2.1 Properties of PDFs

Size: px
Start display at page:

Download "2.1 Properties of PDFs"

Transcription

1 2.1 Properties of PDFs mode median epectation values moments mean variance skewness kurtosis 2.1: 1/13

2 Mode The mode is the most probable outcome. It is often given the symbol, µ ma. For a continuous random variable, the mode is most often obtained by taking the derivative of the pdf and setting it equal to zero. Neither eample we have been using (rolling two dice and fluorescence decay) are amenable to the derivative approach. The two modes are shown below. mode τ = 5 ns f().1.5 f(t) : 2/ t (ns)

3 Median The median is the value of the random variable yielding F(m) =.5. It is often given the symbol µ 1/2. For a discrete cdf there may not be a value of the random variable that eactly produces.5. Rolling two dice: ( ) 12 ( m+ 6)( m+ 7) 2 F m = =.5 m + 13m+ 6 = 72 µ = = = Fluorescence decay: ( ) ( m ) = ( ) = F m µ 12 = 1 ep 5 =.5 5 ln f(t) median τ = 5 ns 2.1 : 3/ t (ns)

4 Epectation Values Consider a random variable,, and some arbitrary function of the random variable, y(). The epectation value of the function is a weighted average of y() taken over all values of the random variable. The weighting factor is the probability of observing a given value of. 2.1 : 4/13 For a discrete random variable, the epectation value of y() is given by a summation. ( ) ( ) ( ) y f ( ) ( ) ( ) ( ) ( ) E y = = y f = y p f For a continuous random variable, the epectation value of y() is given by an integral. ( ) ( ) ( ) y f ( ) d ( ) ( ) E y = = y f d f d

5 Mean The mean is the epectation value of the random variable, i.e. y() =. The mean has units of. For a discrete random variable, the mean is given by a summation. µ E( ) = f ( ) = p( ) For a continuous random variable, the mean is given by an integral. ( ) ( ) µ = E f d When a pdf is due to noise, the mean is associated with the true value. That is, as the noise approaches zero the measured data will cluster closer to the mean. When a pdf is due to a signal, the mean may not signify anything. The mean of a fluorescence spectrum has no significance, but the mean of a chromatographic peak is the retention time. 2.1 : 5/13

6 Mean for Rolling Two Dice The pdf for rolling two dice and subtracting the "blue" value from the "red" value is given by a two-part function. ( ) ( ) ( ) ( ) f = f = 6 36 < 5 When writing the mean, the two part function is accommodated by using summations with different sets of limits. ( 6+ ) ( 6 ) 5 µ = To simplify, use the fact that Σ[φ 1 ()+φ 2 ()] = Σφ 1 () + Σφ 2 () µ = + + = : 6/13

7 Mean for Fluorescence Decay The pdf for a 5-ns fluorescence decay is given by the following. 1 ep 5 5 ( ) = ( t ) f t The mean is given by the epectation value of t. 1 = ep( 5) 5 t t dt µ Solve for the mean using the following tabulated definite integral, where a = 1/5. 2 ( ) = ep a d 1 a 2 15 µ = = 5 51 note that the mean is equal to the decay constant τ (lifetime) 2.1 : 7/13

8 Moments The deviations of a random variable are given by, d i = i - µ. Note that the epectation value of the deviations is zero. ( ) ( ) ( ) ( ) ( ) E d = µ p = p µ p = µ µ = i i i i i i i i ( ) ( ) ( ) ( ) or E d = E µ = E E µ = µ µ = An epectation value of the form, E[ n ], is called the n th moment. The mean is the first moment. An epectation value of the form, E[d n ] = E[(-µ) n ], is called the n th moment about the mean. As will be seen, the variance is the second moment about the mean. The mean, mode and median are used to locate the probability density function along the random variable ais, while moments are used to characterize its shape. 2.1 : 8/13

9 Variance Variance is the second moment about the mean i µ i i i µ i ( ) ( ) ( ) ( ) V = p = p i ( ) ( ) ( ) ( ) V = µ f d = f d µ The standard deviation, σ, is the square root of the variance, σ 2 = V(). The standard deviation is a measure of the spread of probability along the random variable. The standard deviation has units of. When a pdf is due to noise, the standard deviation is used as a quantitative measure of the noise. When the pdf is due to a signal, the standard deviation is often a measure of resolution. The relative standard deviation is a measure of spread normalized by the mean. This avoids problems caused by scaling. RSD = σ/µ RSD is unitless 2.1 : 9/13

10 Variance for Rolling Two Dice When writing the variance, the two-part function is accommodated by using summations with different sets of limits. σ σ σ ( 6+ ) ( 6 ) = = = Use, n ( + 1)( n ) ( + 1) 2 nn n nn = = to obtain: σ 2 ( 5 6) = = σ = : 1/13

11 Variance for Fluorescence Decay The variance is given by the second moment about the mean. σ ( ) = ep t t dt Solve for the variance using the following tabulated definite integral, where a = 1/5. σ ( ) 2 3 ep a d = 2 a σ = = = : 11/13

12 Skewness Skewness is a measure of pdf asymmetry. It can be negative (skewed to the left), positive (skewed to the right), or zero (symmetric about the mean). Skewness is given by the third moment about the mean. 3 3 i 3 3 i i i i i ( ) f ( ) f ( ) µ = µ = σ µ µ ( ) ( ) ( ) µ = µ f d = f d 3σ µ µ Tabulations often list the coefficient of skewness, α = µ σ 3 3 Skewness for the dice is zero since the pdf is symmetric. For the fluorescence decay, the coefficient of skewness is given by, 3 α t ep ( t 5 ) dt = = : 12/13

13 Kurtosis Kurtosis is a measure of how fast probability drops as the random variable moves away from the mean. The larger the value, the more rapid the drop. Its primary use is in identifying a normal pdf which has a coefficient of kurtosis of 3. Kurtosis is given by the fourth moment about the mean = ( i ) f ( i) = i f ( i) i i = ( ) f ( ) d = f ( ) d µ µ µ µ σ µ µ µ µ µ µ σ µ µ Tabulations often list the coefficient of kurtosis. α = µ σ 4 4 The coefficient of kurtosis for rolling two dice is For the fluorescence decay it is : 13/13

Simple Descriptive Statistics

Simple Descriptive Statistics Simple Descriptive Statistics These are ways to summarize a data set quickly and accurately The most common way of describing a variable distribution is in terms of two of its properties: Central tendency

More information

David Tenenbaum GEOG 090 UNC-CH Spring 2005

David Tenenbaum GEOG 090 UNC-CH Spring 2005 Simple Descriptive Statistics Review and Examples You will likely make use of all three measures of central tendency (mode, median, and mean), as well as some key measures of dispersion (standard deviation,

More information

Normal Probability Distributions

Normal Probability Distributions Normal Probability Distributions Properties of Normal Distributions The most important probability distribution in statistics is the normal distribution. Normal curve A normal distribution is a continuous

More information

Continuous Distributions

Continuous Distributions Quantitative Methods 2013 Continuous Distributions 1 The most important probability distribution in statistics is the normal distribution. Carl Friedrich Gauss (1777 1855) Normal curve A normal distribution

More information

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 11. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 11 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 5.3 continued Lecture 6.1-6.2 Go over Eam 2. 2 5: Probability

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

Measures of Central tendency

Measures of Central tendency Elementary Statistics Measures of Central tendency By Prof. Mirza Manzoor Ahmad In statistics, a central tendency (or, more commonly, a measure of central tendency) is a central or typical value for a

More information

Quantitative Methods for Economics, Finance and Management (A86050 F86050)

Quantitative Methods for Economics, Finance and Management (A86050 F86050) Quantitative Methods for Economics, Finance and Management (A86050 F86050) Matteo Manera matteo.manera@unimib.it Marzio Galeotti marzio.galeotti@unimi.it 1 This material is taken and adapted from Guy Judge

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Some Characteristics of Data

Some Characteristics of Data Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key

More information

Kevin Dowd, Measuring Market Risk, 2nd Edition

Kevin Dowd, Measuring Market Risk, 2nd Edition P1.T4. Valuation & Risk Models Kevin Dowd, Measuring Market Risk, 2nd Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM www.bionicturtle.com Dowd, Chapter 2: Measures of Financial Risk

More information

4.2 Probability Distributions

4.2 Probability Distributions 4.2 Probability Distributions Definition. A random variable is a variable whose value is a numerical outcome of a random phenomenon. The probability distribution of a random variable tells us what the

More information

Moments and Measures of Skewness and Kurtosis

Moments and Measures of Skewness and Kurtosis Moments and Measures of Skewness and Kurtosis Moments The term moment has been taken from physics. The term moment in statistical use is analogous to moments of forces in physics. In statistics the values

More information

x is a random variable which is a numerical description of the outcome of an experiment.

x is a random variable which is a numerical description of the outcome of an experiment. Chapter 5 Discrete Probability Distributions Random Variables is a random variable which is a numerical description of the outcome of an eperiment. Discrete: If the possible values change by steps or jumps.

More information

The Normal Distribution

The Normal Distribution 5.1 Introduction to Normal Distributions and the Standard Normal Distribution Section Learning objectives: 1. How to interpret graphs of normal probability distributions 2. How to find areas under the

More information

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng

Financial Econometrics Jeffrey R. Russell. Midterm 2014 Suggested Solutions. TA: B. B. Deng Financial Econometrics Jeffrey R. Russell Midterm 2014 Suggested Solutions TA: B. B. Deng Unless otherwise stated, e t is iid N(0,s 2 ) 1. (12 points) Consider the three series y1, y2, y3, and y4. Match

More information

Financial Time Series and Their Characteristics

Financial Time Series and Their Characteristics Financial Time Series and Their Characteristics Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Predicting FLOODS Flood Frequency Analysis n Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs)

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Introduction to Financial Econometrics Gerald P. Dwyer Trinity College, Dublin January 2016 Outline 1 Set Notation Notation for returns 2 Summary statistics for distribution of data

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Lectures delivered by Prof.K.K.Achary, YRC

Lectures delivered by Prof.K.K.Achary, YRC Lectures delivered by Prof.K.K.Achary, YRC Given a data set, we say that it is symmetric about a central value if the observations are distributed symmetrically about the central value. In symmetrically

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Engineering Mathematics III. Moments

Engineering Mathematics III. Moments Moments Mean and median Mean value (centre of gravity) f(x) x f (x) x dx Median value (50th percentile) F(x med ) 1 2 P(x x med ) P(x x med ) 1 0 F(x) x med 1/2 x x Variance and standard deviation

More information

Reliability and Risk Analysis. Survival and Reliability Function

Reliability and Risk Analysis. Survival and Reliability Function Reliability and Risk Analysis Survival function We consider a non-negative random variable X which indicates the waiting time for the risk event (eg failure of the monitored equipment, etc.). The probability

More information

Modern Methods of Data Analysis - SS 2009

Modern Methods of Data Analysis - SS 2009 Modern Methods of Data Analysis Lecture II (7.04.09) Contents: Characterize data samples Characterize distributions Correlations, covariance Reminder: Average of a Sample arithmetic mean of data set: weighted

More information

Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution

Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution 264 Simulation of Moment, Cumulant, Kurtosis and the Characteristics Function of Dagum Distribution Dian Kurniasari 1*,Yucky Anggun Anggrainy 1, Warsono 1, Warsito 2 and Mustofa Usman 1 1 Department of

More information

NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS

NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS 1 NOTES ON THE BANK OF ENGLAND OPTION IMPLIED PROBABILITY DENSITY FUNCTIONS Options are contracts used to insure against or speculate/take a view on uncertainty about the future prices of a wide range

More information

6.2 Normal Distribution. Normal Distributions

6.2 Normal Distribution. Normal Distributions 6.2 Normal Distribution Normal Distributions 1 Homework Read Sec 6-1, and 6-2. Make sure you have a good feel for the normal curve. Do discussion question p302 2 3 Objective Identify Complete normal model

More information

Random variables. Contents

Random variables. Contents Random variables Contents 1 Random Variable 2 1.1 Discrete Random Variable............................ 3 1.2 Continuous Random Variable........................... 5 1.3 Measures of Location...............................

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Continuous Probability Distributions & Normal Distribution

Continuous Probability Distributions & Normal Distribution Mathematical Methods Units 3/4 Student Learning Plan Continuous Probability Distributions & Normal Distribution 7 lessons Notes: Students need practice in recognising whether a problem involves a discrete

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes

Model Paper Statistics Objective. Paper Code Time Allowed: 20 minutes Model Paper Statistics Objective Intermediate Part I (11 th Class) Examination Session 2012-2013 and onward Total marks: 17 Paper Code Time Allowed: 20 minutes Note:- You have four choices for each objective

More information

Descriptive Analysis

Descriptive Analysis Descriptive Analysis HERTANTO WAHYU SUBAGIO Univariate Analysis Univariate analysis involves the examination across cases of one variable at a time. There are three major characteristics of a single variable

More information

Terms & Characteristics

Terms & Characteristics NORMAL CURVE Knowledge that a variable is distributed normally can be helpful in drawing inferences as to how frequently certain observations are likely to occur. NORMAL CURVE A Normal distribution: Distribution

More information

Lecture Data Science

Lecture Data Science Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Statistics Foundations JProf. Dr. Claudia Wagner Learning Goals How to describe sample data? What is mode/median/mean?

More information

Fundamentals of Statistics

Fundamentals of Statistics CHAPTER 4 Fundamentals of Statistics Expected Outcomes Know the difference between a variable and an attribute. Perform mathematical calculations to the correct number of significant figures. Construct

More information

Statistics vs. statistics

Statistics vs. statistics Statistics vs. statistics Question: What is Statistics (with a capital S)? Definition: Statistics is the science of collecting, organizing, summarizing and interpreting data. Note: There are 2 main ways

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

4.3 Normal distribution

4.3 Normal distribution 43 Normal distribution Prof Tesler Math 186 Winter 216 Prof Tesler 43 Normal distribution Math 186 / Winter 216 1 / 4 Normal distribution aka Bell curve and Gaussian distribution The normal distribution

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

Basic notions of probability theory: continuous probability distributions. Piero Baraldi

Basic notions of probability theory: continuous probability distributions. Piero Baraldi Basic notions of probability theory: continuous probability distributions Piero Baraldi Probability distributions for reliability, safety and risk analysis: discrete probability distributions continuous

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Measure of Variation

Measure of Variation Measure of Variation Variation is the spread of a data set. The simplest measure is the range. Range the difference between the maximum and minimum data entries in the set. To find the range, the data

More information

CIVL Learning Objectives. Definitions. Discrete Distributions

CIVL Learning Objectives. Definitions. Discrete Distributions CIVL 3103 Discrete Distributions Learning Objectives Define discrete distributions, and identify common distributions applicable to engineering problems. Identify the appropriate distribution (i.e. binomial,

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem

Normal distribution Approximating binomial distribution by normal 2.10 Central Limit Theorem 1.1.2 Normal distribution 1.1.3 Approimating binomial distribution by normal 2.1 Central Limit Theorem Prof. Tesler Math 283 Fall 216 Prof. Tesler 1.1.2-3, 2.1 Normal distribution Math 283 / Fall 216 1

More information

Computing Statistics ID1050 Quantitative & Qualitative Reasoning

Computing Statistics ID1050 Quantitative & Qualitative Reasoning Computing Statistics ID1050 Quantitative & Qualitative Reasoning Single-variable Statistics We will be considering six statistics of a data set Three measures of the middle Mean, median, and mode Two measures

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 13. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 13 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 017 by D.B. Rowe 1 Agenda: Recap Chapter 6.3 6.5 Lecture Chapter 7.1 7. Review Chapter 5 for Eam 3.

More information

Chapter Seven. The Normal Distribution

Chapter Seven. The Normal Distribution Chapter Seven The Normal Distribution 7-1 Introduction Many continuous variables have distributions that are bellshaped and are called approximately normally distributed variables, such as the heights

More information

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda,

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda, MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE Dr. Bijaya Bhusan Nanda, CONTENTS What is measures of dispersion? Why measures of dispersion? How measures of dispersions are calculated? Range Quartile

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -5 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Moments of a distribubon Measures of

More information

Information Processing and Limited Liability

Information Processing and Limited Liability Information Processing and Limited Liability Bartosz Maćkowiak European Central Bank and CEPR Mirko Wiederholt Northwestern University January 2012 Abstract Decision-makers often face limited liability

More information

Financial Econometrics

Financial Econometrics Financial Econometrics Volatility Gerald P. Dwyer Trinity College, Dublin January 2013 GPD (TCD) Volatility 01/13 1 / 37 Squared log returns for CRSP daily GPD (TCD) Volatility 01/13 2 / 37 Absolute value

More information

Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E

Basic Principles of Probability and Statistics. Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E Basic Principles of Probability and Statistics Lecture notes for PET 472 Spring 2012 Prepared by: Thomas W. Engler, Ph.D., P.E Definitions Risk Analysis Assessing probabilities of occurrence for each possible

More information

Implied Volatility Surface

Implied Volatility Surface Implied Volatility Surface Liuren Wu Zicklin School of Business, Baruch College Options Markets (Hull chapter: 16) Liuren Wu Implied Volatility Surface Options Markets 1 / 1 Implied volatility Recall the

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Descriptive Statistics

Descriptive Statistics Petra Petrovics Descriptive Statistics 2 nd seminar DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs

More information

Convergence of statistical moments of particle density time series in scrape-off layer plasmas

Convergence of statistical moments of particle density time series in scrape-off layer plasmas Convergence of statistical moments of particle density time series in scrape-off layer plasmas R. Kube and O. E. Garcia Particle density fluctuations in the scrape-off layer of magnetically confined plasmas,

More information

Probability Models.S2 Discrete Random Variables

Probability Models.S2 Discrete Random Variables Probability Models.S2 Discrete Random Variables Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard Results of an experiment involving uncertainty are described by one or more random

More information

Probability distributions relevant to radiowave propagation modelling

Probability distributions relevant to radiowave propagation modelling Rec. ITU-R P.57 RECOMMENDATION ITU-R P.57 PROBABILITY DISTRIBUTIONS RELEVANT TO RADIOWAVE PROPAGATION MODELLING (994) Rec. ITU-R P.57 The ITU Radiocommunication Assembly, considering a) that the propagation

More information

Section The Sampling Distribution of a Sample Mean

Section The Sampling Distribution of a Sample Mean Section 5.2 - The Sampling Distribution of a Sample Mean Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin The Sampling Distribution of a Sample Mean Example: Quality control check of light

More information

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS

STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS Erasmus Mundus Master in Complex Systems STATISTICAL ANALYSIS OF HIGH FREQUENCY FINANCIAL TIME SERIES: INDIVIDUAL AND COLLECTIVE STOCK DYNAMICS June 25, 2012 Esteban Guevara Hidalgo esteban guevarah@yahoo.es

More information

Statistical Tables Compiled by Alan J. Terry

Statistical Tables Compiled by Alan J. Terry Statistical Tables Compiled by Alan J. Terry School of Science and Sport University of the West of Scotland Paisley, Scotland Contents Table 1: Cumulative binomial probabilities Page 1 Table 2: Cumulative

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION Subject Paper No and Title Module No and Title Paper No.2: QUANTITATIVE METHODS Module No.7: NORMAL DISTRIBUTION Module Tag PSY_P2_M 7 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Properties

More information

The Normal Distribution. (Ch 4.3)

The Normal Distribution. (Ch 4.3) 5 The Normal Distribution (Ch 4.3) The Normal Distribution The normal distribution is probably the most important distribution in all of probability and statistics. Many populations have distributions

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

The binomial distribution

The binomial distribution The binomial distribution The coin toss - three coins The coin toss - four coins The binomial probability distribution Rolling dice Using the TI nspire Graph of binomial distribution Mean & standard deviation

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Probability Distributions

Probability Distributions Probability Distributions Probability Distributions CEE 2L. Uncertainty, Design, and Optimization Department of Civil and Environmental Engineering Duke University Philip Scott Harvey, Henri P. Gavin and

More information

Unit 5: Sampling Distributions of Statistics

Unit 5: Sampling Distributions of Statistics Unit 5: Sampling Distributions of Statistics Statistics 571: Statistical Methods Ramón V. León 6/12/2004 Unit 5 - Stat 571 - Ramon V. Leon 1 Definitions and Key Concepts A sample statistic used to estimate

More information

Modeling Obesity and S&P500 Using Normal Inverse Gaussian

Modeling Obesity and S&P500 Using Normal Inverse Gaussian Modeling Obesity and S&P500 Using Normal Inverse Gaussian Presented by Keith Resendes and Jorge Fernandes University of Massachusetts, Dartmouth August 16, 2012 Diabetes and Obesity Data Data obtained

More information

The Normal Distribution

The Normal Distribution Will Monroe CS 09 The Normal Distribution Lecture Notes # July 9, 207 Based on a chapter by Chris Piech The single most important random variable type is the normal a.k.a. Gaussian) random variable, parametrized

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty

Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Derivation Of The Capital Asset Pricing Model Part I - A Single Source Of Uncertainty Gary Schurman MB, CFA August, 2012 The Capital Asset Pricing Model CAPM is used to estimate the required rate of return

More information

Introduction to Descriptive Statistics

Introduction to Descriptive Statistics Introduction to Descriptive Statistics 17.871 Types of Variables ~Nominal (Quantitative) Nominal (Qualitative) categorical Ordinal Interval or ratio Describing data Moment Non-mean based measure Center

More information

Unit 2 Statistics of One Variable

Unit 2 Statistics of One Variable Unit 2 Statistics of One Variable Day 6 Summarizing Quantitative Data Summarizing Quantitative Data We have discussed how to display quantitative data in a histogram It is useful to be able to describe

More information

Chapter 4 Variability

Chapter 4 Variability Chapter 4 Variability PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry B. Wallnau Chapter 4 Learning Outcomes 1 2 3 4 5

More information

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics

INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS. 20 th May Subject CT3 Probability & Mathematical Statistics INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 20 th May 2013 Subject CT3 Probability & Mathematical Statistics Time allowed: Three Hours (10.00 13.00) Total Marks: 100 INSTRUCTIONS TO THE CANDIDATES 1.

More information

2.4 STATISTICAL FOUNDATIONS

2.4 STATISTICAL FOUNDATIONS 2.4 STATISTICAL FOUNDATIONS Characteristics of Return Distributions Moments of Return Distribution Correlation Standard Deviation & Variance Test for Normality of Distributions Time Series Return Volatility

More information

Describing Uncertain Variables

Describing Uncertain Variables Describing Uncertain Variables L7 Uncertainty in Variables Uncertainty in concepts and models Uncertainty in variables Lack of precision Lack of knowledge Variability in space/time Describing Uncertainty

More information

STAT Chapter 6: Sampling Distributions

STAT Chapter 6: Sampling Distributions STAT 515 -- Chapter 6: Sampling Distributions Definition: Parameter = a number that characterizes a population (example: population mean ) it s typically unknown. Statistic = a number that characterizes

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

Modeling Credit Exposure for Collateralized Counterparties

Modeling Credit Exposure for Collateralized Counterparties Modeling Credit Exposure for Collateralized Counterparties Michael Pykhtin Credit Analytics & Methodology Bank of America Fields Institute Quantitative Finance Seminar Toronto; February 25, 2009 Disclaimer

More information

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES

CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES CHAPTERS 5 & 6: CONTINUOUS RANDOM VARIABLES DISCRETE RANDOM VARIABLE: Variable can take on only certain specified values. There are gaps between possible data values. Values may be counting numbers or

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information