f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

Size: px
Start display at page:

Download "f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable."

Transcription

1 MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ at most by a constant. The most general antiderivative of f is called the indefinite integral of f and is denoted by f (x)dx = F(x) + C, where C is called the constant of integration. Some basic integration formulas are as follows:. k dx = kx + C, k is a constant. x n dx = xn+ +C, n - 3. e x dx = e x +C 4. k f (x)dx = k f(x)dx, k is a constant 5. [ f (x) ± g(x)]dx = f (x)dx ± g(x)dx 6. dx = ln x +C x The above integrals can only be used when x is a variable. This section is to explain cases where u = f (x) and u is a differentiable function of x. The method of u-substitution is used to reverse derivatives that were obtained using the chain rule. These integrals have the following form: fg(x) ( ) g (x)dx = f (u)du, where u = g(x) and du = g (x)dx. f(u) can take on many forms. Several of these forms are presented in the following examples. Power Rule for Integration: u n du = un+ + C, if n - IMPORTANT: The difference between the formula for x n dx and the power rule for integration is that in the power rule, u represents a function and in x n dx, x is a variable. Example : Evaluate (x +) 0 dx. Solution: Since the integrand is a power of the function (x + ), we let u = x +. We then let du = () dx (since is the derivative of x + ). Now substitute these values into your original equation. (x +) 0 dx = u 0 du = u (x +) + C = + C

2 Integration of this form is often known as integration by substitution (or u-du substitution). Note that the above example uses the following general steps: To evaluate an indefinite integral by u-du substitution: Step : Rewrite your problem algebraically, if necessary, to simplify, expand, remove radicals, eliminate denominators, etc. Step : Choose u Step 3: Find du. Step 4: Make a constant adjustment, if necessary (see below in Example 3). Step 5: Rewrite original integral completely in terms of u and du. Make sure that you don t have both u s and x s in your problem after this step. Step 6: Apply appropriate rule to evaluate the integral (don t forget to add + C at the end) Step 7: Now rewrite your answer in terms of the original variable. Example : Evaluate 3x (x 3 +7) 3 dx Solution: Step : No need to rewrite the problem algebraically. Step : Choose u: The integrand contains a power of the function (x 3 + 7), so let u = x Step 3: Find du.: du = 3x dx Step 4: Not necessary. Step 5: Rewrite using u s and du s: 3x (x 3 +7) 3 dx = (x 3 +7) 3 (3x dx) = u 3 du Step 6: Apply the Power Rule for Integration: u 3 du = u4 4 +C Step 7: Rewrite in terms of the original variable u C = (x3 + 7) 4 + C 4 Sometimes, using simple u-substitution (as in the previous two examples) is not enough. Sometimes a constant adjustment must be made in order to obtain du in the integrand, as Example 3 illustrates. Example 3: Evaluate x x + 5 dx Solution: Step : x x + 5 dx = x(x + 5) dx Step : u = x + 5 Step 3: du = xdx

3 this Step 4: Since the problem consists of (x + 5) (xdx), du is not in the integrand and integral does not have the form u n du. We can put the integral in this form, however, by first multiplying and then dividing the integral by. This does not change the value of the integral. x(x + 5) dx = x(x + 5) dx = (x + 5) [xdx] = (x + 5) [xdx] Step 5: x(x + 5) dx = (x + 5) [xdx] = u du Step 6: u du = u 3 + C = 3 3 u 3 + C Step 7: 3 u 3 +C = 3 (x + 5) 3 +C Note that we can multiply the integrand by a non-zero constant k as long as we compensate for this by multiplying the integral by /k. IMPORTANT: We can adjust for constant factors by multiplying and dividing as described above, but we cannot adjust for variable factors this way! The following is an example of a problem where the Power Rule for Integrals does not apply: Example 4: Evaluate 4x (x 4 +) dx Solution: If we set u = x 4 +, we get du = 4x 3 dx. To get du in the integral, we need an additional factor of the variable x. However, we can only adjust for constant factors. Thus we cannot use the power rule. To evaluate the integral, we must first expand (x 4 + ) and then multiply through by 4x. Then integrate the results of this algebraic operation. The resulting solution follows (work is not shown. The solution is left for you to verify): 4x (x 4 +) dx = 4 x + x7 7 + x3 + C 3 Integrating Natural Exponential Functions: e u du = e u +C Example 5: Evaluate xe x dx Solution:. No need to rewrite algebraically.. u = x 3. du = xdx

4 4. Not necessary to make a constant adjustment. 5. xe x dx = e x [x dx ] = e u du 6. e u du = e u +C 7. e u + C = e x + C

5 Integrating Functions involving /u du: du = ln u +C u Example 6: (x 3 + 3x) Evaluate x 4 + 3x dx + 7 (x 3 + 3x) Solution:. x 4 + 3x + 7 dx = (x 3 + 3x) (x 4 + 3x + 7) dx. u = x 4 + 3x du = (4x 3 + 6x)dx (Note that this is two times the numerator) 4. (x 3 + 3x) (x 4 + 3x + 7) dx = (x4 + 3x + 7) [(x 3 + 3x)]dx 5. (x4 + 3x + 7) [(4x 3 + 6x)dx ] = du u 6. du = ln u +C u 7. ln x4 + 3x C or ln x 4 + 3x + 7 +C = (x4 + 3x + 7) [(4x 3 + 6x)dx ] Also note that some integrals may consist of a sum of terms where each term has a different form. Just remember to integrate each term separately, applying the appropriate rules to each term. Basic Integration Formulas discussed so far: If u is a differentiable function of x:. k du = ku + C, k is a constant. u n du = un+ +C, n - 3. e u du = e u +C 4. k f (x)dx = k f(x)dx, k is a constant 5. [ f (x) ± g(x)]dx = f (x)dx ± g(x)dx 6. du = ln u +C u

SUBSTITUTION III.. [f(x)] n f (x)

SUBSTITUTION III.. [f(x)] n f (x) Integration SUBSTITUTION III.. [f(x)] n f (x) Graham S McDonald and Silvia C Dalla A self-contained Tutorial Module for practising the integration of expressions of the form [f(x)] n f (x), where n Table

More information

Name: Math 10250, Final Exam - Version A May 8, 2007

Name: Math 10250, Final Exam - Version A May 8, 2007 Math 050, Final Exam - Version A May 8, 007 Be sure that you have all 6 pages of the test. Calculators are allowed for this examination. The exam lasts for two hours. The Honor Code is in effect for this

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

x f(x) D.N.E

x f(x) D.N.E Limits Consider the function f(x) x2 x. This function is not defined for x, but if we examine the value of f for numbers close to, we can observe something interesting: x 0 0.5 0.9 0.999.00..5 2 f(x).5.9.999

More information

Section 6.3 Multiplying & Dividing Rational Expressions

Section 6.3 Multiplying & Dividing Rational Expressions Section 6.3 Multiplying & Dividing Rational Expressions MULTIPLYING FRACTIONS In arithmetic, we can multiply fractions by multiplying the numerators separately from the denominators. For example, multiply

More information

: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity

: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity 4.3-4.5: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity The Chain Rule: Given y = f(g(x)). If the derivatives g (x) and f (g(x)) both exist, then y exists and (f(g(x))) = f

More information

Chapter 5 Integration

Chapter 5 Integration Chapter 5 Integration Integration Anti differentiation: The Indefinite Integral Integration by Substitution The Definite Integral The Fundamental Theorem of Calculus 5.1 Anti differentiation: The Indefinite

More information

Section 6.4 Adding & Subtracting Like Fractions

Section 6.4 Adding & Subtracting Like Fractions Section 6.4 Adding & Subtracting Like Fractions ADDING ALGEBRAIC FRACTIONS As you now know, a rational expression is an algebraic fraction in which the numerator and denominator are both polynomials. Just

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 2 JoungDong Kim Week 2: 4.1, 4.2, 4.3, 4.4, 4.5 Chapter 4 Rules for the Derivative Section 4.1 Derivatives of Powers, Exponents, and Sums Differentiation

More information

Week 19 Algebra 2 Assignment:

Week 19 Algebra 2 Assignment: Week 9 Algebra Assignment: Day : pp. 66-67 #- odd, omit #, 7 Day : pp. 66-67 #- even, omit #8 Day : pp. 7-7 #- odd Day 4: pp. 7-7 #-4 even Day : pp. 77-79 #- odd, 7 Notes on Assignment: Pages 66-67: General

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

Algebra 2 Final Exam

Algebra 2 Final Exam Algebra 2 Final Exam Name: Read the directions below. You may lose points if you do not follow these instructions. The exam consists of 30 Multiple Choice questions worth 1 point each and 5 Short Answer

More information

Note: I gave a few examples of nearly each of these. eg. #17 and #18 are the same type of problem.

Note: I gave a few examples of nearly each of these. eg. #17 and #18 are the same type of problem. Study Guide for Exam 3 Sections covered: 3.6, Ch 5 and Ch 7 Exam highlights 1 implicit differentiation 3 plain derivatives 3 plain antiderivatives (1 with substitution) 1 Find and interpret Partial Derivatives

More information

V =! Things to remember: E(p) = - pf'(p)

V =! Things to remember: E(p) = - pf'(p) dx (B) From (2), d!(4x + 5) (5x + 100) Setting x 150 in (1), we get 45,000 + 750 + 50 2 80,000 or 2 + 15-700 0!15 ± 55 2 "15 ± 225 + 2800 and 2 Since 0, 20. Now, for x 150, 20 and dx d -[4(150) + 5(20)]("6)

More information

2-4 Completing the Square

2-4 Completing the Square 2-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Write each expression as a trinomial. 1. (x 5) 2 x 2 10x + 25 2. (3x + 5) 2 9x 2 + 30x + 25 Factor each expression. 3.

More information

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources:

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources: Accuplacer Review Workshop Intermediate Algebra Week Four Includes internet links to instructional videos for additional resources: http://www.mathispower4u.com (Arithmetic Video Library) http://www.purplemath.com

More information

Warm up. Seek and Solve!!!

Warm up. Seek and Solve!!! Warm up Seek and Solve!!! Seek and Solve Answers: 0 2 DNE 3 Investigation # 1 Use the graph of y = 2 below to find the following limits: 1. lim x 2 2 = 3 2. lim x 0 2 = 3 3 3. lim x 3 2 = 3 Basic Limit

More information

Sandringham School Sixth Form. AS Maths. Bridging the gap

Sandringham School Sixth Form. AS Maths. Bridging the gap Sandringham School Sixth Form AS Maths Bridging the gap Section 1 - Factorising be able to factorise simple expressions be able to factorise quadratics The expression 4x + 8 can be written in factor form,

More information

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 ) APPM/MATH 450 Problem Set 5 s This assignment is due by 4pm on Friday, October 25th. You may either turn it in to me in class or in the box outside my office door (ECOT 235). Minimal credit will be given

More information

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: 4.1 Exponential Functions Hartfield MATH 2040 Unit 4 Page 1 Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest A t P 1 r n nt Formula 2 Continuously Compounded

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

Section 9.1 Solving Linear Inequalities

Section 9.1 Solving Linear Inequalities Section 9.1 Solving Linear Inequalities We know that a linear equation in x can be expressed as ax + b = 0. A linear inequality in x can be written in one of the following forms: ax + b < 0, ax + b 0,

More information

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps.

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps. Math 121 (Lesieutre); 4.3; September 6, 2017 The steps for graphing a rational function: 1. Factor the numerator and denominator, and write the function in lowest terms. 2. Set the numerator equal to zero

More information

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table.

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table. Double Your Money Your math teacher believes that doing assignments consistently will improve your understanding and success in mathematics. At the beginning of the year, your parents tried to encourage

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? Question 3: How do you find the relative extrema of a function? The strategy for tracking the sign of the derivative is useful for more than determining where a function is increasing or decreasing. It

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200 Polynomials: Objective Evaluate, add, subtract, multiply, and divide polynomials Definition: A Term is numbers or a product of numbers and/or variables. For example, 5x, 2y 2, -8, ab 4 c 2, etc. are all

More information

ECONOMICS 207 SPRING 2008 LABORATORY EXERCISE 6 KEY. 12x 16 x 2 2x

ECONOMICS 207 SPRING 2008 LABORATORY EXERCISE 6 KEY. 12x 16 x 2 2x ECONOMICS 207 SPRING 2008 LABORATORY EXERCISE 6 KEY Problem 1. Find the derivatives of each of the following functions with respect to x. a. y = 24x 1/3 + 3x 2 e 2x3 dy = 241 3 x 2/3 + 6xe 2x3 + 3x 2 (e

More information

Notation for the Derivative:

Notation for the Derivative: Notation for the Derivative: MA 15910 Lesson 13 Notes Section 4.1 (calculus part of textbook, page 196) Techniques for Finding Derivatives The derivative of a function y f ( x) may be written in any of

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

Edexcel past paper questions. Core Mathematics 4. Binomial Expansions

Edexcel past paper questions. Core Mathematics 4. Binomial Expansions Edexcel past paper questions Core Mathematics 4 Binomial Expansions Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Binomial Page Binomial Series C4 By the end of this unit you should be able to obtain

More information

Pre-Algebra, Unit 7: Percents Notes

Pre-Algebra, Unit 7: Percents Notes Pre-Algebra, Unit 7: Percents Notes Percents are special fractions whose denominators are 100. The number in front of the percent symbol (%) is the numerator. The denominator is not written, but understood

More information

Unit 3: Writing Equations Chapter Review

Unit 3: Writing Equations Chapter Review Unit 3: Writing Equations Chapter Review Part 1: Writing Equations in Slope Intercept Form. (Lesson 1) 1. Write an equation that represents the line on the graph. 2. Write an equation that has a slope

More information

Skills Practice Skills Practice for Lesson 10.1

Skills Practice Skills Practice for Lesson 10.1 Skills Practice Skills Practice for Lesson 10.1 Name Date Water Balloons Polynomials and Polynomial Functions Vocabulary Match each key term to its corresponding definition. 1. A polynomial written with

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

ACCUPLACER Elementary Algebra Assessment Preparation Guide

ACCUPLACER Elementary Algebra Assessment Preparation Guide ACCUPLACER Elementary Algebra Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since

Investigate. Name Per Algebra IB Unit 9 - Exponential Growth Investigation. Ratio of Values of Consecutive Decades. Decades Since Name Per Algebra IB Unit 9 - Exponential Growth Investigation Investigate Real life situation 1) The National Association Realtors estimates that, on average, the price of a house doubles every ten years

More information

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals.

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals. 4.2: Operations on Radicals and Rational Exponents In this section, we will move from operations on polynomials to operations on radical expressions, including adding, subtracting, multiplying and dividing

More information

Auction theory. Filip An. U.U.D.M. Project Report 2018:35. Department of Mathematics Uppsala University

Auction theory. Filip An. U.U.D.M. Project Report 2018:35. Department of Mathematics Uppsala University U.U.D.M. Project Report 28:35 Auction theory Filip An Examensarbete i matematik, 5 hp Handledare: Erik Ekström Examinator: Veronica Crispin Quinonez Augusti 28 Department of Mathematics Uppsala University

More information

Math 1314 Week 6 Session Notes

Math 1314 Week 6 Session Notes Math 1314 Week 6 Session Notes A few remaining examples from Lesson 7: 0.15 Example 17: The model Nt ( ) = 34.4(1 +.315 t) gives the number of people in the US who are between the ages of 45 and 55. Note,

More information

Chapter 4 Partial Fractions

Chapter 4 Partial Fractions Chapter 4 8 Partial Fraction Chapter 4 Partial Fractions 4. Introduction: A fraction is a symbol indicating the division of integers. For example,, are fractions and are called Common 9 Fraction. The dividend

More information

Here are the steps required for Adding and Subtracting Rational Expressions:

Here are the steps required for Adding and Subtracting Rational Expressions: Here are the steps required for Adding and Subtracting Rational Expressions: Step 1: Factor the denominator of each fraction to help find the LCD. Step 3: Find the new numerator for each fraction. To find

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

Equalities. Equalities

Equalities. Equalities Equalities Working with Equalities There are no special rules to remember when working with equalities, except for two things: When you add, subtract, multiply, or divide, you must perform the same operation

More information

TN 2 - Basic Calculus with Financial Applications

TN 2 - Basic Calculus with Financial Applications G.S. Questa, 016 TN Basic Calculus with Finance [016-09-03] Page 1 of 16 TN - Basic Calculus with Financial Applications 1 Functions and Limits Derivatives 3 Taylor Series 4 Maxima and Minima 5 The Logarithmic

More information

Decomposing Rational Expressions Into Partial Fractions

Decomposing Rational Expressions Into Partial Fractions Decomposing Rational Expressions Into Partial Fractions Say we are ked to add x to 4. The first step would be to write the two fractions in equivalent forms with the same denominators. Thus we write: x

More information

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed).

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Chapter 7: Labor Market So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Key idea: In the medium run, rising GD will lead to lower unemployment rate (more

More information

You are responsible for upholding the University of Maryland Honor Code while taking this exam.

You are responsible for upholding the University of Maryland Honor Code while taking this exam. Econ 300 Spring 013 First Midterm Exam version W Answers This exam consists of 5 multiple choice questions. The maximum duration of the exam is 50 minutes. 1. In the spaces provided on the scantron, write

More information

SYLLABUS. Class B.Com. I Year(Hons) Business Mathematics

SYLLABUS. Class B.Com. I Year(Hons) Business Mathematics SYLLABUS Class B.Com. I Year(Hons) Business Mathematics UNIT I Average, Ratio and Proportion, Percentage UNIT II Profit and Loss, Simple Interest, Compound Interest UNIT III UNIT IV UNIT V UNIT-I AVERAGE

More information

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x).

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x). 2 EXERCISES 27 2 Exercises Use integration by parts to compute lnx) dx 2 Compute x lnx) dx Hint: Use the substitution u = lnx) 3 Show that tan x) =/cos x) 2 and conclude that dx = arctanx) + C +x2 Note:

More information

Final Exam Sample Problems

Final Exam Sample Problems MATH 00 Sec. Final Exam Sample Problems Please READ this! We will have the final exam on Monday, May rd from 0:0 a.m. to 2:0 p.m.. Here are sample problems for the new materials and the problems from the

More information

Math 122 Calculus for Business Admin. and Social Sciences

Math 122 Calculus for Business Admin. and Social Sciences Math 122 Calculus for Business Admin. and Social Sciences Instructor: Ann Clifton Name: Exam #1 A July 3, 2018 Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes to complete

More information

Section 4.3 Objectives

Section 4.3 Objectives CHAPTER ~ Linear Equations in Two Variables Section Equation of a Line Section Objectives Write the equation of a line given its graph Write the equation of a line given its slope and y-intercept Write

More information

Section 8.2: Monte Carlo Estimation

Section 8.2: Monte Carlo Estimation Section 8.2: Monte Carlo Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 1/ 19

More information

Adding and Subtracting Fractions

Adding and Subtracting Fractions Adding and Subtracting Fractions Adding Fractions with Like Denominators In order to add fractions the denominators must be the same If the denominators of the fractions are the same we follow these two

More information

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well!

Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! Additional Review Exam 1 MATH 2053 Please note not all questions will be taken off of this. Study homework and in class notes as well! x 2 1 1. Calculate lim x 1 x + 1. (a) 2 (b) 1 (c) (d) 2 (e) the limit

More information

Final Exam Review - Business Calculus - Spring x x

Final Exam Review - Business Calculus - Spring x x Final Exam Review - Business Calculus - Spring 2016 Name: 1. (a) Find limit lim x 1 x 1 x 1 (b) Find limit lim x 0 x + 2 4 x 1 2. Use the definition of derivative: dy dx = lim f(x + h) f(x) h 0 h Given

More information

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

Instantaneous rate of change (IRC) at the point x Slope of tangent

Instantaneous rate of change (IRC) at the point x Slope of tangent CHAPTER 2: Differentiation Do not study Sections 2.1 to 2.3. 2.4 Rates of change Rate of change (RC) = Two types Average rate of change (ARC) over the interval [, ] Slope of the line segment Instantaneous

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product At the end of Packet #1we worked on multiplying monomials, binomials, and trinomials. What we have to learn now is how to go backwards and do what is called factoring. The two meanings of Factor 1. Factor

More information

Valuation and Tax Policy

Valuation and Tax Policy Valuation and Tax Policy Lakehead University Winter 2005 Formula Approach for Valuing Companies Let EBIT t Earnings before interest and taxes at time t T Corporate tax rate I t Firm s investments at time

More information

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance.

Lecture : The Definite Integral & Fundamental Theorem of Calculus MTH 124. We begin with a theorem which is of fundamental importance. We begin with a theorem which is of fundamental importance. The Fundamental Theorem of Calculus (FTC) If F (t) is continuous for a t b, then b a F (t) dt = F (b) F (a). Moreover the antiderivative F is

More information

3.1 Exponential Functions and Their Graphs Date: Exponential Function

3.1 Exponential Functions and Their Graphs Date: Exponential Function 3.1 Exponential Functions and Their Graphs Date: Exponential Function Exponential Function: A function of the form f(x) = b x, where the b is a positive constant other than, and the exponent, x, is a variable.

More information

MA 109 College Algebra EXAM 3 - REVIEW

MA 109 College Algebra EXAM 3 - REVIEW MA 9 College Algebra EXAM - REVIEW Name: Sec.:. In the picture below, the graph of = f(x) is the solid graph, and the graph of = g(x) is the dashed graph. Find a formula for g(x). 9 7 - -9 - -7 - - - -

More information

Random Variables and Probability Functions

Random Variables and Probability Functions University of Central Arkansas Random Variables and Probability Functions Directory Table of Contents. Begin Article. Stephen R. Addison Copyright c 001 saddison@mailaps.org Last Revision Date: February

More information

MATH 105 CHAPTER 2 page 1

MATH 105 CHAPTER 2 page 1 MATH 105 CHAPTER 2 page 1 RATE OF CHANGE EXAMPLE: A company determines that the cost in dollars to manufacture x cases ofcdʼs Imitations of the Rich and Famous by Kevin Connors is given by C(x) =100 +15x

More information

Percentage Change and Elasticity

Percentage Change and Elasticity ucsc supplementary notes math 105a Percentage Change and Elasticity 1. Relative and percentage rates of change The derivative of a differentiable function y = fx) describes how the function changes. The

More information

University of Phoenix Material

University of Phoenix Material 1 University of Phoenix Material Factoring and Radical Expressions The goal of this week is to introduce the algebraic concept of factoring polynomials and simplifying radical expressions. Think of factoring

More information

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale)

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Math 184 - Summer 2011 Midterm 3 Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Read all of the following information before starting the exam: Calculators

More information

1. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS

1. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS Percent 7. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS Percent means out of 00. If you understand this concept, it then becomes very easy to change a percent to an equivalent decimal or fraction. %

More information

(x + 2)(x + 3) + (x + 2)(x + 3) 5(x + 3) (x + 2)(x + 3) + x(x + 2) 5x + 15 (x + 2)(x + 3) + x 2 + 2x. 5x x 2 + 2x. x 2 + 7x + 15 x 2 + 5x + 6

(x + 2)(x + 3) + (x + 2)(x + 3) 5(x + 3) (x + 2)(x + 3) + x(x + 2) 5x + 15 (x + 2)(x + 3) + x 2 + 2x. 5x x 2 + 2x. x 2 + 7x + 15 x 2 + 5x + 6 Which is correct? Alex s add the numerators and the denominators way 5 x + 2 + x Morgan s find a common denominator way 5 x + 2 + x 5 x + 2 + x I added the numerator plus the numerator and the denominator

More information

5.1 Exponents and Scientific Notation

5.1 Exponents and Scientific Notation 5.1 Exponents and Scientific Notation Definition of an exponent a r = Example: Expand and simplify a) 3 4 b) ( 1 / 4 ) 2 c) (0.05) 3 d) (-3) 2 Difference between (-a) r (-a) r = and a r a r = Note: The

More information

Rho and Delta. Paul Hollingsworth January 29, Introduction 1. 2 Zero coupon bond 1. 3 FX forward 2. 5 Rho (ρ) 4. 7 Time bucketing 6

Rho and Delta. Paul Hollingsworth January 29, Introduction 1. 2 Zero coupon bond 1. 3 FX forward 2. 5 Rho (ρ) 4. 7 Time bucketing 6 Rho and Delta Paul Hollingsworth January 29, 2012 Contents 1 Introduction 1 2 Zero coupon bond 1 3 FX forward 2 4 European Call under Black Scholes 3 5 Rho (ρ) 4 6 Relationship between Rho and Delta 5

More information

MATH 104 Practice Problems for Exam 3

MATH 104 Practice Problems for Exam 3 MATH 4 Practice Problems for Exam 3 There are too many problems here for one exam, but they re good practice! For each of the following series, say whether it converges or diverges, and explain why.. 2.

More information

CCAC ELEMENTARY ALGEBRA

CCAC ELEMENTARY ALGEBRA CCAC ELEMENTARY ALGEBRA Sample Questions TOPICS TO STUDY: Evaluate expressions Add, subtract, multiply, and divide polynomials Add, subtract, multiply, and divide rational expressions Factor two and three

More information

5.6 Special Products of Polynomials

5.6 Special Products of Polynomials 5.6 Special Products of Polynomials Learning Objectives Find the square of a binomial Find the product of binomials using sum and difference formula Solve problems using special products of polynomials

More information

Solutions for Rational Functions

Solutions for Rational Functions Solutions for Rational Functions I. Souldatos Problems Problem 1. 1.1. Let f(x) = x4 9 x 3 8. Find the domain of f(x). Set the denominator equal to 0: x 3 8 = 0 x 3 = 8 x = 3 8 = 2 So, the domain is all

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Lecture 4 - Utility Maximization

Lecture 4 - Utility Maximization Lecture 4 - Utility Maximization David Autor, MIT and NBER 1 1 Roadmap: Theory of consumer choice This figure shows you each of the building blocks of consumer theory that we ll explore in the next few

More information

Mathematics (Project Maths Phase 2)

Mathematics (Project Maths Phase 2) L.17 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2013 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks For examiner Question 1 Centre stamp 2 3

More information

Quadratic Modeling Elementary Education 10 Business 10 Profits

Quadratic Modeling Elementary Education 10 Business 10 Profits Quadratic Modeling Elementary Education 10 Business 10 Profits This week we are asking elementary education majors to complete the same activity as business majors. Our first goal is to give elementary

More information

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING

TEACHING NOTE 98-04: EXCHANGE OPTION PRICING TEACHING NOTE 98-04: EXCHANGE OPTION PRICING Version date: June 3, 017 C:\CLASSES\TEACHING NOTES\TN98-04.WPD The exchange option, first developed by Margrabe (1978), has proven to be an extremely powerful

More information

Topic #1: Evaluating and Simplifying Algebraic Expressions

Topic #1: Evaluating and Simplifying Algebraic Expressions John Jay College of Criminal Justice The City University of New York Department of Mathematics and Computer Science MAT 105 - College Algebra Departmental Final Examination Review Topic #1: Evaluating

More information

7.1 Simplifying Rational Expressions

7.1 Simplifying Rational Expressions 7.1 Simplifying Rational Expressions LEARNING OBJECTIVES 1. Determine the restrictions to the domain of a rational expression. 2. Simplify rational expressions. 3. Simplify expressions with opposite binomial

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed).

So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Chapter 6: Labor Market So far in the short-run analysis we have ignored the wage and price (we assume they are fixed). Key idea: In the medium run, rising GD will lead to lower unemployment rate (more

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

Date: Student Name: Teacher Name: Romelle Loewy. Score: 1) Simplify: 9(a + b) + 4(3a + 2b) A) 13a 13b C) 21a + 2b B) 21a + 17b D) 38ab

Date: Student Name: Teacher Name: Romelle Loewy. Score: 1) Simplify: 9(a + b) + 4(3a + 2b) A) 13a 13b C) 21a + 2b B) 21a + 17b D) 38ab Grade 7 Mathematics EOG (GSE) Quiz Answer Key Expressions and Equations - (MGSE7.EE.1 ) Work With Expressions, (MGSE7.EE.2 ) Rewriting Expressions In Diff. Forms, (MGSE7.EE.3 ) Problems With Positive &

More information

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski BARUCH COLLEGE MATH 05 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski The final examination for Math 05 will consist of two parts.

More information

Please make sure you bubble in your answers carefully on the bubble sheet and circle your answers on your test booklet.

Please make sure you bubble in your answers carefully on the bubble sheet and circle your answers on your test booklet. Math 128 Exam #1 Fall 2017 SPECIAL CODE: 101701 Name Signature: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Academic Honesty Statement: By signing my name above, I acknowledge

More information

Cost (in dollars) 0 (free) Number of magazines purchased

Cost (in dollars) 0 (free) Number of magazines purchased Math 1 Midterm Review Name *****Don t forget to study the other methods for solving systems of equations (substitution and elimination) as well as systems of linear inequalities and line of best fit! Also,

More information

The Normal Distribution

The Normal Distribution Will Monroe CS 09 The Normal Distribution Lecture Notes # July 9, 207 Based on a chapter by Chris Piech The single most important random variable type is the normal a.k.a. Gaussian) random variable, parametrized

More information

1.1 Forms for fractions px + q An expression of the form (x + r) (x + s) quadratic expression which factorises) may be written as

1.1 Forms for fractions px + q An expression of the form (x + r) (x + s) quadratic expression which factorises) may be written as 1 Partial Fractions x 2 + 1 ny rational expression e.g. x (x 2 1) or x 4 x may be written () (x 3) as a sum of simpler fractions. This has uses in many areas e.g. integration or Laplace Transforms. The

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x Name Date HW Packet Lesson 3 Introduction to Exponential Functions HW Problem 1 In this problem, we look at the characteristics of Linear and Exponential Functions. Complete the table below. Function If

More information

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Opportunity Cost (or "Wow, I coulda had a V8!") The underlying idea is derived

More information