What can we do with numerical optimization?

Size: px
Start display at page:

Download "What can we do with numerical optimization?"

Transcription

1 Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (1 : 21) Acknowledgement This mini-course is supported by an initiation grant from STINT, the Swedish Foundation for International Cooperation in Research and Higher Education Handout version of the slides presented during the lectures can be downloaded from Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (2 : 21) What can we do with numerical optimization? Operations research Allocation of resources for industrial production Finding logistics, scheduling, or transportation solutions Crew scheduling for airline cabin personel Managing investment portfolios Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (3 : 21)

2 What can we do with numerical optimization? Inverse problems Estimate material parameters from measurements Oil exploration; exploit data to obtain subsurface images Medical tomography Non-destructive testing Estimate initial conditions for numerical weather models from weather data Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (4 : 21) What can we do with numerical optimization? Engineering Design Which shape is the best? Which material composition is the right one?... Example: Optimization of a cantilever beam. Use 50 % material while minimizing the compliance of the beam Ω D f Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (5 : 21) Course objectives for todays lecture Become familiar with the language of optimization Seeing examples of practical problems formulated as optimization problems Introduce important classes of optimization problems Terminology Characterization of solutions Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (6 : 21)

3 Course objectives Introduce important numerical methods to solve optimization problems Newton-type methods for unconstrained optimization Feasible-point and barrier/penalty methods for nonlinear programming Obtaining hands-on experience with software Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (7 : 21) A general optimization problem Minimize f (x) among all x such that g i (x) = 0 i = 1, 2,..., n eq h i (x) 0 i = 1, 2,..., n ineq l i x i u i for some i s where f, g i, h i are functions from R n to R Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (8 : 21) Terminology f x g i (x) = 0 h i (x) 0 l i x i u i objective function descision variables equality constraints inequality constraints box constraints (special case of inequality constraints) An x is feasible if the constraints are satisfied at x. Otherwise x is infeasible. The feasible set S consist of all x that satisfies all constraints. Using S the general problem can be written as min x S f (x). Assume that x is feasible for an inequality constraint h i (x) 0 The constraint is active (or binding) if h i (x) = 0 Otherwise the constraint is inactive (nonbinding, or slack). A problem is unconstrained if there are no constrains. Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (9 : 21)

4 Global and local minimizers S R n f (x) Global minimizer: x S such that f (x ) f (x) Global x S S minimizer: x S such that, for some ɛ > 0, f (x ) f (x) x S B(x ; ɛ), where B(x ; ɛ) is a ball of radius ɛ surrounding x, that is, (B(x ; ɛ) = {x R n x x ɛ}) Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (10 : 21) Convexity and optimality A convex function f on a convex set S: f is below or on the linear interpolant between any two points in the set αf (x 1) + (1 α)f (x 2) f (x) x 1 x 2 x 1, x 2 S f ( ) αx 1 + (1 α)x 2 αf (x1 ) + (1 α)f (x 2 ) α [0, 1] Examples of convex functions on R n (a) f (x) = c T x (b) f (x) = γ + c T x x T Qx (also concave!) (Q positive semidefinite matrix) Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (11 : 21) S R n Global minimizer: x S such that f (x ) f (x) x S f (x) minimizer: x S such that, for some ɛ > 0, f (x ) f (x) x S B(x ; ɛ) where B(x; ɛ): ball of radius ɛ centered at x Global S Theorem. For convex functions on convex sets holds that each local minimizer is a global minimizer Example: min f (x) such that x Ax b, where f (x) = c T x (linear program) or f (x) = γ+c T x+ 1 2 x T Qx, Q positive semidefinite (quadratic program) Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (12 : 21)

5 Unconstrained optimization Will start to consider unconstrained optimization min f (x) or, equivalently, Find x R n such that x R n f (x ) f (x) x R n Function f is nonlinear in x. Unconstrained optimization meaningless for linear f, since linear f on R n are unbounded or constant Most common application for unconstrained optimization: inverse problems, parameter estimation Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (13 : 21) Unconstrained optimization: example application At time intervals t 1, t 2,..., t m a physical process generates a time sequence of m observations (measurements) b 1, b 2,..., b m A model of the process says that b k b(t k ) where b(t) = x 1 + x 2 e x 3t + x 4 e x 5t Model not exact: measuring errors (noise), modeling errors We want to find the coefficients x 1,..., x 5 that best matches the observations Define the residual r k = b k (x 1 + x 2 e x 3t k + x 4 e x 5t k ) and solve the unconstrained optimization problem m min r x 1,...,x k 2 5 k=1 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (14 : 21) A general iterative algorithm for unconstrained optimization Problem: min f (x) x R n Many optimization algorithms are of the type 1. Specify an initial guess x 0 2. For k = 0, 1, If x k optimal stop 2.2 Determina a search direction p k and a step length α k 2.3 Set x k+1 = x k + p k α k For most problems, optimum cannot be reached within a finite number of steps Important: convergence rate, the behavior of x k x as k Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (15 : 21)

6 Convergence rate Definition The sequence {x k } k=1 converges to x with rate p and rate constant C < if x k x and x k+1 x lim k x k x p = C. Linear: p = 1 and 0 < C < 1. The error is essentially multiplied by C each iteration. Quadratic: p = 2. Roughly a doubling of the correct digits each iteration. Superlinear: p = 1 and C = 0. Faster than linear". Includes quadratic convergence but also "intermediaterates. Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (16 : 21) Positive definite matrices An n-by-n real matrix A is positive semidefinite if v T Av 0, v R n It is positive definite if v T Av > 0, v {x R n x 0} A positive definite matrix is nonsingular Matrix A is positive definite if and only if matrix A 1 is positive definite A symmetric matrix A is positive definite if and only if All eigenvalues are strictly positive A = LL T with L lower triangular and L ii > 0 (Cholesky factorization). Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (17 : 21) Quadratic functions Let φ : R n R be definied by φ(s) = αg T s st Hs, where α R, g and s are n-vectors, and H an n-by-n matrix. Theorem. If H is symmetric and positive definite, then the solution to is the unique minimizer of φ Hs = g Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (18 : 21)

7 Finding minima Finding global minimum: very hard! Reason: in general refers to all points minimum is also very hard to find if nothing more about f is known mimumum easier if f is differentiable, since gradients provide information about local behaviour of functions. Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (19 : 21) Taylor series with remainder term Let f : R n R be of class C 2 (twice continuously differentiable). Then x, y R n, f (y) = f (x) + (y x) T f (x) (y x)t 2 f (ξ)(y x), where ξ = αx + (1 α)y for some α [0, 1]. The gradient of f : The Hessian of f : f (x) = 2 f (x) = ( f,..., f ) T x 1 x n 2 f... 2 f x f x n x f xn 2 x 1 x n Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (20 : 21) Optimality conditions for unconstrained optimization First order necessary condition: Assume f : R n R has a local minimum at x = x and that f is differentiable at x = x. Then f (x ) = 0. Second order necessary condition: Assume f : R n R has a local minimum at x = x and that f is of class C 2. Then 2 f (x ) is positive semidefinite. Second order suffcient condition: Assume f : R n R is of class C 2. If f (x ) = 0 and 2 f (x ) is positive definite then x is a local minimizer. Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016 (21 : 21)

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

Lecture Quantitative Finance Spring Term 2015

Lecture Quantitative Finance Spring Term 2015 implied Lecture Quantitative Finance Spring Term 2015 : May 7, 2015 1 / 28 implied 1 implied 2 / 28 Motivation and setup implied the goal of this chapter is to treat the implied which requires an algorithm

More information

Decomposition Methods

Decomposition Methods Decomposition Methods separable problems, complicating variables primal decomposition dual decomposition complicating constraints general decomposition structures Prof. S. Boyd, EE364b, Stanford University

More information

Optimization in Finance

Optimization in Finance Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016 First-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 1 / 48 Smooth

More information

Optimization Methods in Finance

Optimization Methods in Finance Optimization Methods in Finance Gerard Cornuejols Reha Tütüncü Carnegie Mellon University, Pittsburgh, PA 15213 USA January 2006 2 Foreword Optimization models play an increasingly important role in financial

More information

Statistics and Machine Learning Homework1

Statistics and Machine Learning Homework1 Statistics and Machine Learning Homework1 Yuh-Jye Lee National Taiwan University of Science and Technology dmlab1.csie.ntust.edu.tw/leepage/index c.htm Exercise 1: (a) Solve 1 min x R 2 2 xt 1 0 0 900

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS

GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS GLOBAL CONVERGENCE OF GENERAL DERIVATIVE-FREE TRUST-REGION ALGORITHMS TO FIRST AND SECOND ORDER CRITICAL POINTS ANDREW R. CONN, KATYA SCHEINBERG, AND LUíS N. VICENTE Abstract. In this paper we prove global

More information

Chapter 7 One-Dimensional Search Methods

Chapter 7 One-Dimensional Search Methods Chapter 7 One-Dimensional Search Methods An Introduction to Optimization Spring, 2014 1 Wei-Ta Chu Golden Section Search! Determine the minimizer of a function over a closed interval, say. The only assumption

More information

Calibration Lecture 1: Background and Parametric Models

Calibration Lecture 1: Background and Parametric Models Calibration Lecture 1: Background and Parametric Models March 2016 Motivation What is calibration? Derivative pricing models depend on parameters: Black-Scholes σ, interest rate r, Heston reversion speed

More information

I. More Fundamental Concepts and Definitions from Mathematics

I. More Fundamental Concepts and Definitions from Mathematics An Introduction to Optimization The core of modern economics is the notion that individuals optimize. That is to say, individuals use the resources available to them to advance their own personal objectives

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Convergence Analysis of Monte Carlo Calibration of Financial Market Models Analysis of Monte Carlo Calibration of Financial Market Models Christoph Käbe Universität Trier Workshop on PDE Constrained Optimization of Certain and Uncertain Processes June 03, 2009 Monte Carlo Calibration

More information

CS227-Scientific Computing. Lecture 6: Nonlinear Equations

CS227-Scientific Computing. Lecture 6: Nonlinear Equations CS227-Scientific Computing Lecture 6: Nonlinear Equations A Financial Problem You invest $100 a month in an interest-bearing account. You make 60 deposits, and one month after the last deposit (5 years

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2017 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2016/m2mo/m2mo.html We look for a numerical approximation

More information

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization

A Trust Region Algorithm for Heterogeneous Multiobjective Optimization A Trust Region Algorithm for Heterogeneous Multiobjective Optimization Jana Thomann and Gabriele Eichfelder 8.0.018 Abstract This paper presents a new trust region method for multiobjective heterogeneous

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Chapter 5 Portfolio. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Chapter 5 Portfolio. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction Chapter 5 Portfolio O. Afonso, P. B. Vasconcelos Computational Economics: a concise introduction O. Afonso, P. B. Vasconcelos Computational Economics 1 / 22 Overview 1 Introduction 2 Economic model 3 Numerical

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 21 Successive Shortest Path Problem In this lecture, we continue our discussion

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

56:171 Operations Research Midterm Exam Solutions October 22, 1993

56:171 Operations Research Midterm Exam Solutions October 22, 1993 56:171 O.R. Midterm Exam Solutions page 1 56:171 Operations Research Midterm Exam Solutions October 22, 1993 (A.) /: Indicate by "+" ="true" or "o" ="false" : 1. A "dummy" activity in CPM has duration

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2018 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2017/m2mo/m2mo.html We look for a numerical approximation

More information

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Dept of Management Studies Indian Institute of Technology, Madras Lecture 23 Minimum Cost Flow Problem In this lecture, we will discuss the minimum cost

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

Taylor Series & Binomial Series

Taylor Series & Binomial Series Taylor Series & Binomial Series Calculus II Josh Engwer TTU 09 April 2014 Josh Engwer (TTU) Taylor Series & Binomial Series 09 April 2014 1 / 20 Continuity & Differentiability of a Function (Notation)

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

Convergence of trust-region methods based on probabilistic models

Convergence of trust-region methods based on probabilistic models Convergence of trust-region methods based on probabilistic models A. S. Bandeira K. Scheinberg L. N. Vicente October 24, 2013 Abstract In this paper we consider the use of probabilistic or random models

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Stochastic Optimal Control

Stochastic Optimal Control Stochastic Optimal Control Lecturer: Eilyan Bitar, Cornell ECE Scribe: Kevin Kircher, Cornell MAE These notes summarize some of the material from ECE 5555 (Stochastic Systems) at Cornell in the fall of

More information

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing

Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Course notes for EE394V Restructured Electricity Markets: Locational Marginal Pricing Ross Baldick Copyright c 2018 Ross Baldick www.ece.utexas.edu/ baldick/classes/394v/ee394v.html Title Page 1 of 160

More information

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints

Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints Economics 2010c: Lecture 4 Precautionary Savings and Liquidity Constraints David Laibson 9/11/2014 Outline: 1. Precautionary savings motives 2. Liquidity constraints 3. Application: Numerical solution

More information

Adaptive cubic overestimation methods for unconstrained optimization

Adaptive cubic overestimation methods for unconstrained optimization Report no. NA-07/20 Adaptive cubic overestimation methods for unconstrained optimization Coralia Cartis School of Mathematics, University of Edinburgh, The King s Buildings, Edinburgh, EH9 3JZ, Scotland,

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

FINANCIAL OPTIMIZATION

FINANCIAL OPTIMIZATION FINANCIAL OPTIMIZATION Lecture 2: Linear Programming Philip H. Dybvig Washington University Saint Louis, Missouri Copyright c Philip H. Dybvig 2008 Choose x to minimize c x subject to ( i E)a i x = b i,

More information

Answer Key for M. A. Economics Entrance Examination 2017 (Main version)

Answer Key for M. A. Economics Entrance Examination 2017 (Main version) Answer Key for M. A. Economics Entrance Examination 2017 (Main version) July 4, 2017 1. Person A lexicographically prefers good x to good y, i.e., when comparing two bundles of x and y, she strictly prefers

More information

CONSUMER OPTIMISATION

CONSUMER OPTIMISATION Prerequisites Almost essential Firm: Optimisation Consumption: Basics CONSUMER OPTIMISATION MICROECONOMICS Principles and Analysis Frank Cowell Note: the detail in slides marked * can only be seen if you

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1

IE 495 Lecture 11. The LShaped Method. Prof. Jeff Linderoth. February 19, February 19, 2003 Stochastic Programming Lecture 11 Slide 1 IE 495 Lecture 11 The LShaped Method Prof. Jeff Linderoth February 19, 2003 February 19, 2003 Stochastic Programming Lecture 11 Slide 1 Before We Begin HW#2 $300 $0 http://www.unizh.ch/ior/pages/deutsch/mitglieder/kall/bib/ka-wal-94.pdf

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University

Ellipsoid Method. ellipsoid method. convergence proof. inequality constraints. feasibility problems. Prof. S. Boyd, EE364b, Stanford University Ellipsoid Method ellipsoid method convergence proof inequality constraints feasibility problems Prof. S. Boyd, EE364b, Stanford University Ellipsoid method developed by Shor, Nemirovsky, Yudin in 1970s

More information

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009)

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009) Technical Report Doc ID: TR-1-2009. 14-April-2009 (Last revised: 02-June-2009) The homogeneous selfdual model algorithm for linear optimization. Author: Erling D. Andersen In this white paper we present

More information

Log-Robust Portfolio Management

Log-Robust Portfolio Management Log-Robust Portfolio Management Dr. Aurélie Thiele Lehigh University Joint work with Elcin Cetinkaya and Ban Kawas Research partially supported by the National Science Foundation Grant CMMI-0757983 Dr.

More information

Online Shopping Intermediaries: The Strategic Design of Search Environments

Online Shopping Intermediaries: The Strategic Design of Search Environments Online Supplemental Appendix to Online Shopping Intermediaries: The Strategic Design of Search Environments Anthony Dukes University of Southern California Lin Liu University of Central Florida February

More information

The Optimization Process: An example of portfolio optimization

The Optimization Process: An example of portfolio optimization ISyE 6669: Deterministic Optimization The Optimization Process: An example of portfolio optimization Shabbir Ahmed Fall 2002 1 Introduction Optimization can be roughly defined as a quantitative approach

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 3, Mikhail Zaslavsky 3 University of Michigan, Ann

More information

MACROECONOMICS. Prelim Exam

MACROECONOMICS. Prelim Exam MACROECONOMICS Prelim Exam Austin, June 1, 2012 Instructions This is a closed book exam. If you get stuck in one section move to the next one. Do not waste time on sections that you find hard to solve.

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Introduction to Operations Research

Introduction to Operations Research Introduction to Operations Research Unit 1: Linear Programming Terminology and formulations LP through an example Terminology Additional Example 1 Additional example 2 A shop can make two types of sweets

More information

Penalty Functions. The Premise Quadratic Loss Problems and Solutions

Penalty Functions. The Premise Quadratic Loss Problems and Solutions Penalty Functions The Premise Quadratic Loss Problems and Solutions The Premise You may have noticed that the addition of constraints to an optimization problem has the effect of making it much more difficult.

More information

An advanced method for preserving skewness in single-variate, multivariate, and disaggregation models in stochastic hydrology

An advanced method for preserving skewness in single-variate, multivariate, and disaggregation models in stochastic hydrology XXIV General Assembly of European Geophysical Society The Hague, 9-3 April 999 HSA9.0 Open session on statistical methods in hydrology An advanced method for preserving skewness in single-variate, multivariate,

More information

Multi-period Portfolio Choice and Bayesian Dynamic Models

Multi-period Portfolio Choice and Bayesian Dynamic Models Multi-period Portfolio Choice and Bayesian Dynamic Models Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768

More information

Heinz W. Engl. Industrial Mathematics Institute Johannes Kepler Universität Linz, Austria

Heinz W. Engl. Industrial Mathematics Institute Johannes Kepler Universität Linz, Austria Some Identification Problems in Finance Heinz W. Engl Industrial Mathematics Institute Johannes Kepler Universität Linz, Austria www.indmath.uni-linz.ac.at Johann Radon Institute for Computational and

More information

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015

Optimization for Chemical Engineers, 4G3. Written midterm, 23 February 2015 Optimization for Chemical Engineers, 4G3 Written midterm, 23 February 2015 Kevin Dunn, kevin.dunn@mcmaster.ca McMaster University Note: No papers, other than this test and the answer booklet are allowed

More information

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE

LP OPTIMUM FOUND AT STEP 2 OBJECTIVE FUNCTION VALUE The Wilson Problem: Graph is at the end. LP OPTIMUM FOUND AT STEP 2 1) 5520.000 X1 360.000000 0.000000 X2 300.000000 0.000000 2) 0.000000 1.000000 3) 0.000000 2.000000 4) 140.000000 0.000000 5) 200.000000

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48 Systems of Ordinary Differential Equations Lectures INF2320 p. 1/48 Lectures INF2320 p. 2/48 ystems of ordinary differential equations Last two lectures we have studied models of the form y (t) = F(y),

More information

1 Dynamic programming

1 Dynamic programming 1 Dynamic programming A country has just discovered a natural resource which yields an income per period R measured in terms of traded goods. The cost of exploitation is negligible. The government wants

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 2, Mikhail Zaslavsky 2 University of Michigan, Ann

More information

Modelling long term interest rates for pension funds

Modelling long term interest rates for pension funds Modelling long term interest rates for pension funds Michel Vellekoop Netspar and the University of Amsterdam Actuarial and Risk Measures Workshop on Pension Plans and Related Topics University of Piraeus,

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Consistency of option prices under bid-ask spreads

Consistency of option prices under bid-ask spreads Consistency of option prices under bid-ask spreads Stefan Gerhold TU Wien Joint work with I. Cetin Gülüm MFO, Feb 2017 (TU Wien) MFO, Feb 2017 1 / 32 Introduction The consistency problem Overview Consistency

More information

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program., Ser. A DOI 10.1007/s10107-017-1137-4 FULL LENGTH PAPER Global convergence rate analysis of unconstrained optimization methods based on probabilistic models C. Cartis 1 K. Scheinberg 2 Received:

More information

Estimating Macroeconomic Models of Financial Crises: An Endogenous Regime-Switching Approach

Estimating Macroeconomic Models of Financial Crises: An Endogenous Regime-Switching Approach Estimating Macroeconomic Models of Financial Crises: An Endogenous Regime-Switching Approach Gianluca Benigno 1 Andrew Foerster 2 Christopher Otrok 3 Alessandro Rebucci 4 1 London School of Economics and

More information

Microeconomics II. CIDE, MsC Economics. List of Problems

Microeconomics II. CIDE, MsC Economics. List of Problems Microeconomics II CIDE, MsC Economics List of Problems 1. There are three people, Amy (A), Bart (B) and Chris (C): A and B have hats. These three people are arranged in a room so that B can see everything

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

Gradient Descent and the Structure of Neural Network Cost Functions. presentation by Ian Goodfellow

Gradient Descent and the Structure of Neural Network Cost Functions. presentation by Ian Goodfellow Gradient Descent and the Structure of Neural Network Cost Functions presentation by Ian Goodfellow adapted for www.deeplearningbook.org from a presentation to the CIFAR Deep Learning summer school on August

More information

Multi-armed bandits in dynamic pricing

Multi-armed bandits in dynamic pricing Multi-armed bandits in dynamic pricing Arnoud den Boer University of Twente, Centrum Wiskunde & Informatica Amsterdam Lancaster, January 11, 2016 Dynamic pricing A firm sells a product, with abundant inventory,

More information

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation E Bergou Y Diouane V Kungurtsev C W Royer July 5, 08 Abstract Globally convergent variants of the Gauss-Newton

More information

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford Linear

More information

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE 6.231 DYNAMIC PROGRAMMING LECTURE 10 LECTURE OUTLINE Rollout algorithms Cost improvement property Discrete deterministic problems Approximations of rollout algorithms Discretization of continuous time

More information

1 Precautionary Savings: Prudence and Borrowing Constraints

1 Precautionary Savings: Prudence and Borrowing Constraints 1 Precautionary Savings: Prudence and Borrowing Constraints In this section we study conditions under which savings react to changes in income uncertainty. Recall that in the PIH, when you abstract from

More information

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs Online Appendi Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared A. Proofs Proof of Proposition 1 The necessity of these conditions is proved in the tet. To prove sufficiency,

More information

An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty

An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty Computational Optimization and Applications, 26, 219 230, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty

More information

Agricultural and Applied Economics 637 Applied Econometrics II

Agricultural and Applied Economics 637 Applied Econometrics II Agricultural and Applied Economics 637 Applied Econometrics II Assignment I Using Search Algorithms to Determine Optimal Parameter Values in Nonlinear Regression Models (Due: February 3, 2015) (Note: Make

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd,

Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, Applied Mathematical Sciences, Vol. 8, 2014, no. 1, 1-12 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.35258 Improving the Robustness of Difference of Convex Algorithm in the Research

More information

Machine Learning (CSE 446): Pratical issues: optimization and learning

Machine Learning (CSE 446): Pratical issues: optimization and learning Machine Learning (CSE 446): Pratical issues: optimization and learning John Thickstun guest lecture c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 10 Review 1 / 10 Our running example

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Optimal Security Liquidation Algorithms

Optimal Security Liquidation Algorithms Optimal Security Liquidation Algorithms Sergiy Butenko Department of Industrial Engineering, Texas A&M University, College Station, TX 77843-3131, USA Alexander Golodnikov Glushkov Institute of Cybernetics,

More information

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE GÜNTER ROTE Abstract. A salesperson wants to visit each of n objects that move on a line at given constant speeds in the shortest possible time,

More information

Reduced Basis Methods for MREIT

Reduced Basis Methods for MREIT Reduced Basis Methods for MREIT Dominik Garmatter garmatter@math.uni-frankfurt.de Group for Numerics of Partial Differential Equations, Goethe University Frankfurt, Germany Joint work with Bastian Harrach

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 15: Tree-based Algorithms Cho-Jui Hsieh UC Davis March 7, 2018 Outline Decision Tree Random Forest Gradient Boosted Decision Tree (GBDT) Decision Tree Each node checks

More information

Interpolation. 1 What is interpolation? 2 Why are we interested in this?

Interpolation. 1 What is interpolation? 2 Why are we interested in this? Interpolation 1 What is interpolation? For a certain function f (x we know only the values y 1 = f (x 1,,y n = f (x n For a point x different from x 1,,x n we would then like to approximate f ( x using

More information

The mean-variance portfolio choice framework and its generalizations

The mean-variance portfolio choice framework and its generalizations The mean-variance portfolio choice framework and its generalizations Prof. Massimo Guidolin 20135 Theory of Finance, Part I (Sept. October) Fall 2014 Outline and objectives The backward, three-step solution

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Aku Seppänen Inverse Problems Group Department of Applied Physics University of Eastern Finland

More information