Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

Size: px
Start display at page:

Download "Chapter 8. Variables. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc."

Transcription

1 Chapter 8 Random Variables Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc.

2 8.1 What is a Random Variable? Random Variable: assigns a number to each outcome of a random circumstance, or, equivalently, to each unit in a population. Two different broad classes of random variables: 1. A continuous random variable can take any value in an interval or collection of intervals. 2. A discrete random variable can take one of a countable list of distinct values. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 2

3 Example 8.1 Random Variables at an Outdoor Graduation or Wedding Random factors that will determine how enjoyable the event is: Temperature: continuous random variable Number of airplanes that fly overhead: discrete random variable Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 3

4 Example 8.2 Probability an Event Occurs Three Times in Three Tries What is the probability that three tosses of a fair coin will result in three heads? Assuming boys and girls are equally likely, what is the probability that 3 births will result in 3 girls? Assuming probability is 1/2 that a randomly selected individual will be taller than median height of a population, what is the probability that 3 randomly selected individuals will all be taller than the median? Answer to all three questions = 1/8. Discrete Random Variable X = number of times the outcome of finterest t occurs in three independent d tries. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 4

5 8.2 Discrete Random Variables X = the random variable. k = a number the discrete r.v. could assume. P(X = k) is the probability that X equals k. Discrete random variable: can only result in a countable set of possibilities often a finite number of outcomes, but can be infinite. Example 8.3 It s Possible to Toss Forever Repeatedly tossing a fair coin, and define: X = number of tosses until the first head occurs Any number of flips is a possible outcome. P(X = k) = (1/2) k Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 5

6 Probability Distribution of a Discrete R.V. Using the sample space to find probabilities: Step 1: List all simple events in sample space. Step 2: Find probability for each simple event. Step 3: List possible values for random variable X and identify the value for each simple event. Step 4: Find all simple events for which X = k, for each possible value k. Step 5: P(X = k) is the sum of the probabilities for all simple events for which X=k k. Probability distribution function (pdf) X is a table or rule that t assigns probabilities biliti to possible values of X. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 6

7 Example 8.4 How Many Girls are Likely? Family has 3 children. Probability of a girl is ½. What are the probabilities of having 0, 1, 2, or 3 girls? Sample Space: For each birth, write either B or G. There are eight possible arrangements of B and G for three births. These are the simple events. Sample Space and Probabilities: The eight simple events are equally likely. Random Variable X: number of girls in three births. For each simple event, the value of X is the number of G s listed. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 7

8 Example 8.4 How Many Girls? (cont) Value of X for each simple event: Probability distribution function for Number of Girls X: Graph of the pdf of X: Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 8

9 Conditions for Probabilities for Discrete Random Variables Condition 1 The sum of the probabilities over all possible values of a discrete random variable must equal 1. Condition 2 The probability of any specific outcome for a discrete random variable must be between 0 and 1. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 9

10 Cumulative Distribution Function of a Discrete Random Variable Cumulative distribution function (cdf) for a random variable X is a rule or table that provides the probabilities P(X ( k) ) for any real number k. Cumulative probability = probability that X is less than or equal to a particular value. Example 8.4 Cumulative Distribution Function for the Number of Girls (cont) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 10

11 Finding Probabilities for Complex Events Example 8.4 A Mixture of Children What is the probability that a family with 3 children will have at least one child of each sex? If X=Number of Girls then either family has one girl and two boys (X = 1) or two girls and one boy (X = 2). P(X =1orX X =2)=P(X = =1)+P(X = 2) = 3/8 + 3/8 = 6/8 = 3/4 pdf for Number of Girls X: Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 11

12 8.3 Expectations for Random Variables The expected value of a random variable is the mean value of the variable X in the sample space, or population, of possible outcomes. If X is a random variable with possible values x 1, x 2, x 3,..., occurring with probabilities biliti p 1, p 2, p 3,..., then the expected value of X is calculated as μ ( X ) = = E x i pi Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 12

13 Example 8.6 California Decco Lottery Player chooses one card from each of four suits. Winning card drawn from each suit. If one or more matches the winning cards => prize. It costs $1.00 for each play. How much would you win/lose per ticket over long run? => Lose an average of 35 cents per play. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 13

14 Standard Deviation for a Discrete Random Variable The standard deviation of a random variable is essentially the average distance the random variable falls from its mean over the long run. If X is a random variable with possible values x 1, x 2, x 3,..., occurring with probabilities p 1, p 2, p 3,..., and expected value E(X) = μ, then Variance Standard of X 2 ( X ) = σ = ( μ ) 2 = V x i pi Deviation of X ( μ ) = σ = x i pi 2 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 14

15 Example 8.7 Stability or Excitement Two plans for investing $100 which would you choose? Expected Value for each plan: Plan 1: E(X ) = $5,000 (.001) + $1,000 (.005) + $0 (.994) = $10.00 Plan 2: E(Y ) = $20 (.3) + $10 (.2) + $4 (.5) = $10.00 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 15

16 Example 8.7 Stability or Excitement (cont) Variability for each plan: Plan 1: V(X ) = $29, and σ = $ Plan 2: V(X ) = $48.00 and σ = $6.93 The possible outcomes for Plan 1 are much more variable. If you wanted to invest cautiously, you would choose Plan 2, but if you wanted to have the chance to gain a large amount of money, you would choose Plan 1. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 16

17 8.3 Binomial Random Variables Class of discrete random variables = Binomial -- results from a binomial experiment. Conditions for a binomial experiment: 1. There are n trials where n is determined in advance and is not a random value. 2. Two possible outcomes on each trial, called success and failure and denoted S and F. 3. Outcomes are independent from one trial to the next. 4. Probability of a success, denoted by p, remains same from one trial to the next. Probability of failure is 1 p. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 17

18 Examples of Binomial Random Variables A binomial random variable is defined as X=number of successes in the n trials of a binomial experiment. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 18

19 Finding Binomial Probabilities P ( X k ) k = = p 1 k! n! ( n k )! ( ) n p k for k = 0, 1, 2,, n Example 8.9 Probability of Two Wins in Three Plays p = probability win = 0.2; plays of game are independent. X = number of wins in three plays. What is P(X = 2)? P ( X = 2) = = 2! 3!.2 2! ( 3 ) 3(.2) 2 (.8) 1 2 = ( 1.2) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 19

20 Expected Value and Standard Deviation for a Binomial Random Variable For a binomial random variable X based on n trials and success probability p, Mean μ = E ( X ) = np Standard deviation ( p) σ = np 1 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 20

21 Example 8.12 Extraterrestrial Life? 50% of large population would say yes if asked, Do you believe there is extraterrestrial life? Sample of n = 100 is taken. X = number in the sample who say yes is approximately a binomial i random variable. E( ( X ) = 100(.5) 50 Mean μ = = Standard deviation σ = 100(.5) (.5) = 5 In repeated samples of n=100, on average 50 people would say yes. The amount by which that number would differ from sample to sample is about 5. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 21

22 8.5 Continuous Random Variables Continuous random variable: the outcome can be any value in an interval or collection of intervals. Probability density function for a continuous random variable X is a curve such that the area under the curve over an interval equals the probability that X is in that interval. P(a X b) = area under density curve over the interval between the values a and b. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 22

23 Example 8.13 Time Spent Waiting for Bus Bus arrives at stop every 10 minutes. Person arrives at stop at a random time, how long will s/he have to wait? X = waiting time until next bus arrives. X is a continuous random variable over 0 to 10 minutes. Note: Height is 0.10 so total area under the curve is (0.10)(10) = 1 This is an example of a Uniform random variable Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 23

24 Example 8.13 Waiting for Bus (cont) What is the probability the waiting time X was in the interval from 5 to 7 minutes? Probability = area under curve between 5 and 7 = (base)(height) ) = (2)(.1) ) =.2 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 24

25 8.6 Normal Random Variables If a population of measurements follows a normal curve, and if X is the measurement for a randomly selected individual from that population, then X is said to be a normal random variable X is also said to have a normal distribution Any normal random variable can be completely characterized by its mean, μ, and standard deviation, σ. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 25

26 Example 8.14 College Women s Heights Data suggest the distribution of heights of college women modeled by a normal curve with mean μ = 65 inches and standard deviation σ = 2.7 inches. Note: Tick marks given at the mean and at 1, 2, 3 standard deviations above and dbelow the mean. Empirical Rule values are exact characteristics of a normal curve model Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 26

27 Standard Scores The formula for converting any value x to a z-score is z = Value Mean Standard deviation = x μ σ A z-score measures the number of standard deviations that a value falls from the mean. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 27

28 Example 8.14 Height (cont) For a population of college women, the z-score corresponding to a height of 62 inches is z = Value Mean Standard deviation = = 1.11 This z-score tells us that 62 inches is 1.11 standard deviations below the mean height for this population. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 28

29 Finding Probabilities for z-scores Table A.1 = Standard Normal (z) Probabilities Body of table contains P(Z z*). Left-most column of table shows algebraic sign, digit before the decimal place, the first decimal place for z*. Second decimal place of z* *is in column heading. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 29

30 More Finding Probabilities for z-scores Table A.1 = Standard Normal (z) Probabilities P(Z -3.00) =.0013 (see in portion above) P(Z 2.59) =.0048 P(Z 1.31) =.9049 P(Z 2.00) =.9772 P(Z -4.75) = (from in the extreme) Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 30

31 Example 8.15 Probability Z > 1.31 P(Z > 1.31) = 1 P(Z 1.31) = =.0951 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 31

32 Example 8.16 Probability Z is between and d P(-2.59 Z 1.31) = P(Z 1.31) P(Z -2.59) = =.9001 Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 32

33 Use z-scores to Solve General Problems Example 8.14 Height (cont) What is the probability that a randomly selected college woman is 62 inches or shorter? P ( X 62) = P Z 2.7 = P Z =. ( ) 1335 About 13% of college women are 62 inches or shorter. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 33

34 Use z-scores to Solve General Problems Example 8.14 Height (cont) What proportion of college woman are taller than 68 inches? P ( X > 68) = P Z > = P( Z > 1.11) = 1 P( Z 1.11) = =.1335 About 13% of college women are taller than 68 inches. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 34

35 Finding Percentiles If 25th percentile of pulse rates is 64 bpm, then 25% of pulse rates are below 64 and 75% are above 64. The percentile is 64 bpm, and the percentile ranking is 25%. Step 1: Find z-score that has specified cumulative probability. Using Table A.1, find percentile rank in body of table and read off the z-score. Step 2: Calculate the value of variable that has the z-score found in step 1: x=z*σ σ + μ. μ Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 35

36 Example th Percentile of Systolic Blood dpressure Blood Pressures are normal with mean 120 and standard deviation 10. What is the 75 th percentile? Step 1: Find closest z* with area of in body of Table A.1. z = 0.67 Step 2: Calculate x = z*σ + μ x = (0.67)(10) = or about 127. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 36

37 8.7 Approximating Binomial Distribution Probabilities If X is a binomial i random variable based on n til trials with success probability p, and n is large, then the random variable X is also approximately normal, with mean and standard deviation given as: Mean μ = E ( X ) = np Standard deviation σ = np ( 1 p) Conditions: Both np and n(1 p) are at least 10. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 37

38 Example 8.18 Number of H in 30 Flips X = number of heads in n = 30 flips of fair coin Binomial distribution with n = 30 and p =.5. Distribution is bell-shaped and can be approximated by a normal curve. Mean μ = ( X ) = 30(.5) = 15 (.5 ) = Standard deviation σ = 30(.5) = E Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 38

39 Example 8.19 Political Woes Poll: n = 500 adults; 240 supported position If 50% of all adults support position, what is the probability that a random sample of 500 would find 240 or fewer holding this position? P(X 240) X is approximately normal with Mean μ = E = ( X ) = 500(.5) 250 (.5) Standard deviation σ = 100(.5) = P( X 240 ) P Z = P ( Z.89 ) = Not unlikely to see 48% or less, even if 50% in population p favor. Copyright 2004 Brooks/Cole, a division of Thomson Learning, Inc. 39

ECON 214 Elements of Statistics for Economists 2016/2017

ECON 214 Elements of Statistics for Economists 2016/2017 ECON 214 Elements of Statistics for Economists 2016/2017 Topic The Normal Distribution Lecturer: Dr. Bernardin Senadza, Dept. of Economics bsenadza@ug.edu.gh College of Education School of Continuing and

More information

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a

Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Homework: Due Wed, Nov 3 rd Chapter 8, # 48a, 55c and 56 (count as 1), 67a Announcements: There are some office hour changes for Nov 5, 8, 9 on website Week 5 quiz begins after class today and ends at

More information

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82

Homework: Due Wed, Feb 20 th. Chapter 8, # 60a + 62a (count together as 1), 74, 82 Announcements: Week 5 quiz begins at 4pm today and ends at 3pm on Wed If you take more than 20 minutes to complete your quiz, you will only receive partial credit. (It doesn t cut you off.) Today: Sections

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Section M Discrete Probability Distribution

Section M Discrete Probability Distribution Section M Discrete Probability Distribution A random variable is a numerical measure of the outcome of a probability experiment, so its value is determined by chance. Random variables are typically denoted

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 4 Random Variables & Probability Distributions Content 1. Two Types of Random Variables 2. Probability Distributions for Discrete Random Variables 3. The Binomial

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION

MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION MATH 104 CHAPTER 5 page 1 NORMAL DISTRIBUTION We have examined discrete random variables, those random variables for which we can list the possible values. We will now look at continuous random variables.

More information

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables

Example. Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables Chapter 8 Probability Distributions and Statistics Section 8.1 Distributions of Random Variables You are dealt a hand of 5 cards. Find the probability distribution table for the number of hearts. Graph

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7

Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Probability & Sampling The Practice of Statistics 4e Mostly Chpts 5 7 Lew Davidson (Dr.D.) Mallard Creek High School Lewis.Davidson@cms.k12.nc.us 704-786-0470 Probability & Sampling The Practice of Statistics

More information

the number of correct answers on question i. (Note that the only possible values of X i

the number of correct answers on question i. (Note that the only possible values of X i 6851_ch08_137_153 16/9/02 19:48 Page 137 8 8.1 (a) No: There is no fixed n (i.e., there is no definite upper limit on the number of defects). (b) Yes: It is reasonable to believe that all responses are

More information

TOPIC: PROBABILITY DISTRIBUTIONS

TOPIC: PROBABILITY DISTRIBUTIONS TOPIC: PROBABILITY DISTRIBUTIONS There are two types of random variables: A Discrete random variable can take on only specified, distinct values. A Continuous random variable can take on any value within

More information

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions Chapter 4: Probability s 4. Probability s 4. Binomial s Section 4. Objectives Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution

More information

The normal distribution is a theoretical model derived mathematically and not empirically.

The normal distribution is a theoretical model derived mathematically and not empirically. Sociology 541 The Normal Distribution Probability and An Introduction to Inferential Statistics Normal Approximation The normal distribution is a theoretical model derived mathematically and not empirically.

More information

Theoretical Foundations

Theoretical Foundations Theoretical Foundations Probabilities Monia Ranalli monia.ranalli@uniroma2.it Ranalli M. Theoretical Foundations - Probabilities 1 / 27 Objectives understand the probability basics quantify random phenomena

More information

ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists ECON 214 Elements of Statistics for Economists Session 7 The Normal Distribution Part 1 Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Exam II Math 1342 Capters 3-5 HCCS. Name

Exam II Math 1342 Capters 3-5 HCCS. Name Exam II Math 1342 Capters 3-5 HCCS Name Date Provide an appropriate response. 1) A single six-sided die is rolled. Find the probability of rolling a number less than 3. A) 0.5 B) 0.1 C) 0.25 D 0.333 1)

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial.

Normal Distribution. Notes. Normal Distribution. Standard Normal. Sums of Normal Random Variables. Normal. approximation of Binomial. Lecture 21,22, 23 Text: A Course in Probability by Weiss 8.5 STAT 225 Introduction to Probability Models March 31, 2014 Standard Sums of Whitney Huang Purdue University 21,22, 23.1 Agenda 1 2 Standard

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr.

Department of Quantitative Methods & Information Systems. Business Statistics. Chapter 6 Normal Probability Distribution QMIS 120. Dr. Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Normal Probability Distribution QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

Math 227 Practice Test 2 Sec Name

Math 227 Practice Test 2 Sec Name Math 227 Practice Test 2 Sec 4.4-6.2 Name Find the indicated probability. ) A bin contains 64 light bulbs of which 0 are defective. If 5 light bulbs are randomly selected from the bin with replacement,

More information

Chapter 4 Probability Distributions

Chapter 4 Probability Distributions Slide 1 Chapter 4 Probability Distributions Slide 2 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5

More information

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution

Probability Distributions. Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Probability Distributions Definitions Discrete vs. Continuous Mean and Standard Deviation TI 83/84 Calculator Binomial Distribution Definitions Random Variable: a variable that has a single numerical value

More information

Chapter 5: Probability models

Chapter 5: Probability models Chapter 5: Probability models 1. Random variables: a) Idea. b) Discrete and continuous variables. c) The probability function (density) and the distribution function. d) Mean and variance of a random variable.

More information

STAT 201 Chapter 6. Distribution

STAT 201 Chapter 6. Distribution STAT 201 Chapter 6 Distribution 1 Random Variable We know variable Random Variable: a numerical measurement of the outcome of a random phenomena Capital letter refer to the random variable Lower case letters

More information

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP

EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP EXERCISES FOR PRACTICE SESSION 2 OF STAT CAMP Note 1: The exercises below that are referenced by chapter number are taken or modified from the following open-source online textbook that was adapted by

More information

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom

Example 1: Identify the following random variables as discrete or continuous: a) Weight of a package. b) Number of students in a first-grade classroom Section 5-1 Probability Distributions I. Random Variables A variable x is a if the value that it assumes, corresponding to the of an experiment, is a or event. A random variable is if it potentially can

More information

PROBABILITY DISTRIBUTIONS. Chapter 6

PROBABILITY DISTRIBUTIONS. Chapter 6 PROBABILITY DISTRIBUTIONS Chapter 6 6.1 Summarize Possible Outcomes and their Probabilities Random Variable Random variable is numerical outcome of random phenomenon www.physics.umd.edu 3 Random Variable

More information

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1

Random Variables. 6.1 Discrete and Continuous Random Variables. Probability Distribution. Discrete Random Variables. Chapter 6, Section 1 6.1 Discrete and Continuous Random Variables Random Variables A random variable, usually written as X, is a variable whose possible values are numerical outcomes of a random phenomenon. There are two types

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial

Lecture 8. The Binomial Distribution. Binomial Distribution. Binomial Distribution. Probability Distributions: Normal and Binomial Lecture 8 The Binomial Distribution Probability Distributions: Normal and Binomial 1 2 Binomial Distribution >A binomial experiment possesses the following properties. The experiment consists of a fixed

More information

Business Statistics 41000: Probability 4

Business Statistics 41000: Probability 4 Business Statistics 41000: Probability 4 Drew D. Creal University of Chicago, Booth School of Business February 14 and 15, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office:

More information

Uniform Probability Distribution. Continuous Random Variables &

Uniform Probability Distribution. Continuous Random Variables & Continuous Random Variables & What is a Random Variable? It is a quantity whose values are real numbers and are determined by the number of desired outcomes of an experiment. Is there any special Random

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

NORMAL RANDOM VARIABLES (Normal or gaussian distribution)

NORMAL RANDOM VARIABLES (Normal or gaussian distribution) NORMAL RANDOM VARIABLES (Normal or gaussian distribution) Many variables, as pregnancy lengths, foot sizes etc.. exhibit a normal distribution. The shape of the distribution is a symmetric bell shape.

More information

Chapter 7: Random Variables

Chapter 7: Random Variables Chapter 7: Random Variables 7.1 Discrete and Continuous Random Variables 7.2 Means and Variances of Random Variables 1 Introduction A random variable is a function that associates a unique numerical value

More information

6.3: The Binomial Model

6.3: The Binomial Model 6.3: The Binomial Model The Normal distribution is a good model for many situations involving a continuous random variable. For experiments involving a discrete random variable, where the outcome of the

More information

5.2 Random Variables, Probability Histograms and Probability Distributions

5.2 Random Variables, Probability Histograms and Probability Distributions Chapter 5 5.2 Random Variables, Probability Histograms and Probability Distributions A random variable (r.v.) can be either continuous or discrete. It takes on the possible values of an experiment. It

More information

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions

Overview. Definitions. Definitions. Graphs. Chapter 4 Probability Distributions. probability distributions Chapter 4 Probability Distributions 4-1 Overview 4-2 Random Variables 4-3 Binomial Probability Distributions 4-4 Mean, Variance, and Standard Deviation for the Binomial Distribution 4-5 The Poisson Distribution

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS

Chapter 8 Solutions Page 1 of 15 CHAPTER 8 EXERCISE SOLUTIONS Chapter 8 Solutions Page of 5 8. a. Continuous. b. Discrete. c. Continuous. d. Discrete. e. Discrete. 8. a. Discrete. b. Continuous. c. Discrete. d. Discrete. CHAPTER 8 EXERCISE SOLUTIONS 8.3 a. 3/6 =

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

The Uniform Distribution

The Uniform Distribution The Uniform Distribution EXAMPLE 1 The previous problem is an example of the uniform probability distribution. Illustrate the uniform distribution. The data that follows are 55 smiling times, in seconds,

More information

Chapter ! Bell Shaped

Chapter ! Bell Shaped Chapter 6 6-1 Business Statistics: A First Course 5 th Edition Chapter 7 Continuous Probability Distributions Learning Objectives In this chapter, you learn:! To compute probabilities from the normal distribution!

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going?

Part 1 In which we meet the law of averages. The Law of Averages. The Expected Value & The Standard Error. Where Are We Going? 1 The Law of Averages The Expected Value & The Standard Error Where Are We Going? Sums of random numbers The law of averages Box models for generating random numbers Sums of draws: the Expected Value Standard

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Chapter 8: The Binomial and Geometric Distributions 8.1 Binomial Distributions 8.2 Geometric Distributions 1 Let me begin with an example My best friends from Kent School had three daughters. What is the

More information

Chapter 6: Random Variables

Chapter 6: Random Variables Chapter 6: Random Variables Section 6.1 Discrete and Continuous Random Variables The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 6 Random Variables 6.1 Discrete and Continuous

More information

Chapter 3: Probability Distributions and Statistics

Chapter 3: Probability Distributions and Statistics Chapter 3: Probability Distributions and Statistics Section 3.-3.3 3. Random Variables and Histograms A is a rule that assigns precisely one real number to each outcome of an experiment. We usually denote

More information

Statistics 511 Supplemental Materials

Statistics 511 Supplemental Materials Gaussian (or Normal) Random Variable In this section we introduce the Gaussian Random Variable, which is more commonly referred to as the Normal Random Variable. This is a random variable that has a bellshaped

More information

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations.

Binomial formulas: The binomial coefficient is the number of ways of arranging k successes among n observations. Chapter 8 Notes Binomial and Geometric Distribution Often times we are interested in an event that has only two outcomes. For example, we may wish to know the outcome of a free throw shot (good or missed),

More information

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

STAT Chapter 5: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. STAT 515 -- Chapter 5: Continuous Distributions Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s. Continuous distributions typically are represented by

More information

Discrete Random Variables and Probability Distributions

Discrete Random Variables and Probability Distributions Chapter 4 Discrete Random Variables and Probability Distributions 4.1 Random Variables A quantity resulting from an experiment that, by chance, can assume different values. A random variable is a variable

More information

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS

CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS CHAPTER 8 PROBABILITY DISTRIBUTIONS AND STATISTICS 8.1 Distribution of Random Variables Random Variable Probability Distribution of Random Variables 8.2 Expected Value Mean Mean is the average value of

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions

STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STOR 155 Introductory Statistics (Chap 5) Lecture 14: Sampling Distributions for Counts and Proportions 5/31/11 Lecture 14 1 Statistic & Its Sampling Distribution

More information

Chapter 6 Continuous Probability Distributions. Learning objectives

Chapter 6 Continuous Probability Distributions. Learning objectives Chapter 6 Continuous s Slide 1 Learning objectives 1. Understand continuous probability distributions 2. Understand Uniform distribution 3. Understand Normal distribution 3.1. Understand Standard normal

More information

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal

Econ 6900: Statistical Problems. Instructor: Yogesh Uppal Econ 6900: Statistical Problems Instructor: Yogesh Uppal Email: yuppal@ysu.edu Lecture Slides 4 Random Variables Probability Distributions Discrete Distributions Discrete Uniform Probability Distribution

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

MATH 118 Class Notes For Chapter 5 By: Maan Omran

MATH 118 Class Notes For Chapter 5 By: Maan Omran MATH 118 Class Notes For Chapter 5 By: Maan Omran Section 5.1 Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Ex1: The test scores

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x)

MATH1215: Mathematical Thinking Sec. 08 Spring Worksheet 9: Solution. x P(x) N. Name: MATH: Mathematical Thinking Sec. 08 Spring 0 Worksheet 9: Solution Problem Compute the expected value of this probability distribution: x 3 8 0 3 P(x) 0. 0.0 0.3 0. Clearly, a value is missing

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 6 Exam A Name The given values are discrete. Use the continuity correction and describe the region of the normal distribution that corresponds to the indicated probability. 1) The probability of

More information

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal

Business Statistics. Chapter 5 Discrete Probability Distributions QMIS 120. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions

Topic 6 - Continuous Distributions I. Discrete RVs. Probability Density. Continuous RVs. Background Reading. Recall the discrete distributions Topic 6 - Continuous Distributions I Discrete RVs Recall the discrete distributions STAT 511 Professor Bruce Craig Binomial - X= number of successes (x =, 1,...,n) Geometric - X= number of trials (x =,...)

More information

Chapter Six Probability Distributions

Chapter Six Probability Distributions 6.1 Probability Distributions Discrete Random Variable Chapter Six Probability Distributions x P(x) 2 0.08 4 0.13 6 0.25 8 0.31 10 0.16 12 0.01 Practice. Construct a probability distribution for the number

More information

Introduction to Business Statistics QM 120 Chapter 6

Introduction to Business Statistics QM 120 Chapter 6 DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 6 Spring 2008 Chapter 6: Continuous Probability Distribution 2 When a RV x is discrete, we can

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 27 Continuous

More information

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics

Chapter 5 Student Lecture Notes 5-1. Department of Quantitative Methods & Information Systems. Business Statistics Chapter 5 Student Lecture Notes 5-1 Department of Quantitative Methods & Information Systems Business Statistics Chapter 5 Discrete Probability Distributions QMIS 120 Dr. Mohammad Zainal Chapter Goals

More information

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics.

Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Week 1 Variables: Exploration, Familiarisation and Description. Descriptive Statistics. Convergent validity: the degree to which results/evidence from different tests/sources, converge on the same conclusion.

More information

Statistics Chapter 8

Statistics Chapter 8 Statistics Chapter 8 Binomial & Geometric Distributions Time: 1.5 + weeks Activity: A Gaggle of Girls The Ferrells have 3 children: Jennifer, Jessica, and Jaclyn. If we assume that a couple is equally

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain.

Binomial and Normal Distributions. Example: Determine whether the following experiments are binomial experiments. Explain. Binomial and Normal Distributions Objective 1: Determining if an Experiment is a Binomial Experiment For an experiment to be considered a binomial experiment, four things must hold: 1. The experiment is

More information

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5

Chapter 8 Homework Solutions Compiled by Joe Kahlig. speed(x) freq 25 x < x < x < x < x < x < 55 5 H homework problems, C-copyright Joe Kahlig Chapter Solutions, Page Chapter Homework Solutions Compiled by Joe Kahlig. (a) finite discrete (b) infinite discrete (c) continuous (d) finite discrete (e) continuous.

More information

***SECTION 8.1*** The Binomial Distributions

***SECTION 8.1*** The Binomial Distributions ***SECTION 8.1*** The Binomial Distributions CHAPTER 8 ~ The Binomial and Geometric Distributions In practice, we frequently encounter random phenomenon where there are two outcomes of interest. For example,

More information

STT 315 Practice Problems Chapter 3.7 and 4

STT 315 Practice Problems Chapter 3.7 and 4 STT 315 Practice Problems Chapter 3.7 and 4 Answer the question True or False. 1) The number of children in a family can be modelled using a continuous random variable. 2) For any continuous probability

More information

Chapter 4. The Normal Distribution

Chapter 4. The Normal Distribution Chapter 4 The Normal Distribution 1 Chapter 4 Overview Introduction 4-1 Normal Distributions 4-2 Applications of the Normal Distribution 4-3 The Central Limit Theorem 4-4 The Normal Approximation to the

More information

Chapter 4 Discrete Random variables

Chapter 4 Discrete Random variables Chapter 4 Discrete Random variables A is a variable that assumes numerical values associated with the random outcomes of an experiment, where only one numerical value is assigned to each sample point.

More information