudgens, Ph.D. mhudgens@bios.unc.edu http://www.bios.unc.edu/ mhudgens 2008-08-22 16:29 BIOS 662 1 Populations and Samples Random Variables Random sample: result

More information

Lecture Stat 302 Introduction to Probability - Slides 15

Lecture Stat 302 Introduction to Probability - Slides 15 Lecture Stat 30 Introduction to Probability - Slides 15 AD March 010 AD () March 010 1 / 18 Continuous Random Variable Let X a (real-valued) continuous r.v.. It is characterized by its pdf f : R! [0, )

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Engineering Statistics ECIV 2305

Engineering Statistics ECIV 2305 Engineering Statistics ECIV 2305 Section 5.3 Approximating Distributions with the Normal Distribution Introduction A very useful property of the normal distribution is that it provides good approximations

More information

Favorite Distributions

Favorite Distributions Favorite Distributions Binomial, Poisson and Normal Here we consider 3 favorite distributions in statistics: Binomial, discovered by James Bernoulli in 1700 Poisson, a limiting form of the Binomial, found

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS Answer any FOUR of the SIX questions.

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Reliability and Risk Analysis. Survival and Reliability Function

Reliability and Risk Analysis. Survival and Reliability Function Reliability and Risk Analysis Survival function We consider a non-negative random variable X which indicates the waiting time for the risk event (eg failure of the monitored equipment, etc.). The probability

More information

VI. Continuous Probability Distributions

VI. Continuous Probability Distributions VI. Continuous Proaility Distriutions A. An Important Definition (reminder) Continuous Random Variale - a numerical description of the outcome of an experiment whose outcome can assume any numerical value

More information

STATISTICS and PROBABILITY

STATISTICS and PROBABILITY Introduction to Statistics Atatürk University STATISTICS and PROBABILITY LECTURE: PROBABILITY DISTRIBUTIONS Prof. Dr. İrfan KAYMAZ Atatürk University Engineering Faculty Department of Mechanical Engineering

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Deriving the Black-Scholes Equation and Basic Mathematical Finance

Deriving the Black-Scholes Equation and Basic Mathematical Finance Deriving the Black-Scholes Equation and Basic Mathematical Finance Nikita Filippov June, 7 Introduction In the 97 s Fischer Black and Myron Scholes published a model which would attempt to tackle the issue

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

MATH MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance

MATH MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance MATH 2030 3.00MW Elementary Probability Course Notes Part IV: Binomial/Normal distributions Mean and Variance Tom Salisbury salt@yorku.ca York University, Dept. of Mathematics and Statistics Original version

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

STAT 830 Convergence in Distribution

STAT 830 Convergence in Distribution STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2013 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2013 1 / 31

More information

Random variables. Discrete random variables. Continuous random variables.

Random variables. Discrete random variables. Continuous random variables. Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Examples:

More information

Frequency and Severity with Coverage Modifications

Frequency and Severity with Coverage Modifications Frequency and Severity with Coverage Modifications Chapter 8 Stat 477 - Loss Models Chapter 8 (Stat 477) Coverage Modifications Brian Hartman - BYU 1 / 23 Introduction Introduction In the previous weeks,

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS. Rick Katz

EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS. Rick Katz 1 EVA Tutorial #1 BLOCK MAXIMA APPROACH IN HYDROLOGIC/CLIMATE APPLICATIONS Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu

More information

CERTIFICATE IN FINANCE CQF. Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING

CERTIFICATE IN FINANCE CQF. Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING CERTIFICATE IN FINANCE CQF Certificate in Quantitative Finance Subtext t here GLOBAL STANDARD IN FINANCIAL ENGINEERING Certificate in Quantitative Finance Probability and Statistics June 2011 1 1 PROBABILITY

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19)

Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Statistics (This summary is for chapters 17, 28, 29 and section G of chapter 19) Mean, Median, Mode Mode: most common value Median: middle value (when the values are in order) Mean = total how many = x

More information

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes Model Paper Statistics Objective Intermediate Part I (11 th Class) Examination Session 2012-2013 and onward Total marks: 17 Paper Code Time Allowed: 20 minutes Note:- You have four choices for each objective

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information