Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Size: px
Start display at page:

Download "Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India"

Transcription

1 Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford

2 Linear regression min x f x = Ax b 2 2 x R d, A R n d, b R n Basic problem and arises pervasively in applications Deeply studied in literature

3 Gradient descent for linear regression x t+1 = x t δ A Ax t b Convergence rate: O κ log f x 0 f Gradient f = min x f x ; = Target suboptimality Condition number: κ = σ max A A σ min A A

4 Question: Is it possible to do better? Hope: GD does not reuse past gradients Answer: Yes! Gradient descent: x t+1 = x t δ f x t Conjugate gradient (Hestenes and Stiefel 1952) Heavy ball method (Polyak 1964) Accelerated gradient descent (Nemirovsky and Yudin 1977, Nesterov 1983)

5 Accelerated gradient descent (AGD) x t+1 = y t δ f y t y t+1 = x t+1 + γ x t+1 x t Convergence rate: O κ log f x 0 f f = min x f x ; = Target suboptimality Condition number: κ = σ max A A σ min A A

6 Accelerated gradient descent (AGD) Compared to: O κ log f x 0 f for GD Convergence rate: O κ log f x 0 f f = min x f x ; = Target suboptimality Condition number: κ = σ max A A σ min A A

7 Source:

8 Stochastic approximation (Robbins and Monro 1951) Distribution D on R d R f x E a,b D a x b 2 Equivalent to Ax b 2 2 where A has infinite rows Observe n pairs a 1, b 1,, a n, b n Interested in entire distribution D rather than data points like in ML Fit a linear model to the distribution Cannot compute exact gradients

9 Stochastic gradient descent (SGD) (Robbins and Monro 1951) x t+1 = x t δ f x t where E f x t = f x t Return 1 n σ i x i (Polyak and Juditsky 1992) Is gradient descent in expectation For linear regression, SGD: x t+1 = x t δ a t x t b t a t Streaming algorithm: extremely efficient and widely used in practice

10 Best possible rate Consider b = a x + noise; noise N 0, σ 2 Recall: f x E a,b D a x b 2 x argmin x σn i=1 a i x b i 2 E f x f x = 1 + o 1 σ2 d n (van der Vaart, 2000)

11 Best possible rate In general: x argmin x f x E a x b 2 aa σ 2 E aa x argmin x n σ i=1 a i x b 2 Equivalently n 1 + o 1 σ2 d E f x f x 1 + o 1 σ2 d n (van der Vaart, 2000)

12 Convergence rate of SGD Convergence rate: O κ log f x 0 f + σ2 d (Jain et al. 2016) f = min x f x ; = Target suboptimality Condition number: κ max a 2 2 σ min E aa Noise level: E a x b 2 aa σ 2 E aa

13 Recap Deterministic case GD O κ log f x 0 f AGD O κ log f x 0 f Stochastic approximation SGD O κ log f x 0 f Accelerated SGD? Unknown + σ2 d Question: Is accelerating SGD possible?

14 Is this really important? Extremely important in practice As we saw, acceleration can really give orders of magnitude improvement Neural network training uses Nesterov s AGD as well as Adam; but no theoretical understanding Jain et al shows acceleration leads to more parallelizability Existing results show AGD not robust to deterministic noise (d Aspremont 2008, Devolder et al. 2014) but is robust to random additive noise (Ghadimi and Lan 2010, Dieuleveut et al. 2016) Stochastic approximation falls between the above two cases Key issue: mixes optimization and statistics (i.e., # iterations = #samples)

15 Is acceleration possible? b = a x Noise level: σ 2 = 0 SGD convergence rate: O κ log f x 0 f Accelerated rate: O κ log f x 0 f?

16 Example I: Discrete distribution a = with probability p i In this case, κ max a 2 2 σ min E aa = 1 p min Is O κ log f x 0 f possible? Or, halve the error using O κ samples?

17 Example I: Discrete distribution a = with probability p i ; κ 1 p min Fewer than κ samples do not observe p min direction σ i a i a i not invertible Cannot do better than O κ Acceleration not possible

18 Example II: Gaussian a N 0, H, H is a PSD matrix In this case, κ Tr H σ min H d However, after O d samples: 1 n σ i a i a i H Possible to solve a i x = b i after O d samples Acceleration might be possible

19 Discrete vs Gaussian Discrete distribution Gaussian distribution

20 Key issue: matrix spectral concentration Recall: a i D. Let H E a i a i. For x argmin x σn i=1 a i x b i 2 to be good, need: n 1 δ H 1 n i=1 a i a i 1 + δ H How many samples are required for spectral concentration?

21 Separating optimization and statistics Matrix variance (Tropp 2012): E a 2 2 aa 2 Recall H E aa 2 Statistical condition number: κǁ E H 1 2a 2 H 1 2a H 1 2a 2 Matrix Bernstein Theorem (Tropp 2015) If n > O κ ǁ, then 1 δ H 1 σ n i=1 n a i a i 1 + δ H

22 Is acceleration possible? O κǁ samples sufficient Recall SGD convergence rate: O κ log f x 0 f Always κǁ κ. Acceleration might be possible if κǁ κ Discrete case: κ ǁ = 1 = κ; p min Gaussian case: κ ǁ = O d κ

23 Result Convergence rate of ASGD: O κκǁ log f x 0 f + σ2 d Compared to SGD: O κ log f x 0 f + σ2 d Improvement since κǁ κ Conjecture: lower bound Ω Srebro 2016) κκǁ log f x 0 f (inspired by Woodworth and Key takeaway Acceleration possible! Gain depends on statistical condition number

24 Simulations No noise Discrete distribution Gaussian distribution

25 Simulations With noise Discrete distribution Gaussian distribution

26 High level challenges Several versions of accelerated algorithms known e.g., conjugate gradient 1952, heavy ball 1964, momentum methods 1983, accelerated coordinate descent 2012, linear coupling 2014 Many of them are equivalent in deterministic setting but not in stochastic setting Many different analyses even for momentum methods: Nesterov s analysis 1983, coordinate descent 2012, ODE analysis 2013, linear coupling 2014

27 Algorithm Parameters: α, β, γ, δ 1. v 0 = x 0 2. y t 1 = αx t α v t 1 3. x t = y t 1 δ f y t 1 4. z t 1 = βy t β v t 1 5. v t = z t 1 γ f y t 1 Parameters: α, β, γ, δ 1. v 0 = x 0 2. y t 1 = αx t α v t 1 3. x t = y t 1 δ t f y t 1 4. z t 1 = βy t β v t 1 5. v t = z t 1 γ t f y t 1 Nesterov 2012 Our algorithm

28 Proof overview Recall our guarantee: O κκǁ log f x 0 f + σ2 d First term depends on initial error; second is statistical error Different analyses for the two terms For the first term, analyze assuming σ = 0 For the second term, analyze assuming x 0 = x

29 Part I: Potential function Iterates x t, v t of ASGD. H E aa. Existing analyses use potential function x t x H 2 + σ min H v t x 2 2 We use x t x σ min H v t x 2 H 1 We show x t x σ min H v t x 2 H κκ x t 1 x σ min H v t 1 x 2 H 1

30 Part II: Stochastic process analysis x t+1 x y t+1 x = C x t x y t x + noise Parameters: α, β, γ, δ 1. v 0 = x 0 Let θ t E x t x y t x x t x y t x 2. y t 1 = αx t α v t 1 3. x t = y t 1 δ f y t 1 θ t+1 = Bθ t + noise noise θ n B i noise noise i = I B 1 noise noise 4. z t 1 = βy t β v t 1 5. v t = z t 1 γ f y t 1 Our algorithm

31 Part II: Stochastic process analysis Need to understand I B 1 noise noise B has singular values > 1, but fortunately eigenvalues < 1 Solve the 1-dim version of I B 1 noise noise computations via explicit Combine the 1-dim bounds with (statistical) condition number bounds I B 1 noise noise κh ǁ 1 + δ I

32 Recap Deterministic case GD O κ log f x 0 f AGD O κ log f x 0 f O Stochastic approximation SGD O κ log f x 0 f ASGD κκǁ log f x 0 f + σ2 d + σ2 d Acceleration possible depends on statistical condition number Techniques: new potential function, stochastic process analysis Conjecture: Our result is tight

33 Streaming optimization for ML Streaming algorithms are very powerful for ML applications SGD and variants widely used in practice Classical stochastic approximation focuses on asymptotic rates Tools from optimization help obtain strong finite sample guarantees Have implications for parallelization as well

34 Some examples Linear regression Finite sample guarantees: Moulines and Bach 2011, Defossez and Bach 2015 Parallelization: Jain et al Acceleration: This talk Smooth convex functions: Finite sample guarantees: Bach and Moulines 2013 PCA: Oja s algorithm Rank-1: Balsubramani et al. 2013, Jain et al Higher rank: Allen-Zhu and Li 2016

35 Open problems Linear regression: Parameter free algorithm e.g., conjugate gradient General convex functions: Acceleration, parallelization? Non-convex functions: Streaming algorithms, acceleration, parallelization? PCA: Tight finite sample guarantees? Quasi-Newton methods

36 Thank you! Questions?

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization for Strongly Convex Stochastic Optimization Microsoft Research New England NIPS 2011 Optimization Workshop Stochastic Convex Optimization Setting Goal: Optimize convex function F ( ) over convex domain

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

Approximate Composite Minimization: Convergence Rates and Examples

Approximate Composite Minimization: Convergence Rates and Examples ISMP 2018 - Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

Stochastic Approximation Algorithms and Applications

Stochastic Approximation Algorithms and Applications Harold J. Kushner G. George Yin Stochastic Approximation Algorithms and Applications With 24 Figures Springer Contents Preface and Introduction xiii 1 Introduction: Applications and Issues 1 1.0 Outline

More information

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II 1 IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART II Alexander D. Shkolnik ads2@berkeley.edu MMDS Workshop. June 22, 2016. joint with Jeffrey Bohn and Lisa Goldberg. Identifying

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

Asymptotic results discrete time martingales and stochastic algorithms

Asymptotic results discrete time martingales and stochastic algorithms Asymptotic results discrete time martingales and stochastic algorithms Bernard Bercu Bordeaux University, France IFCAM Summer School Bangalore, India, July 2015 Bernard Bercu Asymptotic results for discrete

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016 First-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 1 / 48 Smooth

More information

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Multi-period Portfolio Choice and Bayesian Dynamic Models

Multi-period Portfolio Choice and Bayesian Dynamic Models Multi-period Portfolio Choice and Bayesian Dynamic Models Petter Kolm and Gordon Ritter Courant Institute, NYU Paper appeared in Risk Magazine, Feb. 25 (2015) issue Working paper version: papers.ssrn.com/sol3/papers.cfm?abstract_id=2472768

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

Adaptive cubic overestimation methods for unconstrained optimization

Adaptive cubic overestimation methods for unconstrained optimization Report no. NA-07/20 Adaptive cubic overestimation methods for unconstrained optimization Coralia Cartis School of Mathematics, University of Edinburgh, The King s Buildings, Edinburgh, EH9 3JZ, Scotland,

More information

Convergence of trust-region methods based on probabilistic models

Convergence of trust-region methods based on probabilistic models Convergence of trust-region methods based on probabilistic models A. S. Bandeira K. Scheinberg L. N. Vicente October 24, 2013 Abstract In this paper we consider the use of probabilistic or random models

More information

Stochastic Proximal Algorithms with Applications to Online Image Recovery

Stochastic Proximal Algorithms with Applications to Online Image Recovery 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh,

More information

Machine Learning (CSE 446): Pratical issues: optimization and learning

Machine Learning (CSE 446): Pratical issues: optimization and learning Machine Learning (CSE 446): Pratical issues: optimization and learning John Thickstun guest lecture c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 10 Review 1 / 10 Our running example

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Dynamic Replication of Non-Maturing Assets and Liabilities

Dynamic Replication of Non-Maturing Assets and Liabilities Dynamic Replication of Non-Maturing Assets and Liabilities Michael Schürle Institute for Operations Research and Computational Finance, University of St. Gallen, Bodanstr. 6, CH-9000 St. Gallen, Switzerland

More information

Distributed Approaches to Mirror Descent for Stochastic Learning over Rate-Limited Networks

Distributed Approaches to Mirror Descent for Stochastic Learning over Rate-Limited Networks Distributed Approaches to Mirror Descent for Stochastic Learning over Rate-Limited Networks, Detroit MI (joint work with Waheed Bajwa, Rutgers) Motivation: Autonomous Driving Network of autonomous automobiles

More information

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models Math. Program., Ser. A DOI 10.1007/s10107-017-1137-4 FULL LENGTH PAPER Global convergence rate analysis of unconstrained optimization methods based on probabilistic models C. Cartis 1 K. Scheinberg 2 Received:

More information

SOLVING ROBUST SUPPLY CHAIN PROBLEMS

SOLVING ROBUST SUPPLY CHAIN PROBLEMS SOLVING ROBUST SUPPLY CHAIN PROBLEMS Daniel Bienstock Nuri Sercan Özbay Columbia University, New York November 13, 2005 Project with Lucent Technologies Optimize the inventory buffer levels in a complicated

More information

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016

Probabilistic Meshless Methods for Bayesian Inverse Problems. Jon Cockayne July 8, 2016 Probabilistic Meshless Methods for Bayesian Inverse Problems Jon Cockayne July 8, 2016 1 Co-Authors Chris Oates Tim Sullivan Mark Girolami 2 What is PN? Many problems in mathematics have no analytical

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods

EC316a: Advanced Scientific Computation, Fall Discrete time, continuous state dynamic models: solution methods EC316a: Advanced Scientific Computation, Fall 2003 Notes Section 4 Discrete time, continuous state dynamic models: solution methods We consider now solution methods for discrete time models in which decisions

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

Dynamic Pricing for Competing Sellers

Dynamic Pricing for Competing Sellers Clemson University TigerPrints All Theses Theses 8-2015 Dynamic Pricing for Competing Sellers Liu Zhu Clemson University, liuz@clemson.edu Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

More information

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography

Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Statistical and Computational Inverse Problems with Applications Part 5B: Electrical impedance tomography Aku Seppänen Inverse Problems Group Department of Applied Physics University of Eastern Finland

More information

2D penalized spline (continuous-by-continuous interaction)

2D penalized spline (continuous-by-continuous interaction) 2D penalized spline (continuous-by-continuous interaction) Two examples (RWC, Section 13.1): Number of scallops caught off Long Island Counts are made at specific coordinates. Incidence of AIDS in Italian

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018

Lecture 2: Making Good Sequences of Decisions Given a Model of World. CS234: RL Emma Brunskill Winter 2018 Lecture 2: Making Good Sequences of Decisions Given a Model of World CS234: RL Emma Brunskill Winter 218 Human in the loop exoskeleton work from Steve Collins lab Class Structure Last Time: Introduction

More information

Optimal Portfolio Selection Under the Estimation Risk in Mean Return

Optimal Portfolio Selection Under the Estimation Risk in Mean Return Optimal Portfolio Selection Under the Estimation Risk in Mean Return by Lei Zhu A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

9.1 Principal Component Analysis for Portfolios

9.1 Principal Component Analysis for Portfolios Chapter 9 Alpha Trading By the name of the strategies, an alpha trading strategy is to select and trade portfolios so the alpha is maximized. Two important mathematical objects are factor analysis and

More information

"Pricing Exotic Options using Strong Convergence Properties

Pricing Exotic Options using Strong Convergence Properties Fourth Oxford / Princeton Workshop on Financial Mathematics "Pricing Exotic Options using Strong Convergence Properties Klaus E. Schmitz Abe schmitz@maths.ox.ac.uk www.maths.ox.ac.uk/~schmitz Prof. Mike

More information

The method of Maximum Likelihood.

The method of Maximum Likelihood. Maximum Likelihood The method of Maximum Likelihood. In developing the least squares estimator - no mention of probabilities. Minimize the distance between the predicted linear regression and the observed

More information

Regression estimation in continuous time with a view towards pricing Bermudan options

Regression estimation in continuous time with a view towards pricing Bermudan options with a view towards pricing Bermudan options Tagung des SFB 649 Ökonomisches Risiko in Motzen 04.-06.06.2009 Financial engineering in times of financial crisis Derivate... süßes Gift für die Spekulanten

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

A Stochastic Approximation Algorithm for Making Pricing Decisions in Network Revenue Management Problems

A Stochastic Approximation Algorithm for Making Pricing Decisions in Network Revenue Management Problems A Stochastic Approximation Algorithm for Making ricing Decisions in Network Revenue Management roblems Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu

More information

M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018

M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018 M.S. in Quantitative Finance & Risk Analytics (QFRA) Fall 2017 & Spring 2018 2 - Required Professional Development &Career Workshops MGMT 7770 Prof. Development Workshop 1/Career Workshops (Fall) Wed.

More information

Optimal energy management and stochastic decomposition

Optimal energy management and stochastic decomposition Optimal energy management and stochastic decomposition F. Pacaud P. Carpentier J.P. Chancelier M. De Lara JuMP-dev workshop, 2018 ENPC ParisTech ENSTA ParisTech Efficacity 1/23 Motivation We consider a

More information

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART I

IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART I 1 IDENTIFYING BROAD AND NARROW FINANCIAL RISK FACTORS VIA CONVEX OPTIMIZATION: PART I Lisa Goldberg lrg@berkeley.edu MMDS Workshop. June 22, 2016. joint with Alex Shkolnik and Jeff Bohn. Identifying Broad

More information

Equity correlations implied by index options: estimation and model uncertainty analysis

Equity correlations implied by index options: estimation and model uncertainty analysis 1/18 : estimation and model analysis, EDHEC Business School (joint work with Rama COT) Modeling and managing financial risks Paris, 10 13 January 2011 2/18 Outline 1 2 of multi-asset models Solution to

More information

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models

Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models Scott Robertson Carnegie Mellon University scottrob@andrew.cmu.edu http://www.math.cmu.edu/users/scottrob June

More information

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice

Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice Journal of Machine Learning Research 8 (8) -54 Submitted /7; Revised /7; Published 4/8 Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice Hongzhou Lin Massachusetts Institute

More information

ASSET PRICING WITH LIMITED RISK SHARING AND HETEROGENOUS AGENTS

ASSET PRICING WITH LIMITED RISK SHARING AND HETEROGENOUS AGENTS ASSET PRICING WITH LIMITED RISK SHARING AND HETEROGENOUS AGENTS Francisco Gomes and Alexander Michaelides Roine Vestman, New York University November 27, 2007 OVERVIEW OF THE PAPER The aim of the paper

More information

Parameter estimation in SDE:s

Parameter estimation in SDE:s Lund University Faculty of Engineering Statistics in Finance Centre for Mathematical Sciences, Mathematical Statistics HT 2011 Parameter estimation in SDE:s This computer exercise concerns some estimation

More information

Robust Optimization Applied to a Currency Portfolio

Robust Optimization Applied to a Currency Portfolio Robust Optimization Applied to a Currency Portfolio R. Fonseca, S. Zymler, W. Wiesemann, B. Rustem Workshop on Numerical Methods and Optimization in Finance June, 2009 OUTLINE Introduction Motivation &

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

Contents Critique 26. portfolio optimization 32

Contents Critique 26. portfolio optimization 32 Contents Preface vii 1 Financial problems and numerical methods 3 1.1 MATLAB environment 4 1.1.1 Why MATLAB? 5 1.2 Fixed-income securities: analysis and portfolio immunization 6 1.2.1 Basic valuation of

More information

Modelling, Estimation and Hedging of Longevity Risk

Modelling, Estimation and Hedging of Longevity Risk IA BE Summer School 2016, K. Antonio, UvA 1 / 50 Modelling, Estimation and Hedging of Longevity Risk Katrien Antonio KU Leuven and University of Amsterdam IA BE Summer School 2016, Leuven Module II: Fitting

More information

IMPA Commodities Course : Forward Price Models

IMPA Commodities Course : Forward Price Models IMPA Commodities Course : Forward Price Models Sebastian Jaimungal sebastian.jaimungal@utoronto.ca Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

Chapter 6 Forecasting Volatility using Stochastic Volatility Model

Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using Stochastic Volatility Model Chapter 6 Forecasting Volatility using SV Model In this chapter, the empirical performance of GARCH(1,1), GARCH-KF and SV models from

More information

Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization

Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization Coralia Cartis, Nicholas I. M. Gould and Philippe L. Toint October 30, 200; Revised March 30, 20 Abstract

More information

A start of Variational Methods for ERGM Ranran Wang, UW

A start of Variational Methods for ERGM Ranran Wang, UW A start of Variational Methods for ERGM Ranran Wang, UW MURI-UCI April 24, 2009 Outline A start of Variational Methods for ERGM [1] Introduction to ERGM Current methods of parameter estimation: MCMCMLE:

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 31 : Estimation Sections 7.1 Statistical Inference Bayesian Methods: 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods: 7.5 Maximum Likelihood

More information

Introduction to Algorithmic Trading Strategies Lecture 9

Introduction to Algorithmic Trading Strategies Lecture 9 Introduction to Algorithmic Trading Strategies Lecture 9 Quantitative Equity Portfolio Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Alpha Factor Models References

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

Optimization in Finance

Optimization in Finance Research Reports on Mathematical and Computing Sciences Series B : Operations Research Department of Mathematical and Computing Sciences Tokyo Institute of Technology 2-12-1 Oh-Okayama, Meguro-ku, Tokyo

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

2D5362 Machine Learning

2D5362 Machine Learning 2D5362 Machine Learning Reinforcement Learning MIT GALib Available at http://lancet.mit.edu/ga/ download galib245.tar.gz gunzip galib245.tar.gz tar xvf galib245.tar cd galib245 make or access my files

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

D I S C O N T I N U O U S DEMAND FUNCTIONS: ESTIMATION AND PRICING. Rotterdam May 24, 2018

D I S C O N T I N U O U S DEMAND FUNCTIONS: ESTIMATION AND PRICING. Rotterdam May 24, 2018 D I S C O N T I N U O U S DEMAND FUNCTIONS: ESTIMATION AND PRICING Arnoud V. den Boer University of Amsterdam N. Bora Keskin Duke University Rotterdam May 24, 2018 Dynamic pricing and learning: Learning

More information

High Dimensional Bayesian Optimisation and Bandits via Additive Models

High Dimensional Bayesian Optimisation and Bandits via Additive Models 1/20 High Dimensional Bayesian Optimisation and Bandits via Additive Models Kirthevasan Kandasamy, Jeff Schneider, Barnabás Póczos ICML 15 July 8 2015 2/20 Bandits & Optimisation Maximum Likelihood inference

More information

European option pricing under parameter uncertainty

European option pricing under parameter uncertainty European option pricing under parameter uncertainty Martin Jönsson (joint work with Samuel Cohen) University of Oxford Workshop on BSDEs, SPDEs and their Applications July 4, 2017 Introduction 2/29 Introduction

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory

Strategies and Nash Equilibrium. A Whirlwind Tour of Game Theory Strategies and Nash Equilibrium A Whirlwind Tour of Game Theory (Mostly from Fudenberg & Tirole) Players choose actions, receive rewards based on their own actions and those of the other players. Example,

More information

Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity

Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity Coralia Cartis,, Nicholas I. M. Gould, and Philippe L. Toint September

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2018 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2017/m2mo/m2mo.html We look for a numerical approximation

More information

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation

A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation A Stochastic Levenberg-Marquardt Method Using Random Models with Application to Data Assimilation E Bergou Y Diouane V Kungurtsev C W Royer July 5, 08 Abstract Globally convergent variants of the Gauss-Newton

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8 continued Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample

More information

High Volatility Medium Volatility /24/85 12/18/86

High Volatility Medium Volatility /24/85 12/18/86 Estimating Model Limitation in Financial Markets Malik Magdon-Ismail 1, Alexander Nicholson 2 and Yaser Abu-Mostafa 3 1 malik@work.caltech.edu 2 zander@work.caltech.edu 3 yaser@caltech.edu Learning Systems

More information

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error

Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error Optimum Thresholding for Semimartingales with Lévy Jumps under the mean-square error José E. Figueroa-López Department of Mathematics Washington University in St. Louis Spring Central Sectional Meeting

More information

Budget Management In GSP (2018)

Budget Management In GSP (2018) Budget Management In GSP (2018) Yahoo! March 18, 2018 Miguel March 18, 2018 1 / 26 Today s Presentation: Budget Management Strategies in Repeated auctions, Balseiro, Kim, and Mahdian, WWW2017 Learning

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Project 1: Double Pendulum

Project 1: Double Pendulum Final Projects Introduction to Numerical Analysis II http://www.math.ucsb.edu/ atzberg/winter2009numericalanalysis/index.html Professor: Paul J. Atzberger Due: Friday, March 20th Turn in to TA s Mailbox:

More information

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model

Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility model 1(23) Valuing volatility and variance swaps for a non-gaussian Ornstein-Uhlenbeck stochastic volatility

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2017 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2016/m2mo/m2mo.html We look for a numerical approximation

More information

Randomness and Fractals

Randomness and Fractals Randomness and Fractals Why do so many physicists become traders? Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago September 25, 2011 1 / 24 Mathematics and the

More information

Risk Management for Chemical Supply Chain Planning under Uncertainty

Risk Management for Chemical Supply Chain Planning under Uncertainty for Chemical Supply Chain Planning under Uncertainty Fengqi You and Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University John M. Wassick The Dow Chemical Company Introduction

More information

Stability in geometric & functional inequalities

Stability in geometric & functional inequalities Stability in geometric & functional inequalities A. Figalli The University of Texas at Austin www.ma.utexas.edu/users/figalli/ Alessio Figalli (UT Austin) Stability in geom. & funct. ineq. Krakow, July

More information

A simple wealth model

A simple wealth model Quantitative Macroeconomics Raül Santaeulàlia-Llopis, MOVE-UAB and Barcelona GSE Homework 5, due Thu Nov 1 I A simple wealth model Consider the sequential problem of a household that maximizes over streams

More information