Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Size: px
Start display at page:

Download "Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem."

Transcription

1 Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence of iterative optimization methods. We will take a simple case study: solving the linear least squares problem, and prove the linear convergence of the gradient descent method and a variant of the stochastic gradient descent (SGD) method with importance sampling. This variant of SGD is also known as the randomized Kaczmarz method and the linear convergence we prove in Exe. was first established in [3]. irst we introduce some necessary notation. Notation: or every x, y, R n let x, y def = x y and let x = x, x. Let σ min (A) and σ max (A) be the smallest and largest singular values of A defined by Thus clearly σ min (A) def Ax = min and σ max (A) def Ax = max. () x R n, x 0 x x R n, x 0 x Ax x σ max (A), x R n. () Let A def = Tr ( A A ) denote the robenius norm of A. inally, a result you will need, is that for every symmetric positive semi-definite matrix G the L induced matrix norm can be equivalently defined by σ max (G) = Gx, x max x R n, x 0 x Gx = max. (3) x R n, x 0 x

2 The Linear Least Squares Problem Now consider the problem of solving the linear system Ax = b, (4) where A R m n and b R m. We assume that there exists a solution to (4). We also assume that n m and that A has full column rank so that there is a unique solution x R n to (4). We can recast (4) as the following Least Squares optimization problem ( ) x = arg min x R n Ax b def = f(x). (5) 3 Exercises Ex. Consider the Gradient descent method x t+ = x t α f(x t ), (6) where is a fixed stepsize. α = σ max (A), (7) Part I Show or convince yourself that σ max (I αa A) = α σ min (A) = σ min(a) σ max (A). (8) Part II Calculate the gradient f(x) of (5) and re-write the iterates (6) with this gradient. Part III Show that the iterates (6) converge to x according to x t+ x ( σ min(a) ) σ max (A) x t x, for all t. Hint : Subtract x from both sides of (6) and use the results from the previous two exercises. Hint : Remember that b = Ax!

3 Answer (Ex. I) irst note that (I αa A)x, x = x α Ax (7) x Ax σ max (A) () x σ max(a) x σ max (A) x thus the matrix (I αa A) is positive semi-definite and only has non-negative eigenvalues. urthermore (I αa A)x, x A Ax, x x = α x = 0,. (9) Since (I αa A) is symmetric positive semi-definite we can use (3) to calculate the induced norm, thus we have ( σ max (I αa (3)+(9) A Ax, x ) A) = max α x R n x A Ax, x = α min x R n = α σ min (A). x Answer (Ex. II) Differentiating we have f(x) = A (Ax b) = A A(x x ), where the last equality follows since Ax = b. Consequently the gradient descent method (6) can be written as x t+ = x t αa A(x t x ). (0) Answer (Ex. III) Subtracting x from both sides of (0) gives x t+ x = x t x αa A(x t x ) = (I αa A)(x t x ). Taking norm in the above gives x t+ x () ) σ max (I αa A x t x (8) = ( α σ min (A) ) x t x. 3

4 In particular for α = σ max(a) x t+ x the above shows that ( σ min(a) σ max (A) ) x t x. Ex. The least squares problem (5) can be re-written as min x Ax b = min x (A i: x b i ) def = min x f i (x) () where f i (x) = (A i: x b i ), A i: denotes the ith row of A and b i denotes the ith element of b. Given this sum of terms structure in () we can implement the stochastic gradient method as follows. rom a given x 0 R n, consider the iterates where x t+ = x t α j f j (x t ), () α j = A j:, (3) and j is a random index chosen from {,..., m} such that for every i {,..., m} the probability that j = i is given by A i:. In other words, P(j = i) = A i: A A {,..., m}. Part I Show that P j def for all i = α j A j:a j: = A j: A j: A j:, (4) is a projection operator which projects orthogonally onto Range (A j: ). In other words, show that P j P j = P j and (I P j )(I P j ) = I P j. (5) urthermore, verify that E [P j ] = P(j = i)p i = A A A. (6) Part II 4

5 Using analogous techniques from the previous exercise, show that the iterates () converge according to E [ x t+ x ] ( σ min(a) ) A E [ x t x ]. (7) This is an amazing and recent result [3], since it shows that SGD converges exponentially fast despite the fact that the iterates () only require access to a single row of A at a time! This result can be extended to any matrix A, including rank deficient matrices. Indeed, so long as there exists a solution to ) (4), the iterates () converge to the solution of least norm and at rate of ( σ+ min (A) where σ A min + (A) is the smallest nonzero singular value of A []. Thus the assumption that A has full column rank is not necessary. These results have also been extended to a general class of methods []. Part III When is this stochastic gradient method () faster than the gradient descent method (6)? Note that the each iteration of SGD costs O(n) floating point operations while an iteration of the GD method costs O(nm) floating point operations. What happens if m is very big? What if A is very large? Discuss this. Answer (Ex. I) Verify by most all claim by direct computation. or instances A i: A i: E [P j ] = P(j = i)p i = A i: A i: A A i: = A i: A = A A A. Answer (Ex. II) irst note that f j (x t ) = A j:(a j: x b j ) = A j:a j: (x x ). Using the above and subtracting x from both sides of () we have x t+ x = x t x α j A j:a j: (x t x ) ( (3) = I A j: A ) j: A j: (x t x ). Taking norm squared in the above we have that ( x t+ x = I A j: A ) j: A j: (x t x ) ( (5) = I A j: A ) j: A j: (x t x ), x t x A = x t x j: A j: A j: (x t x ), x t x. 5

6 Taking expectation conditioned on x t in the above gives E [ [ ] x t+ x x t] A = x t x j: A j: E A j: (x t x ), x t x (6) = x t x A A A(x t x ), x t x () x t x σ min(a) A x t x = ( σ min(a) ) A x t x. It remains to take expectation in the above. Answer (Ex. III)... References [] R. M. Gower and P. Richtárik. Stochastic Dual Ascent for Solving Linear Systems. In: arxiv: (05). [] R. M. Gower and P. Richtárik. Randomized Iterative Methods for Linear Systems. In: SIAM Journal on Matrix Analysis and Applications 36.4 (05), pp [3] T. Strohmer and R. Vershynin. A Randomized Kaczmarz Algorithm with Exponential Convergence. In: Journal of ourier Analysis and Applications 5. (009), pp

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0.

Outline. 1 Introduction. 2 Algorithms. 3 Examples. Algorithm 1 General coordinate minimization framework. 1: Choose x 0 R n and set k 0. Outline Coordinate Minimization Daniel P. Robinson Department of Applied Mathematics and Statistics Johns Hopkins University November 27, 208 Introduction 2 Algorithms Cyclic order with exact minimization

More information

Support Vector Machines: Training with Stochastic Gradient Descent

Support Vector Machines: Training with Stochastic Gradient Descent Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Support vector machines Training by maximizing margin The SVM

More information

Is Greedy Coordinate Descent a Terrible Algorithm?

Is Greedy Coordinate Descent a Terrible Algorithm? Is Greedy Coordinate Descent a Terrible Algorithm? Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke University of British Columbia Optimization and Big Data, 2015 Context: Random

More information

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India

Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Accelerated Stochastic Gradient Descent Praneeth Netrapalli MSR India Presented at OSL workshop, Les Houches, France. Joint work with Prateek Jain, Sham M. Kakade, Rahul Kidambi and Aaron Sidford Linear

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity

An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity Coralia Cartis, Nick Gould and Philippe Toint Department of Mathematics,

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

Approximate Composite Minimization: Convergence Rates and Examples

Approximate Composite Minimization: Convergence Rates and Examples ISMP 2018 - Bordeaux Approximate Composite Minimization: Convergence Rates and S. Praneeth Karimireddy, Sebastian U. Stich, Martin Jaggi MLO Lab, EPFL, Switzerland sebastian.stich@epfl.ch July 4, 2018

More information

BOUNDS FOR THE LEAST SQUARES RESIDUAL USING SCALED TOTAL LEAST SQUARES

BOUNDS FOR THE LEAST SQUARES RESIDUAL USING SCALED TOTAL LEAST SQUARES BOUNDS FOR THE LEAST SQUARES RESIDUAL USING SCALED TOTAL LEAST SQUARES Christopher C. Paige School of Computer Science, McGill University Montreal, Quebec, Canada, H3A 2A7 paige@cs.mcgill.ca Zdeněk Strakoš

More information

Machine Learning (CSE 446): Pratical issues: optimization and learning

Machine Learning (CSE 446): Pratical issues: optimization and learning Machine Learning (CSE 446): Pratical issues: optimization and learning John Thickstun guest lecture c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 10 Review 1 / 10 Our running example

More information

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models

Martingale Pricing Theory in Discrete-Time and Discrete-Space Models IEOR E4707: Foundations of Financial Engineering c 206 by Martin Haugh Martingale Pricing Theory in Discrete-Time and Discrete-Space Models These notes develop the theory of martingale pricing in a discrete-time,

More information

Steepest descent and conjugate gradient methods with variable preconditioning

Steepest descent and conjugate gradient methods with variable preconditioning Ilya Lashuk and Andrew Knyazev 1 Steepest descent and conjugate gradient methods with variable preconditioning Ilya Lashuk (the speaker) and Andrew Knyazev Department of Mathematics and Center for Computational

More information

Sparse Representations

Sparse Representations Sparse Representations Joel A. Tropp Department of Mathematics The University of Michigan jtropp@umich.edu Research supported in part by NSF and DARPA 1 Introduction Sparse Representations (Numerical Analysis

More information

The Correlation Smile Recovery

The Correlation Smile Recovery Fortis Bank Equity & Credit Derivatives Quantitative Research The Correlation Smile Recovery E. Vandenbrande, A. Vandendorpe, Y. Nesterov, P. Van Dooren draft version : March 2, 2009 1 Introduction Pricing

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

ELEMENTS OF MATRIX MATHEMATICS

ELEMENTS OF MATRIX MATHEMATICS QRMC07 9/7/0 4:45 PM Page 5 CHAPTER SEVEN ELEMENTS OF MATRIX MATHEMATICS 7. AN INTRODUCTION TO MATRICES Investors frequently encounter situations involving numerous potential outcomes, many discrete periods

More information

Worst-case-expectation approach to optimization under uncertainty

Worst-case-expectation approach to optimization under uncertainty Worst-case-expectation approach to optimization under uncertainty Wajdi Tekaya Joint research with Alexander Shapiro, Murilo Pereira Soares and Joari Paulo da Costa : Cambridge Systems Associates; : Georgia

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Homework solutions, Chapter 8

Homework solutions, Chapter 8 Homework solutions, Chapter 8 NOTE: We might think of 8.1 as being a section devoted to setting up the networks and 8.2 as solving them, but only 8.2 has a homework section. Section 8.2 2. Use Dijkstra

More information

Large-Scale SVM Optimization: Taking a Machine Learning Perspective

Large-Scale SVM Optimization: Taking a Machine Learning Perspective Large-Scale SVM Optimization: Taking a Machine Learning Perspective Shai Shalev-Shwartz Toyota Technological Institute at Chicago Joint work with Nati Srebro Talk at NEC Labs, Princeton, August, 2008 Shai

More information

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness

ROM Simulation with Exact Means, Covariances, and Multivariate Skewness ROM Simulation with Exact Means, Covariances, and Multivariate Skewness Michael Hanke 1 Spiridon Penev 2 Wolfgang Schief 2 Alex Weissensteiner 3 1 Institute for Finance, University of Liechtenstein 2 School

More information

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 13, Number 1, 011, pages 1 5 NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE YONGHOON

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel.

Pricing Kernel. v,x = p,y = p,ax, so p is a stochastic discount factor. One refers to p as the pricing kernel. Payoff Space The set of possible payoffs is the range R(A). This payoff space is a subspace of the state space and is a Euclidean space in its own right. 1 Pricing Kernel By the law of one price, two portfolios

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ]

PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ] s@lm@n PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ] Question No : 1 A 2-step binomial tree is used to value an American

More information

A general approach to calculating VaR without volatilities and correlations

A general approach to calculating VaR without volatilities and correlations page 19 A general approach to calculating VaR without volatilities and correlations Peter Benson * Peter Zangari Morgan Guaranty rust Company Risk Management Research (1-212) 648-8641 zangari_peter@jpmorgan.com

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2018 Last Time: Markov Chains We can use Markov chains for density estimation, p(x) = p(x 1 ) }{{} d p(x

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Homework 2: Solutions Sid Banerjee Problem 1: Practice with Dynamic Programming Formulation

Homework 2: Solutions Sid Banerjee Problem 1: Practice with Dynamic Programming Formulation Problem 1: Practice with Dynamic Programming Formulation A product manager has to order stock daily. Each unit cost is c, there is a fixed cost of K for placing an order. If you order on day t, the items

More information

No-Arbitrage ROM Simulation

No-Arbitrage ROM Simulation Alois Geyer 1 Michael Hanke 2 Alex Weissensteiner 3 1 WU (Vienna University of Economics and Business) and Vienna Graduate School of Finance (VGSF) 2 Institute for Financial Services, University of Liechtenstein

More information

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009)

Technical Report Doc ID: TR April-2009 (Last revised: 02-June-2009) Technical Report Doc ID: TR-1-2009. 14-April-2009 (Last revised: 02-June-2009) The homogeneous selfdual model algorithm for linear optimization. Author: Erling D. Andersen In this white paper we present

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

arxiv: v1 [math.st] 18 Sep 2018

arxiv: v1 [math.st] 18 Sep 2018 Gram Charlier and Edgeworth expansion for sample variance arxiv:809.06668v [math.st] 8 Sep 08 Eric Benhamou,* A.I. SQUARE CONNECT, 35 Boulevard d Inkermann 900 Neuilly sur Seine, France and LAMSADE, Universit

More information

A way to improve incremental 2-norm condition estimation

A way to improve incremental 2-norm condition estimation A way to improve incremental 2-norm condition estimation Jurjen Duintjer Tebbens Institute of Computer Science Academy of Sciences of the Czech Republic duintjertebbens@cs.cas.cz Miroslav Tůma Institute

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense May 22, 2018 Marco Chiarandini DM559/DM55 Linear and integer programming Sheet, Spring 2018 [pdf format] Contains Solutions!

More information

Interior-Point Algorithm for CLP II. yyye

Interior-Point Algorithm for CLP II.   yyye Conic Linear Optimization and Appl. Lecture Note #10 1 Interior-Point Algorithm for CLP II Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School

Financial Market Models. Lecture 1. One-period model of financial markets & hedging problems. Imperial College Business School Financial Market Models Lecture One-period model of financial markets & hedging problems One-period model of financial markets a 4 2a 3 3a 3 a 3 -a 4 2 Aims of section Introduce one-period model with finite

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

Pricing Volatility Derivatives with General Risk Functions. Alejandro Balbás University Carlos III of Madrid

Pricing Volatility Derivatives with General Risk Functions. Alejandro Balbás University Carlos III of Madrid Pricing Volatility Derivatives with General Risk Functions Alejandro Balbás University Carlos III of Madrid alejandro.balbas@uc3m.es Content Introduction. Describing volatility derivatives. Pricing and

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

Lecture outline W.B. Powell 1

Lecture outline W.B. Powell 1 Lecture outline Applications of the newsvendor problem The newsvendor problem Estimating the distribution and censored demands The newsvendor problem and risk The newsvendor problem with an unknown distribution

More information

Lecture 22: Dynamic Filtering

Lecture 22: Dynamic Filtering ECE 830 Fall 2011 Statistical Signal Processing instructor: R. Nowak Lecture 22: Dynamic Filtering 1 Dynamic Filtering In many applications we want to track a time-varying (dynamic) phenomenon. Example

More information

Premia 14 HESTON MODEL CALIBRATION USING VARIANCE SWAPS PRICES

Premia 14 HESTON MODEL CALIBRATION USING VARIANCE SWAPS PRICES Premia 14 HESTON MODEL CALIBRATION USING VARIANCE SWAPS PRICES VADIM ZHERDER Premia Team INRIA E-mail: vzherder@mailru 1 Heston model Let the asset price process S t follows the Heston stochastic volatility

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Chapter 5 Portfolio. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction

Chapter 5 Portfolio. O. Afonso, P. B. Vasconcelos. Computational Economics: a concise introduction Chapter 5 Portfolio O. Afonso, P. B. Vasconcelos Computational Economics: a concise introduction O. Afonso, P. B. Vasconcelos Computational Economics 1 / 22 Overview 1 Introduction 2 Economic model 3 Numerical

More information

Multivariate Skewness: Measures, Properties and Applications

Multivariate Skewness: Measures, Properties and Applications Multivariate Skewness: Measures, Properties and Applications Nicola Loperfido Dipartimento di Economia, Società e Politica Facoltà di Economia Università di Urbino Carlo Bo via Saffi 42, 61029 Urbino (PU)

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2017 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2016/m2mo/m2mo.html We look for a numerical approximation

More information

Exercises * on Independent Component Analysis

Exercises * on Independent Component Analysis Exercises * on Independent Component Analysis Laurenz Wiskott Institut für Neuroinformatik Ruhr-Universität Bochum, Germany, EU 4 February 2017 Contents 1 Intuition 2 1.1 Mixing and unmixing.........................................

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Additional questions for chapter 3

Additional questions for chapter 3 Additional questions for chapter 3 1. Let ξ 1, ξ 2,... be independent and identically distributed with φθ) = IEexp{θξ 1 })

More information

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory ORF 307: Lecture 12 Linear Programming: Chapter 11: Game Theory Robert J. Vanderbei April 3, 2018 Slides last edited on April 3, 2018 http://www.princeton.edu/ rvdb Game Theory John Nash = A Beautiful

More information

EE/AA 578 Univ. of Washington, Fall Homework 8

EE/AA 578 Univ. of Washington, Fall Homework 8 EE/AA 578 Univ. of Washington, Fall 2016 Homework 8 1. Multi-label SVM. The basic Support Vector Machine (SVM) described in the lecture (and textbook) is used for classification of data with two labels.

More information

Using condition numbers to assess numerical quality in HPC applications

Using condition numbers to assess numerical quality in HPC applications Using condition numbers to assess numerical quality in HPC applications Marc Baboulin Inria Saclay / Université Paris-Sud, France INRIA - Illinois Petascale Computing Joint Laboratory 9th workshop, June

More information

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 15. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 15 Dr. Ted Ralphs ISE 347/447 Lecture 15 1 Reading for This Lecture C&T Chapter 12 ISE 347/447 Lecture 15 2 Stock Market Indices A stock market index is a statistic

More information

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 38 27 Piotr P luciennik A MODIFIED CORRADO-MILLER IMPLIED VOLATILITY ESTIMATOR Abstract. The implied volatility, i.e. volatility calculated on the basis of option

More information

Fast Convergence of Regress-later Series Estimators

Fast Convergence of Regress-later Series Estimators Fast Convergence of Regress-later Series Estimators New Thinking in Finance, London Eric Beutner, Antoon Pelsser, Janina Schweizer Maastricht University & Kleynen Consultants 12 February 2014 Beutner Pelsser

More information

k-layer neural networks: High capacity scoring functions + tips on how to train them

k-layer neural networks: High capacity scoring functions + tips on how to train them k-layer neural networks: High capacity scoring functions + tips on how to train them A new class of scoring functions Linear scoring function s = W x + b 2-layer Neural Network s 1 = W 1 x + b 1 h = max(0,

More information

Microeconomics II. CIDE, MsC Economics. List of Problems

Microeconomics II. CIDE, MsC Economics. List of Problems Microeconomics II CIDE, MsC Economics List of Problems 1. There are three people, Amy (A), Bart (B) and Chris (C): A and B have hats. These three people are arranged in a room so that B can see everything

More information

What can we do with numerical optimization?

What can we do with numerical optimization? Optimization motivation and background Eddie Wadbro Introduction to PDE Constrained Optimization, 2016 February 15 16, 2016 Eddie Wadbro, Introduction to PDE Constrained Optimization, February 15 16, 2016

More information

Convex-Cardinality Problems Part II

Convex-Cardinality Problems Part II l 1 -norm Methods for Convex-Cardinality Problems Part II total variation iterated weighted l 1 heuristic matrix rank constraints Prof. S. Boyd, EE364b, Stanford University Total variation reconstruction

More information

Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA

Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA Design of a Financial Application Driven Multivariate Gaussian Random Number Generator for an FPGA Chalermpol Saiprasert, Christos-Savvas Bouganis and George A. Constantinides Department of Electrical

More information

The Optimization Process: An example of portfolio optimization

The Optimization Process: An example of portfolio optimization ISyE 6669: Deterministic Optimization The Optimization Process: An example of portfolio optimization Shabbir Ahmed Fall 2002 1 Introduction Optimization can be roughly defined as a quantitative approach

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2018 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2017/m2mo/m2mo.html We look for a numerical approximation

More information

SciBeta CoreShares South-Africa Multi-Beta Multi-Strategy Six-Factor EW

SciBeta CoreShares South-Africa Multi-Beta Multi-Strategy Six-Factor EW SciBeta CoreShares South-Africa Multi-Beta Multi-Strategy Six-Factor EW Table of Contents Introduction Methodological Terms Geographic Universe Definition: Emerging EMEA Construction: Multi-Beta Multi-Strategy

More information

1 Shapley-Shubik Model

1 Shapley-Shubik Model 1 Shapley-Shubik Model There is a set of buyers B and a set of sellers S each selling one unit of a good (could be divisible or not). Let v ij 0 be the monetary value that buyer j B assigns to seller i

More information

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1

Making Decisions. CS 3793 Artificial Intelligence Making Decisions 1 Making Decisions CS 3793 Artificial Intelligence Making Decisions 1 Planning under uncertainty should address: The world is nondeterministic. Actions are not certain to succeed. Many events are outside

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Overnight Index Rate: Model, calibration and simulation

Overnight Index Rate: Model, calibration and simulation Research Article Overnight Index Rate: Model, calibration and simulation Olga Yashkir and Yuri Yashkir Cogent Economics & Finance (2014), 2: 936955 Page 1 of 11 Research Article Overnight Index Rate: Model,

More information

Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems.

Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems. Math 546 Homework 1 Due Wednesday, January 25. This homework has two types of problems. 546 Problems. All students (students enrolled in 546 and 701I) are required to turn these in. 701I Problems. Only

More information

Stochastic Proximal Algorithms with Applications to Online Image Recovery

Stochastic Proximal Algorithms with Applications to Online Image Recovery 1/24 Stochastic Proximal Algorithms with Applications to Online Image Recovery Patrick Louis Combettes 1 and Jean-Christophe Pesquet 2 1 Mathematics Department, North Carolina State University, Raleigh,

More information

An advanced method for preserving skewness in single-variate, multivariate, and disaggregation models in stochastic hydrology

An advanced method for preserving skewness in single-variate, multivariate, and disaggregation models in stochastic hydrology XXIV General Assembly of European Geophysical Society The Hague, 9-3 April 999 HSA9.0 Open session on statistical methods in hydrology An advanced method for preserving skewness in single-variate, multivariate,

More information

Tutorial 4 - Pigouvian Taxes and Pollution Permits II. Corrections

Tutorial 4 - Pigouvian Taxes and Pollution Permits II. Corrections Johannes Emmerling Natural resources and environmental economics, TSE Tutorial 4 - Pigouvian Taxes and Pollution Permits II Corrections Q 1: Write the environmental agency problem as a constrained minimization

More information

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006

Elif Özge Özdamar T Reinforcement Learning - Theory and Applications February 14, 2006 On the convergence of Q-learning Elif Özge Özdamar elif.ozdamar@helsinki.fi T-61.6020 Reinforcement Learning - Theory and Applications February 14, 2006 the covergence of stochastic iterative algorithms

More information

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory

Table of Contents. Kocaeli University Computer Engineering Department 2011 Spring Mustafa KIYAR Optimization Theory 1 Table of Contents Estimating Path Loss Exponent and Application with Log Normal Shadowing...2 Abstract...3 1Path Loss Models...4 1.1Free Space Path Loss Model...4 1.1.1Free Space Path Loss Equation:...4

More information

Fuzzy Mean-Variance portfolio selection problems

Fuzzy Mean-Variance portfolio selection problems AMO-Advanced Modelling and Optimization, Volume 12, Number 3, 21 Fuzzy Mean-Variance portfolio selection problems Elena Almaraz Luengo Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid,

More information

HW Consider the following game:

HW Consider the following game: HW 1 1. Consider the following game: 2. HW 2 Suppose a parent and child play the following game, first analyzed by Becker (1974). First child takes the action, A 0, that produces income for the child,

More information

Discrete Hedging Under Piecewise Linear Risk Minimization. Thomas F. Coleman, Yuying Li, Maria-Cristina Patron Cornell University

Discrete Hedging Under Piecewise Linear Risk Minimization. Thomas F. Coleman, Yuying Li, Maria-Cristina Patron Cornell University Discrete Hedging Under Piecewise Linear Ris Minimization Thomas F. Coleman, Yuying Li, Maria-Cristina Patron Cornell University April 16, 2002 Abstract In an incomplete maret it is usually impossible to

More information

The Assignment Problem

The Assignment Problem The Assignment Problem E.A Dinic, M.A Kronrod Moscow State University Soviet Math.Dokl. 1969 January 30, 2012 1 Introduction Motivation Problem Definition 2 Motivation Problem Definition Outline 1 Introduction

More information

Dynamic Portfolio Execution Detailed Proofs

Dynamic Portfolio Execution Detailed Proofs Dynamic Portfolio Execution Detailed Proofs Gerry Tsoukalas, Jiang Wang, Kay Giesecke March 16, 2014 1 Proofs Lemma 1 (Temporary Price Impact) A buy order of size x being executed against i s ask-side

More information

Decomposition Methods

Decomposition Methods Decomposition Methods separable problems, complicating variables primal decomposition dual decomposition complicating constraints general decomposition structures Prof. S. Boyd, EE364b, Stanford University

More information

Adaptive cubic overestimation methods for unconstrained optimization

Adaptive cubic overestimation methods for unconstrained optimization Report no. NA-07/20 Adaptive cubic overestimation methods for unconstrained optimization Coralia Cartis School of Mathematics, University of Edinburgh, The King s Buildings, Edinburgh, EH9 3JZ, Scotland,

More information

Lecture 3: Review of Probability, MATLAB, Histograms

Lecture 3: Review of Probability, MATLAB, Histograms CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 3: Review of Probability, MATLAB, Histograms Instructor: Daniel L. Pimentel-Alarcón Scribed and Ken Varghese This is preliminary work and

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016

First-Order Methods. Stephen J. Wright 1. University of Wisconsin-Madison. IMA, August 2016 First-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) First-Order Methods IMA, August 2016 1 / 48 Smooth

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

17 MAKING COMPLEX DECISIONS

17 MAKING COMPLEX DECISIONS 267 17 MAKING COMPLEX DECISIONS The agent s utility now depends on a sequence of decisions In the following 4 3grid environment the agent makes a decision to move (U, R, D, L) at each time step When the

More information

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig]

Basic Framework. About this class. Rewards Over Time. [This lecture adapted from Sutton & Barto and Russell & Norvig] Basic Framework [This lecture adapted from Sutton & Barto and Russell & Norvig] About this class Markov Decision Processes The Bellman Equation Dynamic Programming for finding value functions and optimal

More information

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo

Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Markov Decision Processes (MDPs) CS 486/686 Introduction to AI University of Waterloo Outline Sequential Decision Processes Markov chains Highlight Markov property Discounted rewards Value iteration Markov

More information

STOCHASTIC REPUTATION DYNAMICS UNDER DUOPOLY COMPETITION

STOCHASTIC REPUTATION DYNAMICS UNDER DUOPOLY COMPETITION STOCHASTIC REPUTATION DYNAMICS UNDER DUOPOLY COMPETITION BINGCHAO HUANGFU Abstract This paper studies a dynamic duopoly model of reputation-building in which reputations are treated as capital stocks that

More information

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18, ISSN

International Journal of Computer Engineering and Applications, Volume XII, Issue II, Feb. 18,   ISSN Volume XII, Issue II, Feb. 18, www.ijcea.com ISSN 31-3469 AN INVESTIGATION OF FINANCIAL TIME SERIES PREDICTION USING BACK PROPAGATION NEURAL NETWORKS K. Jayanthi, Dr. K. Suresh 1 Department of Computer

More information

Scenario Generation and Sampling Methods

Scenario Generation and Sampling Methods Scenario Generation and Sampling Methods Güzin Bayraksan Tito Homem-de-Mello SVAN 2016 IMPA May 9th, 2016 Bayraksan (OSU) & Homem-de-Mello (UAI) Scenario Generation and Sampling SVAN IMPA May 9 1 / 30

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information