Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems.

Size: px
Start display at page:

Download "Math 546 Homework Problems. Due Wednesday, January 25. This homework has two types of problems."

Transcription

1 Math 546 Homework 1 Due Wednesday, January 25. This homework has two types of problems. 546 Problems. All students (students enrolled in 546 and 701I) are required to turn these in. 701I Problems. Only students enrolled in 701I are required to turn these in. Students not enrolled in 701I are welcome to turn these in as well. I especially welcome students looking for a challenge to attempt these. Note: Part 3 below contains solutions to some of the unassigned problems from Sections 1 and 2 of Saracino s text. I am providing these as examples of how to write solutions. Please have a look at these, and make sure to read Sections 1 and 2 of the text Problems. 1.3 and 1.6. For each of the following sets S and functions on S S, determine whether is a binary operation on S. If is a binary operation on S, determine whether it is commutative and whether it is associative. a) S = Z, a b = a + b 2. e) S = Z, a b = a + b ab. f) S = R, a b = b. g) S = {1, 2, 3, 2, 4}, a b = b Is division a commutative operation on R +? Is it associative? Note: If S R, then we define S + = {s S : s > 0} Let S = {a, b, c, d}. The following table defines a binary operation on S. Is commutative? Is it associative? * a b c d a a c b d b c a d b c b d a c d d b c a Note: For s 1, s 2 S, we define s 1 s 2 to the be the element in the row that contains s 1 and the column that contains s 2. For example, we have c b = d.

2 2.1. Which of the following are groups? Why or why not? d) The set {1, 1} under multiplication. f) R R = {(x, y) : x, y R} under the operation (x, y) (z, w) = (x + z, y w). g) R R = {(x, y) : x, y R and y 0} under the operation (x, y) (z, w) = (x + z, yw). Recall that R = R \ {0}. h) R \ {1} under the operation a b = a + b ab Let S = {a, b, c}. The following table defines a binary operation on S. Is (S, ) a group? Why or why not? * a b c a a b c b b b c c c c c 2.8. Let G = {f : R R : for all x R, f(x) 0}. For all f, g G, define by Is (G, ) a group? Prove or disprove Let G = {( ) } a 0 : a, b 0 in R. Show that G forms a group under matrix multi- 0 b plication. (f g)(x) = f(x)g(x) for all x R I Problems How many binary operations are there on a set S with n elements? How many of these are commutative? 2.1 e) Let S = {q Q + : q Q}, is. Is (S, ) a group? Why or why not?

3 2.6. Let S = {a, b, c}. The following table defines a binary operation on S. Is (S, ) a group? Why or why not? Let G = { M = ( a ) b b a * a b c a a b c b b a c c c b a } : a, b R, det M = a 2 + b 2 0 GL(2, R). Let denote ordinary matrix multiplication. Show that (G, ) is a group. 3 Examples. 1.3 and 1.6. For each of the following sets S and functions on S S, determine whether is a binary operation on S. If is a binary operation on S, determine whether it is commutative and whether it is associative. b) S = Z, a b = a b = a 2 b 3. Claim: is a binary operation on S. Proof: For all a, b Z, we have a b = a 2 b 3 Z, so is a binary operation. Claim: is not commutative on S. Proof: We note that b a = b 2 a 3. Therefore, we have a b = b a if and only if a 2 b 3 = a 3 b 2, which holds if and only if a = b or either of a, b = 0. We observe that Hence, is not commutative. Claim: is not associative on S. Proof: We compute 1 2 = = 8 4 = = 2 1. (a b) c = (a 2 b 3 ) c = (a 2 b 3 ) 2 c 3 = a 4 b 6 c 3, a (b c) = a (b 2 c 3 ) = a 2 (b 2 c 3 ) 3 = a 2 b 6 c 9. Therefore, we have (a b) c = a (b c) if and only if a 4 b 6 c 3 = a 2 b 6 c 9, which holds for a, b, c 0 if only if a 2 = c 6. Taking square roots, we see that associativity follows if and only if a = c 3. We note that Hence, is not associative. (2 1) 1 = = 16 4 = = 2 (1 1).

4 h) S = {1, 6, 3, 2, 18}, a b = ab. Claim: is not a binary operation on S. Proof: We note that 6, 2 S, but that 6 2 = 12 S. Therefore, is not a binary operation. Since is not a binary operation, we do not consider whether or not is commutative or associative Which of the following are groups? Why or why not? b) S = 3Z = {3n : n Z}, the set of integers that are multiples of 3, is +. Claim: (S, ) is a group. Proof: It suffices to verify the axioms: (i) is a binary operation on S. To see this, let a = 3x, b = 3y 3Z. Then we have a + b = 3x + 3y = 3(x + y) 3Z, so is a binary operation on S. (ii) is associative on S. Since S = 3Z Z, we see that 3Z inherits associativity under + from Z. (iii) (S, ) has an identity. We claim that 0 = 3 0 3Z is an identity for (S, ). To see this, let a = 3x 3Z. Then we have a + 0 = 3x + 0 = 3x = 0 + 3x = 0 + a, so 0 is an identity for (S, ). (iv) (S, ) has inverses. To see this, let a = 3x 3Z. Then a = 3x = 3( x) 3Z has a + a = 0 = a + ( a), so a is an inverse for a. It follows that (S, ) is a group. Furthermore, (S, ) inherits commutativity from Z since S Z, so (S, ) is an abelian group. i) S = Z, a b = a + b 1. Claim: (S, ) is a group. Proof: It suffices to verify the axioms. (i) is a binary operation on S. To see this, let a, b Z. Then we have a b = a + b 1 Z, so is a binary operation on S. (ii) is associative on S. To see this, let a, b, c Z. Then we have (a b) c = (a + b 1) c = (a + b 1) + c 1 = a + (b + c 1) 1 so is associative on S. = a (b + c 1) = a (b c),

5 (iii) (S, ) has an identity. We claim that 1 Z is an identity for (S, ). To see this, let a Z. Then we have a 1 = a = a = 1 + a 1 = 1 a, so 1 is an identity for (S, ). (iv) (S, ) has inverses. To see this, let a Z. Then we have 2 a Z and a (2 a) = a + (2 a) 1 = 1 = (2 a) + a 1 = (2 a) a, so 2 a is an inverse for a. It follows that (S, ) is a group. Furthermore, for all a, b Z, we have implies that (S, ) is an abelian group. a b = a + b 1 = b + a 1 = b a

PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ]

PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ] s@lm@n PRMIA Exam 8002 PRM Certification - Exam II: Mathematical Foundations of Risk Measurement Version: 6.0 [ Total Questions: 132 ] Question No : 1 A 2-step binomial tree is used to value an American

More information

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12.

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12. Chapter 3: Factors and Products 3.1 Factors and Multiples of Whole Numbers In this chapter we will look at the topic of factors and products. In previous years, we examined these with only numbers, whereas

More information

Algebra homework 8 Homomorphisms, isomorphisms

Algebra homework 8 Homomorphisms, isomorphisms MATH-UA.343.005 T.A. Louis Guigo Algebra homework 8 Homomorphisms, isomorphisms For every n 1 we denote by S n the n-th symmetric group. Exercise 1. Consider the following permutations: ( ) ( 1 2 3 4 5

More information

Notes on the symmetric group

Notes on the symmetric group Notes on the symmetric group 1 Computations in the symmetric group Recall that, given a set X, the set S X of all bijections from X to itself (or, more briefly, permutations of X) is group under function

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Fractional Graphs. Figure 1

Fractional Graphs. Figure 1 Fractional Graphs Richard H. Hammack Department of Mathematics and Applied Mathematics Virginia Commonwealth University Richmond, VA 23284-2014, USA rhammack@vcu.edu Abstract. Edge-colorings are used to

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 3 Tuesday, January 30, 2018 1 Inductive sets Induction is an important concept in the theory of programming language.

More information

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Name Period Day Date Assignment (Due the next class meeting) Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

More information

Operations Research. Chapter 8

Operations Research. Chapter 8 QM 350 Operations Research Chapter 8 Case Study: ACCOUNTS RECEIVABLE ANALYSIS Let us consider the accounts receivable situation for Heidman s Department Store. Heidman s uses two aging categories for its

More information

Mathematics Notes for Class 12 chapter 1. Relations and Functions

Mathematics Notes for Class 12 chapter 1. Relations and Functions 1 P a g e Mathematics Notes for Class 12 chapter 1. Relations and Functions Relation If A and B are two non-empty sets, then a relation R from A to B is a subset of A x B. If R A x B and (a, b) R, then

More information

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants

COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants COMPUTER SCIENCE 20, SPRING 2014 Homework Problems Recursive Definitions, Structural Induction, States and Invariants Due Wednesday March 12, 2014. CS 20 students should bring a hard copy to class. CSCI

More information

Quadratic Modeling Elementary Education 10 Business 10 Profits

Quadratic Modeling Elementary Education 10 Business 10 Profits Quadratic Modeling Elementary Education 10 Business 10 Profits This week we are asking elementary education majors to complete the same activity as business majors. Our first goal is to give elementary

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition.

The Real Numbers. Here we show one way to explicitly construct the real numbers R. First we need a definition. The Real Numbers Here we show one way to explicitly construct the real numbers R. First we need a definition. Definitions/Notation: A sequence of rational numbers is a funtion f : N Q. Rather than write

More information

The Binomial Theorem and Consequences

The Binomial Theorem and Consequences The Binomial Theorem and Consequences Juris Steprāns York University November 17, 2011 Fermat s Theorem Pierre de Fermat claimed the following theorem in 1640, but the first published proof (by Leonhard

More information

The illustrated zoo of order-preserving functions

The illustrated zoo of order-preserving functions The illustrated zoo of order-preserving functions David Wilding, February 2013 http://dpw.me/mathematics/ Posets (partially ordered sets) underlie much of mathematics, but we often don t give them a second

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 2 Thursday, January 30, 2014 1 Expressing Program Properties Now that we have defined our small-step operational

More information

Relations and Functions

Relations and Functions Reations and Functions 1 Teaching-Learning Points Let A and B are two non empty sets then a reation from set A to set B is defined as R = {(a.b) : a ð A and b ð B}. If (a.b) ð R, we say that a is reated

More information

Expected Value and Variance

Expected Value and Variance Expected Value and Variance MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the definition of expected value, how to calculate the expected value of a random

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

2-4 Completing the Square

2-4 Completing the Square 2-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Write each expression as a trinomial. 1. (x 5) 2 x 2 10x + 25 2. (3x + 5) 2 9x 2 + 30x + 25 Factor each expression. 3.

More information

Practice Second Midterm Exam II

Practice Second Midterm Exam II CS13 Handout 34 Fall 218 November 2, 218 Practice Second Midterm Exam II This exam is closed-book and closed-computer. You may have a double-sided, 8.5 11 sheet of notes with you when you take this exam.

More information

ELEMENTS OF MATRIX MATHEMATICS

ELEMENTS OF MATRIX MATHEMATICS QRMC07 9/7/0 4:45 PM Page 5 CHAPTER SEVEN ELEMENTS OF MATRIX MATHEMATICS 7. AN INTRODUCTION TO MATRICES Investors frequently encounter situations involving numerous potential outcomes, many discrete periods

More information

Math1090 Midterm 2 Review Sections , Solve the system of linear equations using Gauss-Jordan elimination.

Math1090 Midterm 2 Review Sections , Solve the system of linear equations using Gauss-Jordan elimination. Math1090 Midterm 2 Review Sections 2.1-2.5, 3.1-3.3 1. Solve the system of linear equations using Gauss-Jordan elimination. 5x+20y 15z = 155 (a) 2x 7y+13z=85 3x+14y +6z= 43 x+z= 2 (b) x= 6 y+z=11 x y+

More information

Math Analysis Midterm Review. Directions: This assignment is due at the beginning of class on Friday, January 9th

Math Analysis Midterm Review. Directions: This assignment is due at the beginning of class on Friday, January 9th Math Analysis Midterm Review Name Directions: This assignment is due at the beginning of class on Friday, January 9th This homework is intended to help you prepare for the midterm exam. The questions are

More information

SEMICENTRAL IDEMPOTENTS IN A RING

SEMICENTRAL IDEMPOTENTS IN A RING J. Korean Math. Soc. 51 (2014), No. 3, pp. 463 472 http://dx.doi.org/10.4134/jkms.2014.51.3.463 SEMICENTRAL IDEMPOTENTS IN A RING Juncheol Han, Yang Lee, and Sangwon Park Abstract. Let R be a ring with

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

MATH20330: Optimization for Economics Homework 1: Solutions

MATH20330: Optimization for Economics Homework 1: Solutions MATH0330: Optimization for Economics Homework 1: Solutions 1. Sketch the graphs of the following linear and quadratic functions: f(x) = 4x 3, g(x) = 4 3x h(x) = x 6x + 8, R(q) = 400 + 30q q. y = f(x) is

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

Computing interest and composition of functions:

Computing interest and composition of functions: Computing interest and composition of functions: In this week, we are creating a simple and compound interest calculator in EXCEL. These two calculators will be used to solve interest questions in week

More information

1 RATIONAL NUMBERS. Exercise Q.1. Using appropriate properties find: Ans. (i) (by commutativity)

1 RATIONAL NUMBERS. Exercise Q.1. Using appropriate properties find: Ans. (i) (by commutativity) RATIONAL NUMBERS Exercise. Q.. Using appropriate properties find: 3 3 (i) + 3 3 3 (ii) + 7 4 Ans. (i) 3 3 + 3 3 3 + 3 3 + 3 3 + + 3 3 4 + + 3 + 3 + + + 4 (by commutativity) (by distributivity) (ii) 3 3

More information

BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES

BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES Journal of Science and Arts Year 17, No. 1(38), pp. 69-80, 2017 ORIGINAL PAPER BINOMIAL TRANSFORMS OF QUADRAPELL SEQUENCES AND QUADRAPELL MATRIX SEQUENCES CAN KIZILATEŞ 1, NAIM TUGLU 2, BAYRAM ÇEKİM 2

More information

Determinants II Linear Algebra, Fall 2008

Determinants II Linear Algebra, Fall 2008 Determinants II Linear Algebra, Fall 2008 1 Basic Properties of Determinants Here are the basic properties of determinants which you proved in the exercises to the previous handout Theorem 1 Let A be an

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 3 Tuesday, February 2, 2016 1 Inductive proofs, continued Last lecture we considered inductively defined sets, and

More information

CSE 316A: Homework 5

CSE 316A: Homework 5 CSE 316A: Homework 5 Due on December 2, 2015 Total: 160 points Notes There are 8 problems on 5 pages below, worth 20 points each (amounting to a total of 160. However, this homework will be graded out

More information

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem.

Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Exercise List: Proving convergence of the (Stochastic) Gradient Descent Method for the Least Squares Problem. Robert M. Gower. October 3, 07 Introduction This is an exercise in proving the convergence

More information

1.Write a Book Review on The Invisible Man by H.G Wells, as per the format given below and submit in a folder.

1.Write a Book Review on The Invisible Man by H.G Wells, as per the format given below and submit in a folder. CLASS XII (COMMERCE) SUMMER HOLIDAY HOMEWORK ENGLISH SUBMISSION DATE : 27.6.17 1.Write a Book Review on The Invisible Man by H.G Wells, as per the format given below and submit in a folder. S. No. CONTENT

More information

MATH 141 (Extra Practice 1)

MATH 141 (Extra Practice 1) MATH 141 (Extra Practice 1) 1. If matrices A = w 0.5 3 2 values of y and w? and B = 4 1 y 2 are inverses of each other, what are the 2. The company that produces a toothpaste has a fixed costs of $5000.

More information

Expected Utility And Risk Aversion

Expected Utility And Risk Aversion Expected Utility And Risk Aversion Econ 2100 Fall 2017 Lecture 12, October 4 Outline 1 Risk Aversion 2 Certainty Equivalent 3 Risk Premium 4 Relative Risk Aversion 5 Stochastic Dominance Notation From

More information

7.1 Simplifying Rational Expressions

7.1 Simplifying Rational Expressions 7.1 Simplifying Rational Expressions LEARNING OBJECTIVES 1. Determine the restrictions to the domain of a rational expression. 2. Simplify rational expressions. 3. Simplify expressions with opposite binomial

More information

A Property Equivalent to n-permutability for Infinite Groups

A Property Equivalent to n-permutability for Infinite Groups Journal of Algebra 221, 570 578 (1999) Article ID jabr.1999.7996, available online at http://www.idealibrary.com on A Property Equivalent to n-permutability for Infinite Groups Alireza Abdollahi* and Aliakbar

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well!

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! x 2 1 1. Calculate lim x 1 x + 1. (a) 2 (b) 1 (c) (d) 2 (e) the limit

More information

S14 Exponential Growth and Decay (Graphing Calculator or App Needed)

S14 Exponential Growth and Decay (Graphing Calculator or App Needed) 1010 Homework Name S14 Exponential Growth and Decay (Graphing Calculator or App Needed) 1. Without graphing, classify each of the following as increasing or decreasing and find f (0). a. f (x) = 1.5(0.75)

More information

4: SINGLE-PERIOD MARKET MODELS

4: SINGLE-PERIOD MARKET MODELS 4: SINGLE-PERIOD MARKET MODELS Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 4: Single-Period Market Models 1 / 87 General Single-Period

More information

Calculus I Homework: Four Ways to Represent a Function Page 1. where h 0 and f(x) = x x 2.

Calculus I Homework: Four Ways to Represent a Function Page 1. where h 0 and f(x) = x x 2. Calculus I Homework: Four Ways to Represent a Function Page 1 Questions Example Find f(2 + ), f(x + ), and f(x + ) f(x) were 0 and f(x) = x x 2. Example Find te domain and sketc te grap of te function

More information

ST. DAVID S MARIST INANDA

ST. DAVID S MARIST INANDA ST. DAVID S MARIST INANDA MATHEMATICS NOVEMBER EXAMINATION GRADE 11 PAPER 1 8 th NOVEMBER 2016 EXAMINER: MRS S RICHARD MARKS: 125 MODERATOR: MRS C KENNEDY TIME: 2 1 Hours 2 NAME: PLEASE PUT A CROSS NEXT

More information

Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee

Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee RESEARCH ARTICLE THE MAKING OF A GOOD IMPRESSION: INFORMATION HIDING IN AD ECHANGES Zhen Sun, Milind Dawande, Ganesh Janakiraman, and Vijay Mookerjee Naveen Jindal School of Management, The University

More information

TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA 1. INTRODUCTION

TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA 1. INTRODUCTION TWO-PERIODIC TERNARY RECURRENCES AND THEIR BINET-FORMULA M. ALP, N. IRMAK and L. SZALAY Abstract. The properties of k-periodic binary recurrences have been discussed by several authors. In this paper,

More information

Work4Me. Algorithmic Version. Aging Accounts Receivable. Problem Eleven. 1 st Web-Based Edition

Work4Me. Algorithmic Version. Aging Accounts Receivable. Problem Eleven. 1 st Web-Based Edition Work4Me Algorithmic Version 1 st Web-Based Edition Problem Eleven Aging Accounts Receivable Page 1 INTRODUCTION Log on to Algorithmic Work4Me II and from the Problems Menu Bar, select Problem 11, Aging

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Lab#3 Probability

Lab#3 Probability 36-220 Lab#3 Probability Week of September 19, 2005 Please write your name below, tear off this front page and give it to a teaching assistant as you leave the lab. It will be a record of your participation

More information

maps 1 to 5. Similarly, we compute (1 2)(4 7 8)(2 1)( ) = (1 5 8)(2 4 7).

maps 1 to 5. Similarly, we compute (1 2)(4 7 8)(2 1)( ) = (1 5 8)(2 4 7). Math 430 Dr. Songhao Li Spring 2016 HOMEWORK 3 SOLUTIONS Due 2/15/16 Part II Section 9 Exercises 4. Find the orbits of σ : Z Z defined by σ(n) = n + 1. Solution: We show that the only orbit is Z. Let i,

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday Name Period Unit 9 Calendar: Polynomials and Factoring Day Date Assignment (Due the next class meeting) Monday Wednesday 2/26/18 (A) 2/28/18 (B) 9.1 Worksheet Adding, Subtracting Polynomials, Multiplying

More information

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping Unit 6 Name Factoring Day 1 Difference of Two Perfect Squares (DOTS) Day Greatest Common Factor (GCF) Day 3 Factoring Completely Binomials Day 4 QUIZ Day 5 Factor by Grouping Day 6 Factor Trinomials by

More information

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale)

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Math 184 - Summer 2011 Midterm 3 Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Read all of the following information before starting the exam: Calculators

More information

4 Martingales in Discrete-Time

4 Martingales in Discrete-Time 4 Martingales in Discrete-Time Suppose that (Ω, F, P is a probability space. Definition 4.1. A sequence F = {F n, n = 0, 1,...} is called a filtration if each F n is a sub-σ-algebra of F, and F n F n+1

More information

Name Date Student id #:

Name Date Student id #: Math1090 Final Exam Spring, 2016 Instructor: Name Date Student id #: Instructions: Please show all of your work as partial credit will be given where appropriate, and there may be no credit given for problems

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

CH 39 CREATING THE EQUATION OF A LINE

CH 39 CREATING THE EQUATION OF A LINE 9 CH 9 CREATING THE EQUATION OF A LINE Introduction S ome chapters back we played around with straight lines. We graphed a few, and we learned how to find their intercepts and slopes. Now we re ready to

More information

AVL Trees. The height of the left subtree can differ from the height of the right subtree by at most 1.

AVL Trees. The height of the left subtree can differ from the height of the right subtree by at most 1. AVL Trees In order to have a worst case running time for insert and delete operations to be O(log n), we must make it impossible for there to be a very long path in the binary search tree. The first balanced

More information

Structural Induction

Structural Induction Structural Induction Jason Filippou CMSC250 @ UMCP 07-05-2016 Jason Filippou (CMSC250 @ UMCP) Structural Induction 07-05-2016 1 / 26 Outline 1 Recursively defined structures 2 Proofs Binary Trees Jason

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs

Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs Teaching Note October 26, 2007 Global Joint Distribution Factorizes into Local Marginal Distributions on Tree-Structured Graphs Xinhua Zhang Xinhua.Zhang@anu.edu.au Research School of Information Sciences

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India August 2012 Chapter 6: Mixed Strategies and Mixed Strategy Nash Equilibrium

More information

CS 798: Homework Assignment 4 (Game Theory)

CS 798: Homework Assignment 4 (Game Theory) 0 5 CS 798: Homework Assignment 4 (Game Theory) 1.0 Preferences Assigned: October 28, 2009 Suppose that you equally like a banana and a lottery that gives you an apple 30% of the time and a carrot 70%

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

Math 1090 Final Exam Fall 2012

Math 1090 Final Exam Fall 2012 Math 1090 Final Exam Fall 2012 Name Instructor: Student ID Number: Instructions: Show all work, as partial credit will be given where appropriate. If no work is shown, there may be no credit given. All

More information

Notes on Natural Logic

Notes on Natural Logic Notes on Natural Logic Notes for PHIL370 Eric Pacuit November 16, 2012 1 Preliminaries: Trees A tree is a structure T = (T, E), where T is a nonempty set whose elements are called nodes and E is a relation

More information

3.1 Factors and Multiples of Whole Numbers

3.1 Factors and Multiples of Whole Numbers 3.1 Factors and Multiples of Whole Numbers LESSON FOCUS: Determine prime factors, greatest common factors, and least common multiples of whole numbers. The prime factorization of a natural number is the

More information

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS Note: This section uses session window commands instead of menu choices CENTRAL LIMIT THEOREM (SECTION 7.2 OF UNDERSTANDABLE STATISTICS) The Central Limit

More information

Lecture 2: The Simple Story of 2-SAT

Lecture 2: The Simple Story of 2-SAT 0510-7410: Topics in Algorithms - Random Satisfiability March 04, 2014 Lecture 2: The Simple Story of 2-SAT Lecturer: Benny Applebaum Scribe(s): Mor Baruch 1 Lecture Outline In this talk we will show that

More information

Slide 1 / 128. Polynomials

Slide 1 / 128. Polynomials Slide 1 / 128 Polynomials Slide 2 / 128 Table of Contents Factors and GCF Factoring out GCF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

GUESSING MODELS IMPLY THE SINGULAR CARDINAL HYPOTHESIS arxiv: v1 [math.lo] 25 Mar 2019

GUESSING MODELS IMPLY THE SINGULAR CARDINAL HYPOTHESIS arxiv: v1 [math.lo] 25 Mar 2019 GUESSING MODELS IMPLY THE SINGULAR CARDINAL HYPOTHESIS arxiv:1903.10476v1 [math.lo] 25 Mar 2019 Abstract. In this article we prove three main theorems: (1) guessing models are internally unbounded, (2)

More information

SIMPLE AND COMPOUND INTEREST

SIMPLE AND COMPOUND INTEREST SIMPLE AND COMPOUND INTEREST 8.1.1 8.1.3 In Course 2 students are introduced to simple interest, the interest is paid only on the original amount invested. The formula for simple interest is: I = Prt and

More information

ANALYSIS OF N-CARD LE HER

ANALYSIS OF N-CARD LE HER ANALYSIS OF N-CARD LE HER ARTHUR T. BENJAMIN AND A.J. GOLDMAN Abstract. We present a complete solution to a card game with historical origins. Our analysis exploits convexity properties in the payoff matrix,

More information

NOTES ON CALCULUS AND UTILITY FUNCTIONS

NOTES ON CALCULUS AND UTILITY FUNCTIONS DUSP 11.203 Frank Levy Microeconomics Tutorial 1 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding utility

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

A No-Arbitrage Theorem for Uncertain Stock Model

A No-Arbitrage Theorem for Uncertain Stock Model Fuzzy Optim Decis Making manuscript No (will be inserted by the editor) A No-Arbitrage Theorem for Uncertain Stock Model Kai Yao Received: date / Accepted: date Abstract Stock model is used to describe

More information

Equilibrium payoffs in finite games

Equilibrium payoffs in finite games Equilibrium payoffs in finite games Ehud Lehrer, Eilon Solan, Yannick Viossat To cite this version: Ehud Lehrer, Eilon Solan, Yannick Viossat. Equilibrium payoffs in finite games. Journal of Mathematical

More information

CATEGORICAL SKEW LATTICES

CATEGORICAL SKEW LATTICES CATEGORICAL SKEW LATTICES MICHAEL KINYON AND JONATHAN LEECH Abstract. Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most

More information

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations

MLLunsford 1. Activity: Central Limit Theorem Theory and Computations MLLunsford 1 Activity: Central Limit Theorem Theory and Computations Concepts: The Central Limit Theorem; computations using the Central Limit Theorem. Prerequisites: The student should be familiar with

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain

Stochastic Manufacturing & Service Systems. Discrete-time Markov Chain ISYE 33 B, Fall Week #7, September 9-October 3, Introduction Stochastic Manufacturing & Service Systems Xinchang Wang H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of

More information

1 Solutions to Tute09

1 Solutions to Tute09 s to Tute0 Questions 4. - 4. are straight forward. Q. 4.4 Show that in a binary tree of N nodes, there are N + NULL pointers. Every node has outgoing pointers. Therefore there are N pointers. Each node,

More information

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ

MAT25 LECTURE 10 NOTES. = a b. > 0, there exists N N such that if n N, then a n a < ɛ MAT5 LECTURE 0 NOTES NATHANIEL GALLUP. Algebraic Limit Theorem Theorem : Algebraic Limit Theorem (Abbott Theorem.3.3) Let (a n ) and ( ) be sequences of real numbers such that lim n a n = a and lim n =

More information

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems.

Practice Exercises for Midterm Exam ST Statistical Theory - II The ACTUAL exam will consists of less number of problems. Practice Exercises for Midterm Exam ST 522 - Statistical Theory - II The ACTUAL exam will consists of less number of problems. 1. Suppose X i F ( ) for i = 1,..., n, where F ( ) is a strictly increasing

More information

MATH 4321 Game Theory Solution to Homework Two

MATH 4321 Game Theory Solution to Homework Two MATH 321 Game Theory Solution to Homework Two Course Instructor: Prof. Y.K. Kwok 1. (a) Suppose that an iterated dominance equilibrium s is not a Nash equilibrium, then there exists s i of some player

More information

Nov 4 Stats 2D03 - Tutorial 7 Solutions 1

Nov 4 Stats 2D03 - Tutorial 7 Solutions 1 Nov 4 Stats 2D03 - Tutorial 7 Solutions Example 3d n 20: n 36, n 2 40, n 3 44. When the buses arrive, one of the 20 is chosen at random. Define X as the number of students on bus that the student was chosen

More information

AN INFINITE CARDINAL-VALUED KRULL DIMENSION FOR RINGS

AN INFINITE CARDINAL-VALUED KRULL DIMENSION FOR RINGS AN INFINITE CARDINAL-VALUED KRULL DIMENSION FOR RINGS K. ALAN LOPER, ZACHARY MESYAN, AND GREG OMAN Abstract. We define and study two generalizations of the Krull dimension for rings, which can assume cardinal

More information

Chapter 2 Rocket Launch: AREA BETWEEN CURVES

Chapter 2 Rocket Launch: AREA BETWEEN CURVES ANSWERS Mathematics (Mathematical Analysis) page 1 Chapter Rocket Launch: AREA BETWEEN CURVES RL-. a) 1,.,.; $8, $1, $18, $0, $, $6, $ b) x; 6(x ) + 0 RL-. a), 16, 9,, 1, 0; 1,,, 7, 9, 11 c) D = (-, );

More information

Factoring Quadratic Expressions VOCABULARY

Factoring Quadratic Expressions VOCABULARY 5-5 Factoring Quadratic Expressions TEKS FOCUS Foundational to TEKS (4)(F) Solve quadratic and square root equations. TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil,

More information

Definition: A proposition is a sentence that is either true or false, but not both.

Definition: A proposition is a sentence that is either true or false, but not both. Math 3336 Section 1.1 Propositional Logic What is a proposition? Definition: A proposition is a sentence that is either true or false, but not both. Examples of Propositions: a. Austin is the capital of

More information

Show that the column rank and the row rank of A are both equal to 3.

Show that the column rank and the row rank of A are both equal to 3. hapter Vectors and matrices.. Exercises. Let A 2 5 4 3 2 4 2 2 3 5 4 2 4 3 Show that the column rank and the row rank of A are both equal to 3. 2. Let x and y be column vectors of size n, andleti be the

More information

Factoring Trinomials 1

Factoring Trinomials 1 Math Objectives Students will factor trinomials of the form x + bx + c, where b and c are positive integers. Students will relate factoring a quadratic trinomial to an area model. Students will generalize

More information