Some Characteristics of Data

Size: px
Start display at page:

Download "Some Characteristics of Data"

Transcription

1 Some Characteristics of Data Not all data is the same, and depending on some characteristics of a particular dataset, there are some limitations as to what can and cannot be done with that data. Some key characteristics that must be considered are: A. Scale of Measurement B. Continuous vs. Discrete C. Grouped vs. Individual

2 Sigma Notation The mathematical notation that is used most often in the formulation of statistics is the summation notation The uppercase Greek letter Σ (sigma) is used as shorthand, as a way to indicate that a sum is to be taken: Σ x i i=1 i=n The notation above is equivalent to writing x 1 + x 2 + x x n-1 + x n

3 Sigma Notation - Components Looking at sigma notation in more detail: refers to where the sum of terms ends indicates we are taking a sum i=n Σ x i i=1 indicates what we are summing up refers to where the sum of terms begins

4 Pi Notation Just as we have summation notation that we can use as a shorthand for sums, there is also product notation for multiplication The uppercase Greek letter Π (pi) is used as shorthand, as a way to indicate that a product is to be calculated: Π x i i=1 i=n The notation above is equivalent to writing x 1 * x 2 * x 3 * * x n-1 * x n

5 Measures of Central Tendency Think of this from the following point of view: We have some distribution in which we want to locate the center, and we need to choose an appropriate measure of central tendency. We can choose from: 1. Mode 2. Median 3. Mean Each of these measures is appropriate to different distributions / under different circumstances

6 Measures of Central Tendency - Mode 1. Mode This is the most frequently occurring value in the distribution In the event that multiple values tie for the highest frequency, we have a problem A potential solution in this situation involves constructing frequency classes and identify the most frequently occurring class This is the only measure of central tendency that can be used with nominal data The mode allows the distribution s peak to be located quickly

7 Measures of Central Tendency - Median 2. Median This is the value of a variable such that half of the observations are above and half are below this value i.e. this value divides the distribution into two groups of equal size Note: When the distribution has an even number of observations, finding the median requires averaging two numbers The key advantage of the median is that its value is unaffected by extreme values at the end of a distribution (which potentially are outliers)

8 Measures of Central Tendency - Median 2. Median cont. When we find the median of a distribution, we do so by dividing it into two equal parts. We can divide distributions into a greater number of parts as well: Quartiles each contains 25% of all values Quintiles each contains 20% of all values Deciles each contains 10% of all values Percentiles each contains 1% of all values Except for quintiles (because they give an odd number of parts) each of these also gives us the median

9 Measures of Central Tendency - Mean 3. Mean a.k.a. average, the most commonly used measure of central tendency x = i=n Σ x i i=1 n Sample mean µ = i=n Σ x i i=1 N Population mean When we compute a mean using these basic formulae, we are assuming that each observation is equally significant

10 Selecting a Measure of Central Tendency Most often, the mean is selected by default The mean s key advantage is that is sensitive to any change in the value of any observation However, we really must consider the nature of the distribution to choose properly: 1. Multi-modal distribution The mode must be used, as the median or mean would be rather meaningless 2. Unimodal symmetric The mean is fine if the distribution approaches being symmetric

11 Selecting a Measure of Central Tendency 3. Unimodal skewed A skewed distribution creates significant differences between the measures of central tendency: Negatively skewed Mean < Median < Mode Positively skewed Mode < Median < Mean In both cases of skew, the median is appropriate, especially in cases with extreme outliers (e.g. dist. of salaries of UNC Geography graduates) 4. Ordinal Data Median is well applied 5. Nominal Data Mode is the only choice

12 Measures of Dispersion In addition to measures of central tendency, we can also summarize data by characterizing its variability Measures of dispersion are concerned with the distribution of values around the mean in data: 1. Range 2. Quartile range etc. 3. (Mean deviation) 4. (Variance, standard deviation and z-scores) 5. Coefficient of variation

13 Measures of Dispersion - Range 1. Range this is the most simply formulated of all measures of dispersion Given a set of measurements x 1, x 2, x 3,,x n-1, x n, the range is defined as the difference between the largest and smallest values: Range = x max x min This is another descriptive measure that is vulnerable to the influence of outliers in a data set, which result in a range that is not really descriptive of most of the data

14 Measures of Dispersion Quartile Range etc. 2. Quartile Range etc. We can divide distributions into a number of parts each containing an equal number of observations: Quartiles each contains 25% of all values Quintiles each contains 20% of all values Deciles each contains 10% of all values Percentiles each contains 1% of all values A standard application of this approach for describing dispersion involves calculating the interquartile range (a.k.a. quartile deviation)

15 Measures of Dispersion Quartile Range etc. 2. Quartile Range etc. cont. Rogerson (p. 6) defines the interquartile range as being the difference between the values of the 25 th and 75 th percentiles (i.e. the minimum value of the 2 nd quartile and the maximum value of the 3 rd quartile) This is well applied to skewed distributions, since it measures deviation around the median The interquartile range provides 2 of the 5 values displayed in a box plot, which is a convenient graphical summary of a data set

16 Measures of Dispersion Quartile Range etc. 2. Quartile Range etc. cont. A box plot graphically displays the following five values: Median Minimum value Maximum value 25 th percentile value max. median 75 th percentile value min. 75 th %-ile 25 th %-ile Rogerson, p. 8. Under some circumstances, the whiskers are not used for the min. and max. because of outliers

17 Measures of Dispersion Coefficient of Variation 5. Coefficient of Variation We cannot directly compare the standard deviations of frequency distributions with different means, because a distribution with a higher mean is likely to have a larger deviation In addition to z-scores (which describe the deviation of an observation), we need an overall measure of dispersion that is normalized with respect to the mean from the same distribution: S σ Coefficient of variation = or (*100%) x µ

18 Further Moments of the Distribution - Skewness Skewness This statistic measures the degree of asymmetry exhibited by the data (i.e. whether there are more observations on one side of the mean than the other): Skewness = i=n Σi=1 (x i x) 3 ns 3 Because the exponent in this moment is odd, skewness can be positive or negative; positive skewness has more observations below the mean than above it (negative vice-versa)

19 Further Moments of the Distribution - Skewness Skewness cont. Skewness can also be assessed by comparing the mean and the median Positive skewness Median < Mean Negative skewness Mean < Median This can also be assessed by calculating Pearson s coefficient of skewness: x is the mean Md is the median S is the std. deviation 3(x Md) Sk = S Sk follows the above convention, and values less than 3 are moderately skewed

20 Further Moments of the Distribution - Kurtosis Kurtosis This statistic measures how flat or peaked the distribution is, and is formulated as: i=n Σi=1 (x i x) 4 Kurtosis = ns 4-3 The 3 is included in this formula because it results in the kurtosis of a normal distribution to have the value 0 (this condition is also termed having a mesokurtic distribution)

21 Further Moments of the Distribution - Kurtosis Kurtosis cont. When the kurtosis < 0, the frequencies throughout the curve are closer to equal (i.e. the curve is more flat and wide) and this condition is termed platykurtic When the kurtosis > 0, there are high frequencies in only a small part of the curve (i.e. the curve is more peaked) and this condition is termed leptokurtic NOTE: Both skewness and kurtosis are sensitive to the size of n; when n is small and there are outliers, they are less useful

22 Random Variables and Probability Distributions The concept of probability is the key to making statistical inferences by sampling a population What we are doing is trying to ascertain the probability of an event having a given outcome, e.g. We summarize a sample statistically and want to make some inferences about it, such as what proportion of the population has values within a given range we could do this by finding the area under the curve in a frequency distribution This requires us to be able to specify the distribution of a variable before we can make inferences

23 Probability Some Definitions Probability Refers to the likelihood that something (an event) will have a certain outcome An Event Any phenomenon you can observe that can have more than one outcome (e.g. flipping a coin) An Outcome Any unique condition that can be the result of an event (e.g. the available outcomes when flipping a coin are heads and tails), a.k.a. simple events or sample points Sample Space The set of all possible outcomes associated with an event (e.g. the sample space for flipping a coin includes heads and tails)

24 Probability An Example For example, suppose we have a data set where in six cities, we count the number of malls located in that city present: Each count of the # of malls in a city is an event # of Malls City Outcome #1 Outcome #2 Sample Space Outcome #3 Outcome #4 We might wonder if we randomly pick one of these six cities, what is the chance that it will have n malls?

25 Random Variables and Probability Functions What we have here is a random variable defined as variable X whose range is values x i are sampled randomly from a population To put this another way, a random variable is a function defined on the sample space this means that we are interested in all the possible outcomes The question was: If we randomly pick one of the six cities, what is the chance that it will have n malls?

26 Random Variables and Probability Functions To answer this question, we need to form a probability function (a.k.a. probability distribution) from the sample space that gives all values of a random variable and their probabilities A probability distribution expresses the relative number of times we expect a random variable to assume each and every possible value We either base a probability function on either a very large empirically-gathered set of outcomes, or else we determine the shape of a probability function mathematically

27 Probability Mass Functions Probability mass functions have the following rules that dictate their possible values: 1. The probability of any outcome must be greater than or equal to zero and must also be less than or equal to one, i.e. 0 P(x i ) 1 for i = {1, 2, 3,, k-1, k} 2. The sum of all probabilities in the sample space must total one, i.e. i=k Σ P(x i ) = 1 i=1

28 Continuous Random Variables Continuous random variable can assume all real number values within an interval, for example: measurements of precipitation, ph, etc. Some random variables that are technically discrete exhibit such a tremendous range of values, that is it desirable to treat them as if they were continuous variables, e.g. population Discrete random variables are described by probability mass functions, and continuous random variables are described by probability density functions

29 Probability Density Functions Probability density functions are defined using the same rules required of probability mass functions, with some additional requirements: 1. The function must have a non-negative value throughout the interval a to b, i.e. f(x) 0 for a x b 2. The area under the curve defined by f(x), within the interval a to b, must equal 1: f(x) a area=1 b x

30 The Poisson Distribution The usual application of probability distributions is to find a theoretical distribution that reflects a process such that it explains what we see in some observed sample of a geographic phenomenon The theoretical distribution does this by virtue of the fact that the form of the sampled information and theoretical distribution can be compared and be found to similar through a test of significance One theoretical concept that we often study in geography concerns discrete random events in space and time (e.g. where will a tornado occur?)

31 The Poisson Distribution The discrete random events in question happen rarely (if at all), and the time and place of these events are independent and random The greatest probability is zero occurrences at a certain time or place, with a small chance of one occurrence, an even smaller chance of two occurrences, etc. A distribution with these characteristics will be heavily peaked and skewed: P(x i ) x i

32 The Poisson Distribution The Poisson distribution is sometimes known as the Law of Small Numbers, because it describes the behavior of events that are rare, despite there being many opportunities for them to occur We can observe the frequency of some rare phenomenon, find its mean occurrence, and then construct a Poisson distribution and compare our observed values to those from the distribution (effectively expected values) to see the degree to which our observed phenomenon is obeying the Law of Small Numbers:

33 The Poisson Distribution Procedure for finding Poisson probabilities and expected frequencies: 1. Set up a table with five columns as on the previous slide 2. Multiply the values of x by their observed frequencies (x * f obs ) 3. Sum the columns of f obs (observed frequency) and x * f obs 4. Compute λ = Σ (x * f obs ) / Σ f obs 5. Compute P(x) values using the eqn. or a table 6. Compute the values of F exp = P(x) * Σ f obs

34 The Poisson Distribution One characteristic of the Poisson distribution is that we expect the variance ~ mean (i.e. the two should have approximately the same values) When we apply the Poisson distribution to geographic patterns, we can see how a variance to mean ratio (σ 2 :x) of about 1 corresponds to a random pattern that is distributed according to Poisson probabilities Suppose we have a point pattern in an (x,y) coordinate space and we lay down quadrats and count the number of points per quadrat

35 The Poisson Distribution Here, the counts of points per quadrat form the frequencies we use to check Poisson probabilities: Regular Low variance Mean 1 σ 2 :x is low Random Variance Mean σ 2 :x ~ 1 Clustered Low variance Mean 0 σ 2 :x is high

36 The Normal Distribution You will recall the z-score (a.k.a. standard normal variate, standard normal deviate, or just the standard score), which is calculated by subtracting the sample mean from the observation, and then dividing that difference by the sample standard deviation: Z-score = x - µ σ The z-score is the means that is used to transform our normal distribution into a standard normal distribution, which is simply a normal distribution that has been standardized to have µ = 0 and σ = 1

37 The Standard Normal Distribution For example, if we have a data set with µ = 55 and σ = 20, we calculate z-scores using: Z-score = x - µ = x -55 σ 20 If one of our data values x = 20 then: Z-score = x - µ = = -35 σ = Using z-scores in conjunction with standard normal tables (like Table A.2 on page 214 of Rogerson) we can look up areas under the curve associated with intervals, and thus probabilities

38 Standard Normal Tables Using our example z-score of -1.75, we find the position of 1.75 in the table and use the value found there; because the normal distribution is symmetric the table does not need to repeat positive and negative values

39 Standard Normal Tables This table is defined to give the area under the curve between the specified value through to the rest of the tail of the distribution (theoretically to an infinite z-score): Looking up z = has given a P(x) = for the tail below the value of z = -1.75, and using this sort of information, we can retrieve the probability of any interval (to 3.09 z where the table ends, and up to 0.01 in precision)

Simple Descriptive Statistics

Simple Descriptive Statistics Simple Descriptive Statistics These are ways to summarize a data set quickly and accurately The most common way of describing a variable distribution is in terms of two of its properties: Central tendency

More information

Basic Procedure for Histograms

Basic Procedure for Histograms Basic Procedure for Histograms 1. Compute the range of observations (min. & max. value) 2. Choose an initial # of classes (most likely based on the range of values, try and find a number of classes that

More information

David Tenenbaum GEOG 090 UNC-CH Spring 2005

David Tenenbaum GEOG 090 UNC-CH Spring 2005 Simple Descriptive Statistics Review and Examples You will likely make use of all three measures of central tendency (mode, median, and mean), as well as some key measures of dispersion (standard deviation,

More information

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution

Overview/Outline. Moving beyond raw data. PSY 464 Advanced Experimental Design. Describing and Exploring Data The Normal Distribution PSY 464 Advanced Experimental Design Describing and Exploring Data The Normal Distribution 1 Overview/Outline Questions-problems? Exploring/Describing data Organizing/summarizing data Graphical presentations

More information

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1

Chapter 3. Numerical Descriptive Measures. Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Chapter 3 Numerical Descriptive Measures Copyright 2016 Pearson Education, Ltd. Chapter 3, Slide 1 Objectives In this chapter, you learn to: Describe the properties of central tendency, variation, and

More information

Statistics 114 September 29, 2012

Statistics 114 September 29, 2012 Statistics 114 September 29, 2012 Third Long Examination TGCapistrano I. TRUE OR FALSE. Write True if the statement is always true; otherwise, write False. 1. The fifth decile is equal to the 50 th percentile.

More information

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION

Module Tag PSY_P2_M 7. PAPER No.2: QUANTITATIVE METHODS MODULE No.7: NORMAL DISTRIBUTION Subject Paper No and Title Module No and Title Paper No.2: QUANTITATIVE METHODS Module No.7: NORMAL DISTRIBUTION Module Tag PSY_P2_M 7 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Properties

More information

Numerical Descriptions of Data

Numerical Descriptions of Data Numerical Descriptions of Data Measures of Center Mean x = x i n Excel: = average ( ) Weighted mean x = (x i w i ) w i x = data values x i = i th data value w i = weight of the i th data value Median =

More information

Measures of Central tendency

Measures of Central tendency Elementary Statistics Measures of Central tendency By Prof. Mirza Manzoor Ahmad In statistics, a central tendency (or, more commonly, a measure of central tendency) is a central or typical value for a

More information

DATA SUMMARIZATION AND VISUALIZATION

DATA SUMMARIZATION AND VISUALIZATION APPENDIX DATA SUMMARIZATION AND VISUALIZATION PART 1 SUMMARIZATION 1: BUILDING BLOCKS OF DATA ANALYSIS 294 PART 2 PART 3 PART 4 VISUALIZATION: GRAPHS AND TABLES FOR SUMMARIZING AND ORGANIZING DATA 296

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Fundamentals of Statistics

Fundamentals of Statistics CHAPTER 4 Fundamentals of Statistics Expected Outcomes Know the difference between a variable and an attribute. Perform mathematical calculations to the correct number of significant figures. Construct

More information

Engineering Mathematics III. Moments

Engineering Mathematics III. Moments Moments Mean and median Mean value (centre of gravity) f(x) x f (x) x dx Median value (50th percentile) F(x med ) 1 2 P(x x med ) P(x x med ) 1 0 F(x) x med 1/2 x x Variance and standard deviation

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

Frequency Distribution and Summary Statistics

Frequency Distribution and Summary Statistics Frequency Distribution and Summary Statistics Dongmei Li Department of Public Health Sciences Office of Public Health Studies University of Hawai i at Mānoa Outline 1. Stemplot 2. Frequency table 3. Summary

More information

Moments and Measures of Skewness and Kurtosis

Moments and Measures of Skewness and Kurtosis Moments and Measures of Skewness and Kurtosis Moments The term moment has been taken from physics. The term moment in statistical use is analogous to moments of forces in physics. In statistics the values

More information

1 Describing Distributions with numbers

1 Describing Distributions with numbers 1 Describing Distributions with numbers Only for quantitative variables!! 1.1 Describing the center of a data set The mean of a set of numerical observation is the familiar arithmetic average. To write

More information

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives

9/17/2015. Basic Statistics for the Healthcare Professional. Relax.it won t be that bad! Purpose of Statistic. Objectives Basic Statistics for the Healthcare Professional 1 F R A N K C O H E N, M B B, M P A D I R E C T O R O F A N A L Y T I C S D O C T O R S M A N A G E M E N T, LLC Purpose of Statistic 2 Provide a numerical

More information

Monte Carlo Simulation (Random Number Generation)

Monte Carlo Simulation (Random Number Generation) Monte Carlo Simulation (Random Number Generation) Revised: 10/11/2017 Summary... 1 Data Input... 1 Analysis Options... 6 Summary Statistics... 6 Box-and-Whisker Plots... 7 Percentiles... 9 Quantile Plots...

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

2 DESCRIPTIVE STATISTICS

2 DESCRIPTIVE STATISTICS Chapter 2 Descriptive Statistics 47 2 DESCRIPTIVE STATISTICS Figure 2.1 When you have large amounts of data, you will need to organize it in a way that makes sense. These ballots from an election are rolled

More information

UNIT 4 NORMAL DISTRIBUTION: DEFINITION, CHARACTERISTICS AND PROPERTIES

UNIT 4 NORMAL DISTRIBUTION: DEFINITION, CHARACTERISTICS AND PROPERTIES f UNIT 4 NORMAL DISTRIBUTION: DEFINITION, CHARACTERISTICS AND PROPERTIES Normal Distribution: Definition, Characteristics and Properties Structure 4.1 Introduction 4.2 Objectives 4.3 Definitions of Probability

More information

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean

Measures of Center. Mean. 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) Measure of Center. Notation. Mean Measure of Center Measures of Center The value at the center or middle of a data set 1. Mean 2. Median 3. Mode 4. Midrange (rarely used) 1 2 Mean Notation The measure of center obtained by adding the values

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part A

Chapter 3 Descriptive Statistics: Numerical Measures Part A Slides Prepared by JOHN S. LOUCKS St. Edward s University Slide 1 Chapter 3 Descriptive Statistics: Numerical Measures Part A Measures of Location Measures of Variability Slide Measures of Location Mean

More information

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line.

Dot Plot: A graph for displaying a set of data. Each numerical value is represented by a dot placed above a horizontal number line. Introduction We continue our study of descriptive statistics with measures of dispersion, such as dot plots, stem and leaf displays, quartiles, percentiles, and box plots. Dot plots, a stem-and-leaf display,

More information

MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION

MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION MEASURES OF CENTRAL TENDENCY & VARIABILITY + NORMAL DISTRIBUTION 1 Day 3 Summer 2017.07.31 DISTRIBUTION Symmetry Modality 单峰, 双峰 Skewness 正偏或负偏 Kurtosis 2 3 CHAPTER 4 Measures of Central Tendency 集中趋势

More information

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw

MAS1403. Quantitative Methods for Business Management. Semester 1, Module leader: Dr. David Walshaw MAS1403 Quantitative Methods for Business Management Semester 1, 2018 2019 Module leader: Dr. David Walshaw Additional lecturers: Dr. James Waldren and Dr. Stuart Hall Announcements: Written assignment

More information

Terms & Characteristics

Terms & Characteristics NORMAL CURVE Knowledge that a variable is distributed normally can be helpful in drawing inferences as to how frequently certain observations are likely to occur. NORMAL CURVE A Normal distribution: Distribution

More information

Statistics I Chapter 2: Analysis of univariate data

Statistics I Chapter 2: Analysis of univariate data Statistics I Chapter 2: Analysis of univariate data Numerical summary Central tendency Location Spread Form mean quartiles range coeff. asymmetry median percentiles interquartile range coeff. kurtosis

More information

Measures of Central Tendency: Ungrouped Data. Mode. Median. Mode -- Example. Median: Example with an Odd Number of Terms

Measures of Central Tendency: Ungrouped Data. Mode. Median. Mode -- Example. Median: Example with an Odd Number of Terms Measures of Central Tendency: Ungrouped Data Measures of central tendency yield information about particular places or locations in a group of numbers. Common Measures of Location Mode Median Percentiles

More information

Lecture 2 Describing Data

Lecture 2 Describing Data Lecture 2 Describing Data Thais Paiva STA 111 - Summer 2013 Term II July 2, 2013 Lecture Plan 1 Types of data 2 Describing the data with plots 3 Summary statistics for central tendency and spread 4 Histograms

More information

DESCRIPTIVE STATISTICS II. Sorana D. Bolboacă

DESCRIPTIVE STATISTICS II. Sorana D. Bolboacă DESCRIPTIVE STATISTICS II Sorana D. Bolboacă OUTLINE Measures of centrality Measures of spread Measures of symmetry Measures of localization Mainly applied on quantitative variables 2 DESCRIPTIVE STATISTICS

More information

Empirical Rule (P148)

Empirical Rule (P148) Interpreting the Standard Deviation Numerical Descriptive Measures for Quantitative data III Dr. Tom Ilvento FREC 408 We can use the standard deviation to express the proportion of cases that might fall

More information

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis

Standardized Data Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis Descriptive Statistics (Part 2) 4 Chapter Percentiles, Quartiles and Box Plots Grouped Data Skewness and Kurtosis McGraw-Hill/Irwin Copyright 2009 by The McGraw-Hill Companies, Inc. Chebyshev s Theorem

More information

Copyright 2005 Pearson Education, Inc. Slide 6-1

Copyright 2005 Pearson Education, Inc. Slide 6-1 Copyright 2005 Pearson Education, Inc. Slide 6-1 Chapter 6 Copyright 2005 Pearson Education, Inc. Measures of Center in a Distribution 6-A The mean is what we most commonly call the average value. It is

More information

Description of Data I

Description of Data I Description of Data I (Summary and Variability measures) Objectives: Able to understand how to summarize the data Able to understand how to measure the variability of the data Able to use and interpret

More information

Descriptive Statistics

Descriptive Statistics Petra Petrovics Descriptive Statistics 2 nd seminar DESCRIPTIVE STATISTICS Definition: Descriptive statistics is concerned only with collecting and describing data Methods: - statistical tables and graphs

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Chapter 3 Random Variables and Probability Distributions Chapter Three Random Variables and Probability Distributions 3. Introduction An event is defined as the possible outcome of an experiment. In engineering

More information

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source: Page 1 of 39

Math146 - Chapter 3 Handouts. The Greek Alphabet. Source:   Page 1 of 39 Source: www.mathwords.com The Greek Alphabet Page 1 of 39 Some Miscellaneous Tips on Calculations Examples: Round to the nearest thousandth 0.92431 0.75693 CAUTION! Do not truncate numbers! Example: 1

More information

Chapter 4 Variability

Chapter 4 Variability Chapter 4 Variability PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry B. Wallnau Chapter 4 Learning Outcomes 1 2 3 4 5

More information

Data Distributions and Normality

Data Distributions and Normality Data Distributions and Normality Definition (Non)Parametric Parametric statistics assume that data come from a normal distribution, and make inferences about parameters of that distribution. These statistical

More information

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda,

MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE. Dr. Bijaya Bhusan Nanda, MEASURES OF DISPERSION, RELATIVE STANDING AND SHAPE Dr. Bijaya Bhusan Nanda, CONTENTS What is measures of dispersion? Why measures of dispersion? How measures of dispersions are calculated? Range Quartile

More information

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Exploring Data and Graphics

Exploring Data and Graphics Exploring Data and Graphics Rick White Department of Statistics, UBC Graduate Pathways to Success Graduate & Postdoctoral Studies November 13, 2013 Outline Summarizing Data Types of Data Visualizing Data

More information

Descriptive Statistics for Educational Data Analyst: A Conceptual Note

Descriptive Statistics for Educational Data Analyst: A Conceptual Note Recommended Citation: Behera, N.P., & Balan, R. T. (2016). Descriptive statistics for educational data analyst: a conceptual note. Pedagogy of Learning, 2 (3), 25-30. Descriptive Statistics for Educational

More information

DESCRIPTIVE STATISTICS

DESCRIPTIVE STATISTICS DESCRIPTIVE STATISTICS INTRODUCTION Numbers and quantification offer us a very special language which enables us to express ourselves in exact terms. This language is called Mathematics. We will now learn

More information

Numerical Descriptive Measures. Measures of Center: Mean and Median

Numerical Descriptive Measures. Measures of Center: Mean and Median Steve Sawin Statistics Numerical Descriptive Measures Having seen the shape of a distribution by looking at the histogram, the two most obvious questions to ask about the specific distribution is where

More information

Unit 2 Statistics of One Variable

Unit 2 Statistics of One Variable Unit 2 Statistics of One Variable Day 6 Summarizing Quantitative Data Summarizing Quantitative Data We have discussed how to display quantitative data in a histogram It is useful to be able to describe

More information

STAT 113 Variability

STAT 113 Variability STAT 113 Variability Colin Reimer Dawson Oberlin College September 14, 2017 1 / 48 Outline Last Time: Shape and Center Variability Boxplots and the IQR Variance and Standard Deviaton Transformations 2

More information

Lectures delivered by Prof.K.K.Achary, YRC

Lectures delivered by Prof.K.K.Achary, YRC Lectures delivered by Prof.K.K.Achary, YRC Given a data set, we say that it is symmetric about a central value if the observations are distributed symmetrically about the central value. In symmetrically

More information

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form:

1 Exercise One. 1.1 Calculate the mean ROI. Note that the data is not grouped! Below you find the raw data in tabular form: 1 Exercise One Note that the data is not grouped! 1.1 Calculate the mean ROI Below you find the raw data in tabular form: Obs Data 1 18.5 2 18.6 3 17.4 4 12.2 5 19.7 6 5.6 7 7.7 8 9.8 9 19.9 10 9.9 11

More information

4. DESCRIPTIVE STATISTICS

4. DESCRIPTIVE STATISTICS 4. DESCRIPTIVE STATISTICS Descriptive Statistics is a body of techniques for summarizing and presenting the essential information in a data set. Eg: Here are daily high temperatures for Jan 16, 2009 in

More information

CHAPTER 2 Describing Data: Numerical

CHAPTER 2 Describing Data: Numerical CHAPTER Multiple-Choice Questions 1. A scatter plot can illustrate all of the following except: A) the median of each of the two variables B) the range of each of the two variables C) an indication of

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Measures of Dispersion (Range, standard deviation, standard error) Introduction

Measures of Dispersion (Range, standard deviation, standard error) Introduction Measures of Dispersion (Range, standard deviation, standard error) Introduction We have already learnt that frequency distribution table gives a rough idea of the distribution of the variables in a sample

More information

Numerical summary of data

Numerical summary of data Numerical summary of data Introduction to Statistics Measures of location: mode, median, mean, Measures of spread: range, interquartile range, standard deviation, Measures of form: skewness, kurtosis,

More information

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient

Statistics & Flood Frequency Chapter 3. Dr. Philip B. Bedient Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Predicting FLOODS Flood Frequency Analysis n Statistical Methods to evaluate probability exceeding a particular outcome - P (X >20,000 cfs)

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

Lecture Data Science

Lecture Data Science Web Science & Technologies University of Koblenz Landau, Germany Lecture Data Science Statistics Foundations JProf. Dr. Claudia Wagner Learning Goals How to describe sample data? What is mode/median/mean?

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

Describing Data: One Quantitative Variable

Describing Data: One Quantitative Variable STAT 250 Dr. Kari Lock Morgan The Big Picture Describing Data: One Quantitative Variable Population Sampling SECTIONS 2.2, 2.3 One quantitative variable (2.2, 2.3) Statistical Inference Sample Descriptive

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment

Math 2311 Bekki George Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Math 2311 Bekki George bekki@math.uh.edu Office Hours: MW 11am to 12:45pm in 639 PGH Online Thursdays 4-5:30pm And by appointment Class webpage: http://www.math.uh.edu/~bekki/math2311.html Math 2311 Class

More information

Statistics 6 th Edition

Statistics 6 th Edition Statistics 6 th Edition Chapter 5 Discrete Probability Distributions Chap 5-1 Definitions Random Variables Random Variables Discrete Random Variable Continuous Random Variable Ch. 5 Ch. 6 Chap 5-2 Discrete

More information

appstats5.notebook September 07, 2016 Chapter 5

appstats5.notebook September 07, 2016 Chapter 5 Chapter 5 Describing Distributions Numerically Chapter 5 Objective: Students will be able to use statistics appropriate to the shape of the data distribution to compare of two or more different data sets.

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 3: April 25, Abstract

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 3: April 25, Abstract Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 3: April 25, 2013 Abstract Review summary statistics and measures of location. Discuss the placement exam as an exercise

More information

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc.

Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Chapter 8 Measures of Center Data that can be any numerical value are called continuous. These are usually things that are measured, such as height, length, time, speed, etc. Data that can only be integer

More information

Data Analysis. BCF106 Fundamentals of Cost Analysis

Data Analysis. BCF106 Fundamentals of Cost Analysis Data Analysis BCF106 Fundamentals of Cost Analysis June 009 Chapter 5 Data Analysis 5.0 Introduction... 3 5.1 Terminology... 3 5. Measures of Central Tendency... 5 5.3 Measures of Dispersion... 7 5.4 Frequency

More information

Numerical Measurements

Numerical Measurements El-Shorouk Academy Acad. Year : 2013 / 2014 Higher Institute for Computer & Information Technology Term : Second Year : Second Department of Computer Science Statistics & Probabilities Section # 3 umerical

More information

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need.

Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. Both the quizzes and exams are closed book. However, For quizzes: Formulas will be provided with quiz papers if there is any need. For exams (MD1, MD2, and Final): You may bring one 8.5 by 11 sheet of

More information

Chapter ! Bell Shaped

Chapter ! Bell Shaped Chapter 6 6-1 Business Statistics: A First Course 5 th Edition Chapter 7 Continuous Probability Distributions Learning Objectives In this chapter, you learn:! To compute probabilities from the normal distribution!

More information

The Mode: An Example. The Mode: An Example. Measure of Central Tendency: The Mode. Measure of Central Tendency: The Median

The Mode: An Example. The Mode: An Example. Measure of Central Tendency: The Mode. Measure of Central Tendency: The Median Chapter 4: What is a measure of Central Tendency? Numbers that describe what is typical of the distribution You can think of this value as where the middle of a distribution lies (the median). or The value

More information

Lecture 07: Measures of central tendency

Lecture 07: Measures of central tendency Lecture 07: Measures of central tendency Ernesto F. L. Amaral September 21, 2017 Advanced Methods of Social Research (SOCI 420) Source: Healey, Joseph F. 2015. Statistics: A Tool for Social Research. Stamford:

More information

Establishing a framework for statistical analysis via the Generalized Linear Model

Establishing a framework for statistical analysis via the Generalized Linear Model PSY349: Lecture 1: INTRO & CORRELATION Establishing a framework for statistical analysis via the Generalized Linear Model GLM provides a unified framework that incorporates a number of statistical methods

More information

We use probability distributions to represent the distribution of a discrete random variable.

We use probability distributions to represent the distribution of a discrete random variable. Now we focus on discrete random variables. We will look at these in general, including calculating the mean and standard deviation. Then we will look more in depth at binomial random variables which are

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 05 Normal Distribution So far we have looked at discrete distributions

More information

Descriptive Statistics

Descriptive Statistics Chapter 3 Descriptive Statistics Chapter 2 presented graphical techniques for organizing and displaying data. Even though such graphical techniques allow the researcher to make some general observations

More information

MATHEMATICS APPLIED TO BIOLOGICAL SCIENCES MVE PA 07. LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1)

MATHEMATICS APPLIED TO BIOLOGICAL SCIENCES MVE PA 07. LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1) LP07 DESCRIPTIVE STATISTICS - Calculating of statistical indicators (1) Descriptive statistics are ways of summarizing large sets of quantitative (numerical) information. The best way to reduce a set of

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 7 Sampling Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 2014 Pearson Education, Inc. Chap 7-1 Learning Objectives

More information

NCSS Statistical Software. Reference Intervals

NCSS Statistical Software. Reference Intervals Chapter 586 Introduction A reference interval contains the middle 95% of measurements of a substance from a healthy population. It is a type of prediction interval. This procedure calculates one-, and

More information

Review: Chebyshev s Rule. Measures of Dispersion II. Review: Empirical Rule. Review: Empirical Rule. Auto Batteries Example, p 59.

Review: Chebyshev s Rule. Measures of Dispersion II. Review: Empirical Rule. Review: Empirical Rule. Auto Batteries Example, p 59. Review: Chebyshev s Rule Measures of Dispersion II Tom Ilvento STAT 200 Is based on a mathematical theorem for any data At least ¾ of the measurements will fall within ± 2 standard deviations from the

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) =

CHAPTER 6. ' From the table the z value corresponding to this value Z = 1.96 or Z = 1.96 (d) P(Z >?) = Solutions to End-of-Section and Chapter Review Problems 225 CHAPTER 6 6.1 (a) P(Z < 1.20) = 0.88493 P(Z > 1.25) = 1 0.89435 = 0.10565 P(1.25 < Z < 1.70) = 0.95543 0.89435 = 0.06108 (d) P(Z < 1.25) or Z

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

CSC Advanced Scientific Programming, Spring Descriptive Statistics

CSC Advanced Scientific Programming, Spring Descriptive Statistics CSC 223 - Advanced Scientific Programming, Spring 2018 Descriptive Statistics Overview Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions.

More information

E.D.A. Exploratory Data Analysis E.D.A. Steps for E.D.A. Greg C Elvers, Ph.D.

E.D.A. Exploratory Data Analysis E.D.A. Steps for E.D.A. Greg C Elvers, Ph.D. E.D.A. Greg C Elvers, Ph.D. 1 Exploratory Data Analysis One of the most important steps in analyzing data is to look at the raw data This allows you to: find observations that may be incorrect quickly

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Section3-2: Measures of Center

Section3-2: Measures of Center Chapter 3 Section3-: Measures of Center Notation Suppose we are making a series of observations, n of them, to be exact. Then we write x 1, x, x 3,K, x n as the values we observe. Thus n is the total number

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 3 Presentation of Data: Numerical Summary Measures Part 2 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh

More information

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii)

Contents. An Overview of Statistical Applications CHAPTER 1. Contents (ix) Preface... (vii) Contents (ix) Contents Preface... (vii) CHAPTER 1 An Overview of Statistical Applications 1.1 Introduction... 1 1. Probability Functions and Statistics... 1..1 Discrete versus Continuous Functions... 1..

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Percentiles, STATA, Box Plots, Standardizing, and Other Transformations Lecture 3 Reading: Sections 5.7 54 Remember, when you finish a chapter make sure not to miss the last couple of boxes: What Can Go

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information