We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12.

Size: px
Start display at page:

Download "We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12."

Transcription

1 Chapter 3: Factors and Products 3.1 Factors and Multiples of Whole Numbers In this chapter we will look at the topic of factors and products. In previous years, we examined these with only numbers, whereas in this chapter we will also take a look at factors and multiples of polynomials. We begin, however, with the concept of prime factorization. Definition: Prime factorization - We can determine the prime factorization of a number by slowly breaking it down, taking out one prime factor at a time. Recall that prime numbers include 2, 3, 5, 7, 11, 13, 17, Example: Determine the prime factorization of 12. Example: Determine the prime factorization of Example: Determine the prime factorization of

2 We can also employ factor trees, where we can break down a number into the product of two factors, and keep breaking that down until we reach prime values. Example: Use a factor tree to determine the prime factorization of 12. Example: Use a factor tree to determine the prime factorization of We can use prime factorization as a means to find the greatest common factor and least common multiple of a group of numbers. Definitions: Greatest common factor - Least common multiple -

3 To find the greatest common factor (GCF) of a group of numbers, we start by looking only at the prime factors that appear in all numbers of the group. The greatest number of times each prime factor can be removed is limited by the lowest exponent we see on that factor. Example: Determine the GCF of 28 and 20. Example: Determine the GCF of and 420. To find the least common multiple (LCM) of a group of numbers, we start by looking at all of the prime factors that appear in any numbers of the group. The least number of times that factor must be included is given by the highest exponent we see on that factor. Example: Determine the least common multiple of 28 and 20. Example: Determine the least common multiple of 72 and 108. Homework: textbook pages , #3-7, 8-10 (a, c, e only), 11 (a, c only), 12-18, 21-22

4 Chapter 3: Factors and Products 3.2 Perfect Squares, Perfect Cubes, and Their Roots A perfect square is a whole number that can be expressed as the product of a whole number by itself. For example, 5 5 = 25, therefore 25 is a perfect square. The square root of a number is that value that gets multiplied by itself. Just as 25 is the square of 5, we can say that 5 is the square root of 25. We write 25 = 5. A perfect cube is a whole number that can be expressed as a whole number to the power of 3. For example, 5! = = 125, therefore 125 is a perfect cube. The cube root of a number is that value that we take the third power of. Just as 125 is the! cube of 5, we can say that 5 is the cube root of 125. We write 125 = 5. We can use prime factorization to determine whether a number is a perfect square or not. If a number is a perfect square, then If a number is a perfect cube, then Example: Determine whether 576 is a perfect square, perfect cube, or neither. If it is a perfect square or cube, state its square or cube root. Example: Determine whether 3375 is a perfect square, perfect cube, or neither. If it is a perfect square or cube, state its square or cube root.

5 Example: Determine whether 64 is a perfect square, perfect cube, or neither. If it is a perfect square or cube, state its square or cube root. Example: Determine whether 785 is a perfect square, perfect cube, or neither. If it is a perfect square or cube, state its square or cube root. Homework: textbook pages , #1-8, 11, 13 Quiz review: textbook page 149, #1-9

6 Chapter 3: Factors and Products 3.3 Common Factors of a Polynomial We will now begin introducing ourselves to factoring polynomials. To fully factor a polynomial there can be a few things to check for, but the first should be to see if there exists a common factor. Example: Determine the GCF of 6x! and 15x. Example: Factor the binomial 6x! + 15x. Example: Determine the GCF of 4, 16y, and 8y!. Example: Factor the trinomial 4 16y + 8y!. Let s try a few without the extra step! Example: Factor 4x! + 4x! + 8x. Example: Factor 2x! y + 8x! y! 2x! y.

7 Example: Factor 7xy + 7xz + 7yz. Example: Factor 27r! s! 18r! s! 36rs!. Example: Factor 81a! b! c! + 27a! bc! 24a! b! c! 9a! b! c!. Note: if the terms of a binomial have a GCF of only 1, then the binomial cannot be factored. Homework: textbook pages , #5-6, 8, 10, 12-18, 20, 22

8 Chapter 3: Factors and Products 3.5 Polynomials of the Form x 2 + bx + c When expanding a product such as 2x(x + 4) we would use the distributive property as follows: What we have above is the product of a monomial and a binomial. Suppose, however, that we are tasked with expanding the product of two binomials. We then end up using the distributive property twice. For example, expand (x + 2)(x + 3): What we see here is that each term in the first binomial must get multiplied by each term in the second binomial. We can use a process called FOIL to ensure this all gets taken care of. FOIL ensures we multiply the first terms, the outside terms, the inside terms, and the last terms. Example: Expand and simplify: (x + 4)(x + 1) (x 2)(x + 7) (a 6)(a 3) t + 5 t 5 In one of the examples we see that the product x + 4 x + 1 simplifies to x! + 5x + 4. If x! + 5x + 4 is the result of multiplying those two expressions, we can then declare that x + 4 and x + 1 must be factors of it. It logically follows that some trinomials can be factored.

9 We will look at polynomials of the form x! + bx + c - ones where the leading coefficient is 1. If they can be factored, the factors will be of the form (x ± an integer)(x ± an integer). What we seek in factoring these will be values that multiply to c and sum to b. With the above example of x! + 5x + 4, we can look at various factor pairs of 4 and determine which pair sums to 5: Hence we declare x! + 5x + 4 factors to (x + 4)(x + 1). Example: Factor the following: x! + 5x + 6 x! + 13x + 12 x! 2x 8 x! + 2x 8 x! x 20 Recall from the previous section that when factoring trinomials, we should first check for a common factor. This could make the process of fully factoring much easier.

10 Example: Factor the following: 3x! + 15x! 18x t 4t! It is worth noting that just as 3 4 is the same as 4 3, the product (x + a)(x + b) is the same as (x + b)(x + a). This is by the commutative property of multiplication. Similarly, we were also able to rearrange the order of the terms in the second example above. Just as is the same as 5 + 2, a + b is the same as b + a since addition is also commutative. There exists another way to factor trinomials into a product of binomials. It involves a process of breaking up the middle term, partially factoring, then fully factoring. It can be a fairly involved process but has the advantage of potentially being more direct, though less efficient. Examples: Factor x! + 10x + 9 Factor x! + 14x + 24 Factor x! 5x 36 Factor x! + 3x 180 Homework: textbook pages , #3, 7, 9-15, 17-21, 23

11 Chapter 3: Factors and Products 3.6 Polynomials of the Form ax 2 + bx + c We continue factoring trinomials by examining those similar to the ones in the previous section, but such that there is a leading coefficient that cannot be removed by simple factoring (finding a common factor). In these cases we will want to closely examine factors of the product a c that sum to b. Example: Factor each of the following. 2x! + 5x + 2 3x! + 8x + 4 6x! 5xy + y! 10x! x 3 2x! + 11x x! 4x 5 Alternately, we can use logical reasoning. We know that the first terms in the binomials must multiply to the first term of the trinomial, and we know that the last terms in the binomials must multiply to the last term of the trinomial, so we can try a few options to see what works. If no options work, then the trinomial is unfactorable. Example: Factor each of the following. 4x! + 20x + 9 6x! 11x 35

12 Once again, remember that we should check for a GCF before attempting other methods of factoring trinomials. Example: Factor each of the following. 3x! + 3x! 18x 8x! yz! 12x! yz! 80x! yz! Note that if you want to verify your answer, you can always expand your resultant answer to ensure it gets the trinomial you want. Homework: textbook pages , #2-4, 8-10, 12, 13, 15, 16, 18, 19, Quiz review: textbook pages , #2a, 5-9

13 Chapter 3: Factors and Products 3.7 Multiplying Polynomials When we expanded the product of two binomials, we ensured that each term in the first binomial was multiplied by each term of the second binomial. We can expand this so as to apply it to higher-order polynomials, always ensuring that each term in the first polynomial gets multiplied by each term in the second. With binomial multiplication, we had two terms (in the first binomial) that each had to multiply with two terms (in the second binomial). Therefore, prior to simplification, the initial expansion had 2 2 = 4 terms. Similarly, the initial expansion of the product of a trinomial and a binomial would have 3 2 = 6 terms. We can use this as a quick check to make sure we ve done all the multiplication necessary. Example: Expand and simplify each of the following: (2x + 1)(x! 6x + 3) (x! 2x + 5)(2x! x 1)

14 When there are multiple operations being performed on polynomials, we must remember to follow the order of operations. Example: Simplify x 1 x (x + 4)(x + 1) Example: Simplify 2x 3 x + 1 x(x + 2) Example: Simplify 2x + 5! (x + 15)(x + 5) Example: Simplify x + 2y! Homework: textbook pages , #1, 4-7, 8-10 (a, c only), 11, 13, 14, 15 (a, c, e), 17-19, 21-22

15 Chapter 3: Factors and Products 3.8 Factoring Special Trinomials Simplify each expression below: (x + 2)(x 2) (x 5)(x + 5) (2x + 3)(2x 3) (x! 4y)(x! + 4y) What is special about these particular cases of binomial multiplication? The result is known as a difference of squares. It is called a difference of squares because the two monomials present are square terms, and the operation between them is subtraction. We note that the product (a + b)(a b) is equal to a! b!, and we can thus conclude that it is possible to factor: a! b! = (a + b)(a b) Example: Determine if each expression below is a difference of squares. If it is, factor. x! 9 25x! 1 8x! 49 36x! y! 121y!

16 We now look at another case. Simplify each expression below. x + 3! x + 1! 2x 3! x 1! The results here are referred to as perfect square trinomials. They are called such because they are produced by squaring binomials. We note that since a + b! = a! + 2ab + b!, it logically follows that a! + 2ab + b! factors into a + b!. Example: Determine if each expression below is a perfect square trinomial. If it is, factor. x! + 4x + 4 x! 4x + 4 9x! + 30x x! + 9 9x! + 30x 25 Note that general factoring practices still apply check for a GCF first, then use other factoring methods. Homework: textbook pages , #2, 4-9, (odd letters only), 15, Test review: textbook pages , #1-9, 11-14, 18-21, 24-36

17

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200 Polynomials: Objective Evaluate, add, subtract, multiply, and divide polynomials Definition: A Term is numbers or a product of numbers and/or variables. For example, 5x, 2y 2, -8, ab 4 c 2, etc. are all

More information

Simplifying and Combining Like Terms Exponent

Simplifying and Combining Like Terms Exponent Simplifying and Combining Like Terms Exponent Coefficient 4x 2 Variable (or Base) * Write the coefficients, variables, and exponents of: a) 8c 2 b) 9x c) y 8 d) 12a 2 b 3 Like Terms: Terms that have identical

More information

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3)

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3) Factoring Contents Introduction... 2 Factoring Polynomials... 4 Greatest Common Factor... 4 Factoring by Grouping... 5 Factoring a Trinomial with a Table... 5 Factoring a Trinomial with a Leading Coefficient

More information

2 TERMS 3 TERMS 4 TERMS (Must be in one of the following forms (Diamond, Slide & Divide, (Grouping)

2 TERMS 3 TERMS 4 TERMS (Must be in one of the following forms (Diamond, Slide & Divide, (Grouping) 3.3 Notes Factoring Factoring Always look for a Greatest Common Factor FIRST!!! 2 TERMS 3 TERMS 4 TERMS (Must be in one of the following forms (Diamond, Slide & Divide, (Grouping) to factor with two terms)

More information

Unit: Polynomials and Factoring

Unit: Polynomials and Factoring Unit: Polynomials: Multiplying and Factoring Name Dates Taught Specific Outcome 10I.A.1 Demonstrate an understanding of factors of whole numbers by determining: Prime factors Greatest common factor Least

More information

University of Phoenix Material

University of Phoenix Material 1 University of Phoenix Material Factoring and Radical Expressions The goal of this week is to introduce the algebraic concept of factoring polynomials and simplifying radical expressions. Think of factoring

More information

Developmental Math An Open Program Unit 12 Factoring First Edition

Developmental Math An Open Program Unit 12 Factoring First Edition Developmental Math An Open Program Unit 12 Factoring First Edition Lesson 1 Introduction to Factoring TOPICS 12.1.1 Greatest Common Factor 1 Find the greatest common factor (GCF) of monomials. 2 Factor

More information

Section 7.1 Common Factors in Polynomials

Section 7.1 Common Factors in Polynomials Chapter 7 Factoring How Does GPS Work? 7.1 Common Factors in Polynomials 7.2 Difference of Two Squares 7.3 Perfect Trinomial Squares 7.4 Factoring Trinomials: (x 2 + bx + c) 7.5 Factoring Trinomials: (ax

More information

Multiply the binomials. Add the middle terms. 2x 2 7x 6. Rewrite the middle term as 2x 2 a sum or difference of terms. 12x 321x 22

Multiply the binomials. Add the middle terms. 2x 2 7x 6. Rewrite the middle term as 2x 2 a sum or difference of terms. 12x 321x 22 Section 5.5 Factoring Trinomials 349 Factoring Trinomials 1. Factoring Trinomials: AC-Method In Section 5.4, we learned how to factor out the greatest common factor from a polynomial and how to factor

More information

7.1 Review for Mastery

7.1 Review for Mastery 7.1 Review for Mastery Factors and Greatest Common Factors A prime number has exactly two factors, itself and 1. The number 1 is not a prime number. To write the prime factorization of a number, factor

More information

Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456

Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456 Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456 Oct 2 1:50 PM 1 Have you used algebra tiles before? X 2 X 2 X X X Oct 3 10:47 AM 2 Factor x 2 + 3x + 2 X 2 X X

More information

Chapter 8: Factoring Polynomials. Algebra 1 Mr. Barr

Chapter 8: Factoring Polynomials. Algebra 1 Mr. Barr p. 1 Chapter 8: Factoring Polynomials Algebra 1 Mr. Barr Name: p. 2 Date Schedule Lesson/Activity 8.1 Monomials & Factoring 8.2 Using the Distributive Property 8.3 Quadratics in the form x 2 +bx+c Quiz

More information

Polynomial and Rational Expressions. College Algebra

Polynomial and Rational Expressions. College Algebra Polynomial and Rational Expressions College Algebra Polynomials A polynomial is an expression that can be written in the form a " x " + + a & x & + a ' x + a ( Each real number a i is called a coefficient.

More information

POD. Combine these like terms: 1) 3x 2 4x + 5x x 7x ) 7y 2 + 2y y + 5y 2. 3) 5x 4 + 2x x 7x 4 + 3x x

POD. Combine these like terms: 1) 3x 2 4x + 5x x 7x ) 7y 2 + 2y y + 5y 2. 3) 5x 4 + 2x x 7x 4 + 3x x POD Combine these like terms: 1) 3x 2 4x + 5x 2 6 + 9x 7x 2 + 2 2) 7y 2 + 2y 3 + 2 4y + 5y 2 3) 5x 4 + 2x 5 5 10x 7x 4 + 3x 5 12 + 2x 1 Definitions! Monomial: a single term ex: 4x Binomial: two terms separated

More information

Section 7.4 Additional Factoring Techniques

Section 7.4 Additional Factoring Techniques Section 7.4 Additional Factoring Techniques Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Factor trinomials when a = 1. Multiplying binomials

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

Name. 5. Simplify. a) (6x)(2x 2 ) b) (5pq 2 )( 4p 2 q 2 ) c) (3ab)( 2ab 2 )(2a 3 ) d) ( 6x 2 yz)( 5y 3 z)

Name. 5. Simplify. a) (6x)(2x 2 ) b) (5pq 2 )( 4p 2 q 2 ) c) (3ab)( 2ab 2 )(2a 3 ) d) ( 6x 2 yz)( 5y 3 z) 3.1 Polynomials MATHPOWER TM 10, Ontario Edition, pp. 128 133 To add polynomials, collect like terms. To subtract a polynomial, add its opposite. To multiply monomials, multiply the numerical coefficients.

More information

Slide 1 / 128. Polynomials

Slide 1 / 128. Polynomials Slide 1 / 128 Polynomials Slide 2 / 128 Table of Contents Factors and GCF Factoring out GCF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Name Period Day Date Assignment (Due the next class meeting) Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

More information

Section 13-1: The Distributive Property and Common Factors

Section 13-1: The Distributive Property and Common Factors Section 13-1: The Distributive Property and Common Factors Factor: 4y 18z 4y 18z 6(4y 3z) Identify the largest factor that is common to both terms. 6 Write the epression as a product by dividing each term

More information

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product At the end of Packet #1we worked on multiplying monomials, binomials, and trinomials. What we have to learn now is how to go backwards and do what is called factoring. The two meanings of Factor 1. Factor

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

Name Class Date. Adding and Subtracting Polynomials

Name Class Date. Adding and Subtracting Polynomials 8-1 Reteaching Adding and Subtracting Polynomials You can add and subtract polynomials by lining up like terms and then adding or subtracting each part separately. What is the simplified form of (3x 4x

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 7: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Section 5.6 Factoring Strategies

Section 5.6 Factoring Strategies Section 5.6 Factoring Strategies INTRODUCTION Let s review what you should know about factoring. (1) Factors imply multiplication Whenever we refer to factors, we are either directly or indirectly referring

More information

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1)

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1) NOTE: In addition to the problems below, please study the handout Exercise Set 10.1 posted at http://www.austincc.edu/jbickham/handouts. 1. Simplify: 5 7 5. Simplify: ( ab 5 c )( a c 5 ). Simplify: 4x

More information

Section R.4 Review of Factoring. Factoring Out the Greatest Common Factor

Section R.4 Review of Factoring. Factoring Out the Greatest Common Factor 1 Section R.4 Review of Factoring Objective #1: Factoring Out the Greatest Common Factor The Greatest Common Factor (GCF) is the largest factor that can divide into the terms of an expression evenly with

More information

In this section we revisit two special product forms that we learned in Chapter 5, the first of which was squaring a binomial.

In this section we revisit two special product forms that we learned in Chapter 5, the first of which was squaring a binomial. 5B. SPECIAL PRODUCTS 11 5b Special Products Special Forms In this section we revisit two special product forms that we learned in Chapter 5, the first of which was squaring a binomial. Squaring a binomial.

More information

Factor Trinomials When the Coefficient of the Second-Degree Term is 1 (Objective #1)

Factor Trinomials When the Coefficient of the Second-Degree Term is 1 (Objective #1) Factoring Trinomials (5.2) Factor Trinomials When the Coefficient of the Second-Degree Term is 1 EXAMPLE #1: Factor the trinomials. = = Factor Trinomials When the Coefficient of the Second-Degree Term

More information

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Algebra Module A33 Factoring - 2 Copyright This publication The Northern Alberta Institute of Technology 2002. All Rights Reserved. LAST REVISED November, 2008 Factoring - 2 Statement of Prerequisite

More information

Section R.5 Review of Factoring. Factoring Out the Greatest Common Factor

Section R.5 Review of Factoring. Factoring Out the Greatest Common Factor 1 Section R.5 Review of Factoring Objective #1: Factoring Out the Greatest Common Factor The Greatest Common Factor (GCF) is the largest factor that can divide into the terms of an expression evenly with

More information

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources:

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources: Accuplacer Review Workshop Intermediate Algebra Week Four Includes internet links to instructional videos for additional resources: http://www.mathispower4u.com (Arithmetic Video Library) http://www.purplemath.com

More information

Multiplication of Polynomials

Multiplication of Polynomials Multiplication of Polynomials In multiplying polynomials, we need to consider the following cases: Case 1: Monomial times Polynomial In this case, you can use the distributive property and laws of exponents

More information

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6) Adding Polynomials Adding & Subtracting Polynomials (Combining Like Terms) Subtracting Polynomials (if your nd polynomial is inside a set of parentheses). (x 8x + ) + (-x -x 7) FIRST, Identify the like

More information

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial.

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial. Section 4. Factoring Polynomials TERMINOLOGY 4.1 Prerequisite Terms: Binomial Factor (verb) GCF Monomial Polynomial Trinomial READING ASSIGNMENT 4. Sections 5.4, 6.1 through 6.5 160 READING AND SELF-DISCOVERY

More information

Factoring Methods. Example 1: 2x * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

Algebra. Chapter 8: Factoring Polynomials. Name: Teacher: Pd:

Algebra. Chapter 8: Factoring Polynomials. Name: Teacher: Pd: Algebra Chapter 8: Factoring Polynomials Name: Teacher: Pd: Table of Contents o Day 1: SWBAT: Factor polynomials by using the GCF. Pgs: 1-6 HW: Pages 7-8 o Day 2: SWBAT: Factor quadratic trinomials of

More information

ACCUPLACER Elementary Algebra Assessment Preparation Guide

ACCUPLACER Elementary Algebra Assessment Preparation Guide ACCUPLACER Elementary Algebra Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

Chapter 5 Polynomials

Chapter 5 Polynomials Department of Mathematics Grossmont College October 7, 2012 Multiplying Polynomials Multiplying Binomials using the Distributive Property We can multiply two binomials using the Distributive Property,

More information

3.1 Factors and Multiples of Whole Numbers

3.1 Factors and Multiples of Whole Numbers 3.1 Factors and Multiples of Whole Numbers LESSON FOCUS: Determine prime factors, greatest common factors, and least common multiples of whole numbers. The prime factorization of a natural number is the

More information

CCAC ELEMENTARY ALGEBRA

CCAC ELEMENTARY ALGEBRA CCAC ELEMENTARY ALGEBRA Sample Questions TOPICS TO STUDY: Evaluate expressions Add, subtract, multiply, and divide polynomials Add, subtract, multiply, and divide rational expressions Factor two and three

More information

FACTORING HANDOUT. A General Factoring Strategy

FACTORING HANDOUT. A General Factoring Strategy This Factoring Packet was made possible by a GRCC Faculty Excellence grant by Neesha Patel and Adrienne Palmer. FACTORING HANDOUT A General Factoring Strategy It is important to be able to recognize the

More information

Step one is identifying the GCF, and step two is dividing it out.

Step one is identifying the GCF, and step two is dividing it out. Throughout this course we will be looking at how to undo different operations in algebra. When covering exponents we showed how ( 3) 3 = 27, then when covering radicals we saw how to get back to the original

More information

Factors of 10 = = 2 5 Possible pairs of factors:

Factors of 10 = = 2 5 Possible pairs of factors: Factoring Trinomials Worksheet #1 1. b 2 + 8b + 7 Signs inside the two binomials are identical and positive. Factors of b 2 = b b Factors of 7 = 1 7 b 2 + 8b + 7 = (b + 1)(b + 7) 2. n 2 11n + 10 Signs

More information

6.3 Factor Special Products *

6.3 Factor Special Products * OpenStax-CNX module: m6450 1 6.3 Factor Special Products * Ramon Emilio Fernandez Based on Factor Special Products by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons

More information

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1)

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1) NOTE: In addition to the problems below, please study the handout Exercise Set 10.1 posted at http://www.austin.cc.tx.us/jbickham/handouts. 1. Simplify: 5 7 5. Simplify: ( 6ab 5 c )( a c 5 ). Simplify:

More information

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals.

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals. 4.2: Operations on Radicals and Rational Exponents In this section, we will move from operations on polynomials to operations on radical expressions, including adding, subtracting, multiplying and dividing

More information

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping Copyright 01 Pearson Education, Inc. Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping 1. Find the greatest common factor of a list of integers.. Find the greatest common factor of

More information

How can we factor polynomials?

How can we factor polynomials? How can we factor polynomials? Factoring refers to writing something as a product. Factoring completely means that all of the factors are relatively prime (they have a GCF of 1). Methods of factoring:

More information

Lesson 7.1: Factoring a GCF

Lesson 7.1: Factoring a GCF Name Lesson 7.1: Factoring a GCF Date Algebra I Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two

More information

Sect General Factoring Summary

Sect General Factoring Summary 111 Concept #1 Sect 6.6 - General Factoring Summary Factoring Strategy The flow chart on the previous page gives us a visual picture of how to attack a factoring problem. We first start at the top and

More information

The two meanings of Factor

The two meanings of Factor Name Lesson #3 Date: Factoring Polynomials Using Common Factors Common Core Algebra 1 Factoring expressions is one of the gateway skills necessary for much of what we do in algebra for the rest of the

More information

MTH 110-College Algebra

MTH 110-College Algebra MTH 110-College Algebra Chapter R-Basic Concepts of Algebra R.1 I. Real Number System Please indicate if each of these numbers is a W (Whole number), R (Real number), Z (Integer), I (Irrational number),

More information

Prerequisites. Introduction CHAPTER OUTLINE

Prerequisites. Introduction CHAPTER OUTLINE Prerequisites 1 Figure 1 Credit: Andreas Kambanls CHAPTER OUTLINE 1.1 Real Numbers: Algebra Essentials 1.2 Exponents and Scientific Notation 1.3 Radicals and Rational Expressions 1.4 Polynomials 1.5 Factoring

More information

2.01 Products of Polynomials

2.01 Products of Polynomials 2.01 Products of Polynomials Recall from previous lessons that when algebraic expressions are added (or subtracted) they are called terms, while expressions that are multiplied are called factors. An algebraic

More information

Chapter 6: Quadratic Functions & Their Algebra

Chapter 6: Quadratic Functions & Their Algebra Chapter 6: Quadratic Functions & Their Algebra Topics: 1. Quadratic Function Review. Factoring: With Greatest Common Factor & Difference of Two Squares 3. Factoring: Trinomials 4. Complete Factoring 5.

More information

Factoring Trinomials of the Form

Factoring Trinomials of the Form Section 7 3: Factoring Trinomials of the Form 1x 2 + Bx + C The FOIL process changes a product of 2 binomials into a polynomial. The reverse process starts with a polynomial and finds the 2 binomials whose

More information

Section 5.3 Factor By Grouping

Section 5.3 Factor By Grouping Section 5.3 Factor By Grouping INTRODUCTION In the previous section you were introduced to factoring out a common monomial factor from a polynomial. For example, in the binomial 6x 2 + 15x, we can recognize

More information

Review Journal 6 Assigned Work: See Website

Review Journal 6 Assigned Work: See Website MFM2P Polynomial Checklist 1 Goals for this unit: I can apply the distributive law to the product of binomials. I can complete the following types of factoring; common, difference of squares and simple

More information

Section 13.1 The Greatest Common Factor and Factoring by Grouping. to continue. Also, circle your answer to each numbered exercise.

Section 13.1 The Greatest Common Factor and Factoring by Grouping. to continue. Also, circle your answer to each numbered exercise. Algebra Foundations First Edition, Elayn Martin-Gay Sec. 13.1 Section 13.1 The Greatest Common Factor and Factoring by Grouping Complete the outline as you view Video Lecture 13.1. Pause the video as needed

More information

Unit 8: Quadratic Expressions (Polynomials)

Unit 8: Quadratic Expressions (Polynomials) Name: Period: Algebra 1 Unit 8: Quadratic Expressions (Polynomials) Note Packet Date Topic/Assignment HW Page Due Date 8-A Naming Polynomials and Combining Like Terms 8-B Adding and Subtracting Polynomials

More information

Chapter 5 Self-Assessment

Chapter 5 Self-Assessment Chapter 5 Self-Assessment. BLM 5 1 Concept BEFORE DURING (What I can do) AFTER (Proof that I can do this) 5.1 I can multiply binomials. I can multiply trinomials. I can explain how multiplication of binomials

More information

MATH 181-Quadratic Equations (7 )

MATH 181-Quadratic Equations (7 ) MATH 181-Quadratic Equations (7 ) 7.1 Solving a Quadratic Equation by Factoring I. Factoring Terms with Common Factors (Find the greatest common factor) a. 16 1x 4x = 4( 4 3x x ) 3 b. 14x y 35x y = 3 c.

More information

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping Unit 6 Name Factoring Day 1 Difference of Two Perfect Squares (DOTS) Day Greatest Common Factor (GCF) Day 3 Factoring Completely Binomials Day 4 QUIZ Day 5 Factor by Grouping Day 6 Factor Trinomials by

More information

Section 1.5: Factoring Special Products

Section 1.5: Factoring Special Products Objective: Identify and factor special products including a difference of two perfect squares, perfect square trinomials, and sum and difference of two perfect cubes. When factoring there are a few special

More information

Multiplying Polynomials

Multiplying Polynomials 14 Multiplying Polynomials This chapter will present problems for you to solve in the multiplication of polynomials. Specifically, you will practice solving problems multiplying a monomial (one term) and

More information

Section 5.5 Factoring Trinomials, a = 1

Section 5.5 Factoring Trinomials, a = 1 Section 5.5 Factoring Trinomials, a = 1 REVIEW Each of the following trinomials have a lead coefficient of 1. Let s see how they factor in a similar manner to those trinomials in Section 5.4. Example 1:

More information

Downloaded from

Downloaded from 9. Algebraic Expressions and Identities Q 1 Using identity (x - a) (x + a) = x 2 a 2 find 6 2 5 2. Q 2 Find the product of (7x 4y) and (3x - 7y). Q 3 Using suitable identity find (a + 3)(a + 2). Q 4 Using

More information

5.1 Exponents and Scientific Notation

5.1 Exponents and Scientific Notation 5.1 Exponents and Scientific Notation Definition of an exponent a r = Example: Expand and simplify a) 3 4 b) ( 1 / 4 ) 2 c) (0.05) 3 d) (-3) 2 Difference between (-a) r (-a) r = and a r a r = Note: The

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Multiplying binomials: We have a special way of remembering how to multiply binomials called FOIL: F: first x x = x 2 (x + 7)(x + 5) O: outer x 5 = 5x I: inner 7 x = 7x x 2 + 5x +7x + 35 (then simplify)

More information

1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of. r 2 4r 45

1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of. r 2 4r 45 Warm Up 1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of 17? 2 and 15 Multiply. 3. (x +2)(x +3) x 2 + 5x + 6 4. (r + 5)(r 9) r 2 4r 45 Objective Factor

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents Slide 1 / 128 Polynomials Table of ontents Slide 2 / 128 Factors and GF Factoring out GF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

Polynomial is a general description on any algebraic expression with 1 term or more. To add or subtract polynomials, we combine like terms.

Polynomial is a general description on any algebraic expression with 1 term or more. To add or subtract polynomials, we combine like terms. Polynomials Lesson 5.0 Re-Introduction to Polynomials Let s start with some definition. Monomial - an algebraic expression with ONE term. ---------------------------------------------------------------------------------------------

More information

Chapter 4 Factoring and Quadratic Equations

Chapter 4 Factoring and Quadratic Equations Chapter 4 Factoring and Quadratic Equations Lesson 1: Factoring by GCF, DOTS, and Case I Lesson : Factoring by Grouping & Case II Lesson 3: Factoring by Sum and Difference of Perfect Cubes Lesson 4: Solving

More information

Polynomials. Unit 10 Polynomials 2 of 2 SMART Board Notes.notebook. May 15, 2013

Polynomials. Unit 10 Polynomials 2 of 2 SMART Board Notes.notebook. May 15, 2013 Oct 19 9:41 M errick played basketball for 5 out of the 10 days for four hours each. How many hours did errick spend playing basketball? Oct 19 9:41 M Polynomials Polynomials 1 Table of ontents Factors

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

Section 5.3 Practice Exercises Vocabulary and Key Concepts

Section 5.3 Practice Exercises Vocabulary and Key Concepts Section 5.3 Practice Exercises Vocabulary and Key Concepts 1. a. To multiply 2(4x 5), apply the property. b. The conjugate of 4x + 7 is. c. When two conjugates are multiplied the resulting binomial is

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying polynomials working with complex numbers Introduction 2 b 2 A trinomial of the form x + bx + that can be written as

More information

ALGEBRAIC EXPRESSIONS AND IDENTITIES

ALGEBRAIC EXPRESSIONS AND IDENTITIES 9 ALGEBRAIC EXPRESSIONS AND IDENTITIES Exercise 9.1 Q.1. Identify the terms, their coefficients for each of the following expressions. (i) 5xyz 3zy (ii) 1 + x + x (iii) 4x y 4x y z + z (iv) 3 pq + qr rp

More information

Chapter 6.1: Introduction to parabolas and solving equations by factoring

Chapter 6.1: Introduction to parabolas and solving equations by factoring Chapter 6 Solving Quadratic Equations and Factoring Chapter 6.1: Introduction to parabolas and solving equations by factoring If you push a pen off a table, how does it fall? Does it fall like this? Or

More information

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each.

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. Unit 8: Polynomials Chapter Test Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. 1. 9x 2 2 2. 3 3. 2x 2 + 3x + 1 4. 9y -1 Part 2: Simplify each

More information

Topic 12 Factorisation

Topic 12 Factorisation Topic 12 Factorisation 1. How to find the greatest common factors of an algebraic expression. Definition: A factor of a number is an integer that divides the number exactly. So for example, the factors

More information

Math Final Examination STUDY GUIDE Fall Name Score TOTAL Final Grade

Math Final Examination STUDY GUIDE Fall Name Score TOTAL Final Grade Math 10006 Final Examination STUDY GUIDE Fall 010 Name Score TOTAL Final Grade The Use of a calculator is permitted on this exam. Duration of the test is 13 minutes and will have less number of questions

More information

Skills Practice Skills Practice for Lesson 10.1

Skills Practice Skills Practice for Lesson 10.1 Skills Practice Skills Practice for Lesson 10.1 Name Date Water Balloons Polynomials and Polynomial Functions Vocabulary Match each key term to its corresponding definition. 1. A polynomial written with

More information

Name: Algebra Unit 7 Polynomials

Name: Algebra Unit 7 Polynomials Name: Algebra Unit 7 Polynomials Monomial Binomial Trinomial Polynomial Degree Term Standard Form 1 ((2p 3 + 6p 2 + 10p) + (9p 3 + 11p 2 + 3p) TO REMEMBER Adding and Subtracting Polynomials TO REMEMBER

More information

Final Exam Review - MAT 0028

Final Exam Review - MAT 0028 Final Exam Review - MAT 0028 All questions on the final exam are multiple choice. You will be graded on your letter choices only - no partial credit will be awarded. To maximize the benefit of this review,

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

Greatest Common Factor and Factoring by Grouping

Greatest Common Factor and Factoring by Grouping mil84488_ch06_409-419.qxd 2/8/12 3:11 PM Page 410 410 Chapter 6 Factoring Polynomials Section 6.1 Concepts 1. Identifying the Greatest Common Factor 2. Factoring out the Greatest Common Factor 3. Factoring

More information

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday Name Period Unit 9 Calendar: Polynomials and Factoring Day Date Assignment (Due the next class meeting) Monday Wednesday 2/26/18 (A) 2/28/18 (B) 9.1 Worksheet Adding, Subtracting Polynomials, Multiplying

More information

Week 20 Algebra 1 Assignment:

Week 20 Algebra 1 Assignment: Week 0 Algebra 1 Assignment: Day 1: pp. 38-383 #-0 even, 3-7 Day : pp. 385-386 #-18 even, 1-5 Day 3: pp. 388-389 #-4 even, 7-9 Day 4: pp. 39-393 #1-37 odd Day 5: Chapter 9 test Notes on Assignment: Pages

More information

Factoring Quadratic Expressions VOCABULARY

Factoring Quadratic Expressions VOCABULARY 5-5 Factoring Quadratic Expressions TEKS FOCUS Foundational to TEKS (4)(F) Solve quadratic and square root equations. TEKS (1)(C) Select tools, including real objects, manipulatives, paper and pencil,

More information

Algebra I. Slide 1 / 211. Slide 2 / 211. Slide 3 / 211. Polynomials. Table of Contents. New Jersey Center for Teaching and Learning

Algebra I. Slide 1 / 211. Slide 2 / 211. Slide 3 / 211. Polynomials. Table of Contents. New Jersey Center for Teaching and Learning New Jersey enter for Teaching and Learning Slide 1 / 211 Progressive Mathematics Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students

More information

Selected Worked Homework Problems. Step 1: The GCF must be taken out first (if there is one) before factoring the hard trinomial.

Selected Worked Homework Problems. Step 1: The GCF must be taken out first (if there is one) before factoring the hard trinomial. Section 7 4: Factoring Trinomials of the form Ax 2 + Bx + C with A >1 Selected Worked Homework Problems 1. 2x 2 + 5x + 3 Step 1: The GCF must be taken out first (if there is one) before factoring the hard

More information

6.1 Greatest Common Factor and Factor by Grouping *

6.1 Greatest Common Factor and Factor by Grouping * OpenStax-CNX module: m64248 1 6.1 Greatest Common Factor and Factor by Grouping * Ramon Emilio Fernandez Based on Greatest Common Factor and Factor by Grouping by OpenStax This work is produced by OpenStax-CNX

More information

Lesson 3 Factoring Polynomials Skills

Lesson 3 Factoring Polynomials Skills Lesson 3 Factoring Polynomials Skills I can common factor polynomials. I can factor trinomials like where a is 1. ie. I can factor trinomials where a is not 1. ie. I can factor special products. Common

More information

HFCC Math Lab Beginning Algebra -19. In this handout we will discuss one method of factoring a general trinomial, that is an

HFCC Math Lab Beginning Algebra -19. In this handout we will discuss one method of factoring a general trinomial, that is an HFCC Math Lab Beginning Algebra -19 FACTORING TRINOMIALS a + b+ c ( a In this handout we will discuss one method of factoring a general trinomial, that is an epression of the form a + b+ c where a, b,

More information

8-4 Factoring ax 2 + bx + c. (3x + 2)(2x + 5) = 6x x + 10

8-4 Factoring ax 2 + bx + c. (3x + 2)(2x + 5) = 6x x + 10 When you multiply (3x + 2)(2x + 5), the coefficient of the x 2 -term is the product of the coefficients of the x-terms. Also, the constant term in the trinomial is the product of the constants in the binomials.

More information