Section 6.3 Multiplying & Dividing Rational Expressions

Size: px
Start display at page:

Download "Section 6.3 Multiplying & Dividing Rational Expressions"

Transcription

1 Section 6.3 Multiplying & Dividing Rational Expressions MULTIPLYING FRACTIONS In arithmetic, we can multiply fractions by multiplying the numerators separately from the denominators. For example, multiply : Multiply the numerators separately from the denominators: and we get: In algebra, we can multiply fractions by multiplying the numerators separately from the denominators. Example 1: Multiply. Simplify completely. 3x 2 4y 7x 5y b) 3x x 5x 1 Procedure: Multiply the numerators separately from the denominators to form one fraction: 3x 2 4y 7x 5y b) 3x x 5x 1 3x 2 7x 4y 5y (3x + 2) x 4 (5x 1) 21x 3 20y 2 3x 2 + 2x 20x 4 We ll often try to simplify the result of multiplication by canceling common factors, as outlined in Section 6.1. In both examples above, the resulting fractions cannot be simplified. You can see, in the second step of part (b), its factored form, and there are no common factors that can be canceled. Multiplying and Dividing Rational Expressions page 6.3-1

2 In arithmetic, when multiplying fractions, we can cross cancel common factors before actually multiplying the fractions together. For example, multiply : First factor all of the numerators and denominators: Common factors, top to bottom, can be rewritten as 1 s. The 2 s can cancel and be rewritten as 1 s: and the 3 s can cancel and be rewritten as 1 s: (The 5 s can not be rewritten as 1 s because they are both in the numerator.) We now have two fractions that can be multiplied together: and we get: In algebra, when multiplying fractions, we can cross cancel common factors before actually multiplying the fractions together. Example 2: Multiply 2x 6 x 2 + 5x x2 2x x 2 9 Procedure: First factor each numerator and denominator, then look for common factors to cross cancel. These common factors must be in the numerator and denominator. 2x 6 x 2 + 5x x2 2x x 2 9 2(x 3) x(x + 5) x(x 2) (x 3)(x + 3) The common factors of x can be rewritten as 1 s: 2(x 3) 1 (x + 5) 1 (x 2) (x 3)(x + 3) The common factors of (x 3) can be rewritten as 1 s: We now have two fractions that can be multiplied together: 2 1 1(x + 5) 2 (x + 5) 1(x 2) 1 (x + 3) (x 2) (x + 3) and we get: 2(x 2) (x + 5)(x + 3) Multiplying and Dividing Rational Expressions page 6.3-2

3 2x 4 In Example 2, we could also write the answer multiplied out as x 2 + 8x The important thing to note is that there are no more common factors that can be canceled. The final answer may be written in either factored form or polynomial form (multiplied out). The steps shown in Example 2 indicate replacing the common factors with 1 s. This might work well in the explanation of things here in the textbook but in practice, you are more likely to use the method of crosscanceling by actually crossing out the common factors, as shown here. (Notice, still, that a 1 is written above or below the canceled factor.) Exercise 1 Multiply. Factor and simplify wherever possible. 5a 2 2b 3 3a 4b 4 b) 3a 2 4b 3 14b 6a 2 c) y y 2y 3 d) 4x 2 3x 6x 10x 5 e) 3x 3 x 2 1 x2 + x 6x 9 f) 3x 2 x x 2 + 3x 10 x 2 4 7x x Multiplying and Dividing Rational Expressions page 6.3-3

4 DIVIDING FRACTIONS In arithmetic, when dividing fractions, we invert the second fraction and then multiply the fractions together. For example, divide : Invert the second fraction (write its reciprocal) and multiply : Multiply the numerators separately from the denominators: and we get: Another example, divide : Invert the second fraction (write its reciprocal) and multiply : Multiply the numerators separately from the denominators: We can replace the common factors (the 2 s and the 3 s) with 1 s: (Notice that we replaced only one of the 3 s in the second fraction; there was only one 3 to reduce from the first fraction.) 5 Multiply within the individual fractions: and we get: Multiplying and Dividing Rational Expressions page 6.3-4

5 In algebra, when dividing fractions, we invert the second fraction and then multiply the fractions together. Example 3: Divide 5x + 10 x 2 5x + 6 x 2 4 2x 2 x 15 Procedure: First: rewrite the entire problem as a multiplication by inverting the second fraction. CAUTION: DO NOT FACTOR FIRST, or even at the same time as inverting the fraction. Doing so could lead to errors. 5x + 10 x 2 5x + 6 2x2 x 15 x 2 4 Second, factor each numerator and denominator. This step requires a good understanding of how to factor polynomials. The factoring steps are not shown here. You should, however, factor each on a separate piece of paper to verify that what is shown below is accurate. 5(x + 2) (x 3)(x 2) (2x + 5)(x 3) (x 2)(x + 2) Next, replace common factors with 1 s (x 2) (2x + 5) 1 (x 2) 1 (This could also be done using cross-canceling.) Notice that the factors (x 2) are both in the denominator and cannot reduce. We now get: 5 (x 2) (2x + 5) (x 2) and multiplying, we get: 5(2x + 5) (x 2)(x 2) Since the denominator has two factors of (x 2) this answer could be written one of two ways: either as 5(2x + 5) (x 2) 2 or multiplied out as 10x + 25 x 2 4x + 4. Multiplying and Dividing Rational Expressions page 6.3-5

6 Exercise 2 Divide. Factor and simplify wherever possible. 8y 2 5x 3 4x 15y 4 b) 5a 2 2b 3 3a 4b 4 c) x 2 5x 3x 2x2 + 8x 6x d) x 3 x 2 9 x 4 x + 3 e) x 2 4 3x 8 (x + 2) f) x 2 2x 15 x 2 25 x 2 9 2x + 10 Multiplying and Dividing Rational Expressions page 6.3-6

7 We cannot forget what was learned in Section 6.1. Remember that, if two binomials one in the numerator and the other in the denominator are complete opposites of one another, they may reduce to - 1 1, or just - 1. Such is the case for 2 x x 2 shown in Example 4, below. Example 4: Divide 2 x x 2 5x x 2 4 3x 15 Procedure: First: rewrite the entire problem as a multiplication by inverting the second fraction. CAUTION: DO NOT FACTOR FIRST, or even at the same time as inverting the fraction. Doing so could lead to errors. 2 x x 2 5x 3x 15 x 2 4 Second, factor each numerator and denominator. Also, write each factor in descending order. (- x + 2) x(x 5) 3(x 5) (x 2)(x + 2) Note that (- x + 2) in the numerator and (x 2) in the denominator are complete opposites, so they can cancel to -1 1 ; of course, the factors of (x 5) also cancel: (- 1) x (1) 3 (1) (1)(x + 2) - 3 x(x + 2) Exercise 3 Apply the indicated operation. Simplify wherever possible. 3x 1 x x 1 x + 3 b) 2x 8 x x x Multiplying and Dividing Rational Expressions page 6.3-7

8 c) 3x 6 2x + 1 8x x 5x 2 d) 6 + 2x x 2 1 x x Answers to each Exercise Section 6.3 Exercise 1: 15a 3 8b 7 b) 7 4b 2 c) 3y 2 + 6y 10y 15 d) 4 5 e) x (2x 3) f) 3x 1 7x + 35 Exercise 2: 6y 6 x 4 b) 10ab 3 c) (x 5) (x + 4) d) Exercise 3: 1 (x 4) e) (x 2) (3x 8) f) 2 (x 3) - 3x (x + 3) b) - 2x (x + 5) c) x d) - 8 (x + 1) Multiplying and Dividing Rational Expressions page 6.3-8

9 Section 6.3 Focus Exercises 1. Apply the indicated operation. Simplify wherever possible. - 12p 3 5m 2 10m 4p 3 b) 8a 9b 4 4a 15b 2 c) x 2 3x 5x x d) 3x 6 4x 8x 2 x + 2 e) w 2 4 2w 8 2w + 4 w 4 f) x x x x 2 5x g) y 2 y 6 y y + 2 h) x 2 + 6x + 8 x 2 16 x + 2 2x 8 Multiplying and Dividing Rational Expressions page 6.3-9

10 2. Apply the indicated operation. Simplify wherever possible. 5x x 2 3x x2 + x 2 4x 2 b) x 2 9x + 18 x 2 11x x2 20x x 2 9 c) 2x 4 x x 4 x + 2 d) x 2 5x 2x x2 x 2 1 e) 5x x 3x x 2 f) 49 x 2 x 2 + 7x x 4 + x Multiplying and Dividing Rational Expressions page

Section 6.4 Adding & Subtracting Like Fractions

Section 6.4 Adding & Subtracting Like Fractions Section 6.4 Adding & Subtracting Like Fractions ADDING ALGEBRAIC FRACTIONS As you now know, a rational expression is an algebraic fraction in which the numerator and denominator are both polynomials. Just

More information

Section 8 2: Multiplying or Dividing Rational Expressions

Section 8 2: Multiplying or Dividing Rational Expressions Section 8 2: Multiplying or Dividing Rational Expressions Multiplying Fractions The basic rule for multiplying fractions is to multiply the numerators together and multiply the denominators together a

More information

Here are the steps required for Adding and Subtracting Rational Expressions:

Here are the steps required for Adding and Subtracting Rational Expressions: Here are the steps required for Adding and Subtracting Rational Expressions: Step 1: Factor the denominator of each fraction to help find the LCD. Step 3: Find the new numerator for each fraction. To find

More information

Polynomial and Rational Expressions. College Algebra

Polynomial and Rational Expressions. College Algebra Polynomial and Rational Expressions College Algebra Polynomials A polynomial is an expression that can be written in the form a " x " + + a & x & + a ' x + a ( Each real number a i is called a coefficient.

More information

Adding and Subtracting Rational Expressions

Adding and Subtracting Rational Expressions Adding and Subtracting Rational Expressions To add or subtract rational expressions, follow procedures similar to those used in adding and subtracting rational numbers. 4 () 4(3) 10 1 3 3() (3) 1 1 1 All

More information

CCAC ELEMENTARY ALGEBRA

CCAC ELEMENTARY ALGEBRA CCAC ELEMENTARY ALGEBRA Sample Questions TOPICS TO STUDY: Evaluate expressions Add, subtract, multiply, and divide polynomials Add, subtract, multiply, and divide rational expressions Factor two and three

More information

HFCC Math Lab Intermediate Algebra - 8 ADDITION AND SUBTRATION OF RATIONAL EXPRESSIONS

HFCC Math Lab Intermediate Algebra - 8 ADDITION AND SUBTRATION OF RATIONAL EXPRESSIONS HFCC Math Lab Intermediate Algebra - 8 ADDITION AND SUBTRATION OF RATIONAL EXPRESSIONS Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example

More information

Section 5.6 Factoring Strategies

Section 5.6 Factoring Strategies Section 5.6 Factoring Strategies INTRODUCTION Let s review what you should know about factoring. (1) Factors imply multiplication Whenever we refer to factors, we are either directly or indirectly referring

More information

Skills Practice Skills Practice for Lesson 10.1

Skills Practice Skills Practice for Lesson 10.1 Skills Practice Skills Practice for Lesson 10.1 Name Date Water Balloons Polynomials and Polynomial Functions Vocabulary Match each key term to its corresponding definition. 1. A polynomial written with

More information

Warm up. Seek and Solve!!!

Warm up. Seek and Solve!!! Warm up Seek and Solve!!! Seek and Solve Answers: 0 2 DNE 3 Investigation # 1 Use the graph of y = 2 below to find the following limits: 1. lim x 2 2 = 3 2. lim x 0 2 = 3 3 3. lim x 3 2 = 3 Basic Limit

More information

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals.

In the previous section, we added and subtracted polynomials by combining like terms. In this section, we extend that idea to radicals. 4.2: Operations on Radicals and Rational Exponents In this section, we will move from operations on polynomials to operations on radical expressions, including adding, subtracting, multiplying and dividing

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

7.1 Simplifying Rational Expressions

7.1 Simplifying Rational Expressions 7.1 Simplifying Rational Expressions LEARNING OBJECTIVES 1. Determine the restrictions to the domain of a rational expression. 2. Simplify rational expressions. 3. Simplify expressions with opposite binomial

More information

Name Class Date. Multiplying Two Binomials Using Algebra Tiles. 2x(x + 3) = x 2 + x. 1(x + 3) = x +

Name Class Date. Multiplying Two Binomials Using Algebra Tiles. 2x(x + 3) = x 2 + x. 1(x + 3) = x + Name Class Date Multiplying Polynomials Going Deeper Essential question: How do you multiply polynomials? A monomial is a number, a variable, or the product of a number and one or more variables raised

More information

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources:

Accuplacer Review Workshop. Intermediate Algebra. Week Four. Includes internet links to instructional videos for additional resources: Accuplacer Review Workshop Intermediate Algebra Week Four Includes internet links to instructional videos for additional resources: http://www.mathispower4u.com (Arithmetic Video Library) http://www.purplemath.com

More information

Simplify a rational expression

Simplify a rational expression EXAMPLE 1 Simplify : Simplify a rational expression x 2 2x 15 x 2 9 x 2 2x 15 x 2 9 (x +3)(x 5) (x +3)(x 3) Factor numerator and denominator. (x +3)(x 5) Divide out common factor. (x +3)(x 3) x 5 x 3 ANSWER

More information

Add and Subtract Rational Expressions *

Add and Subtract Rational Expressions * OpenStax-CNX module: m63368 1 Add and Subtract Rational Expressions * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section,

More information

Section 5.3 Factor By Grouping

Section 5.3 Factor By Grouping Section 5.3 Factor By Grouping INTRODUCTION In the previous section you were introduced to factoring out a common monomial factor from a polynomial. For example, in the binomial 6x 2 + 15x, we can recognize

More information

Completing the Square. A trinomial that is the square of a binomial. x Squaring half the coefficient of x. AA65.pdf.

Completing the Square. A trinomial that is the square of a binomial. x Squaring half the coefficient of x. AA65.pdf. AA65.pdf 6.5 Completing the Square 1. Converting from vertex form to standard form involves expanding the square of the binomial, distributing a, and then isolating y. What method does converting from

More information

UNIT 1 RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS Lesson 1: Working with Radicals and Properties of Real Numbers

UNIT 1 RELATIONSHIPS BETWEEN QUANTITIES AND EXPRESSIONS Lesson 1: Working with Radicals and Properties of Real Numbers Guided Practice Example 1 Reduce the radical expression result rational or irrational? 80. If the result has a root in the denominator, rationalize it. Is the 1. Rewrite each number in the expression as

More information

5.6 Special Products of Polynomials

5.6 Special Products of Polynomials 5.6 Special Products of Polynomials Learning Objectives Find the square of a binomial Find the product of binomials using sum and difference formula Solve problems using special products of polynomials

More information

Rational Expressions: Multiplying and Dividing Rational Expressions

Rational Expressions: Multiplying and Dividing Rational Expressions OpenStax-CNX module: m2964 Rational Expressions: Multiplying and Dividing Rational Expressions Wade Ellis Denny Burzynski This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

(x + 2)(x + 3) + (x + 2)(x + 3) 5(x + 3) (x + 2)(x + 3) + x(x + 2) 5x + 15 (x + 2)(x + 3) + x 2 + 2x. 5x x 2 + 2x. x 2 + 7x + 15 x 2 + 5x + 6

(x + 2)(x + 3) + (x + 2)(x + 3) 5(x + 3) (x + 2)(x + 3) + x(x + 2) 5x + 15 (x + 2)(x + 3) + x 2 + 2x. 5x x 2 + 2x. x 2 + 7x + 15 x 2 + 5x + 6 Which is correct? Alex s add the numerators and the denominators way 5 x + 2 + x Morgan s find a common denominator way 5 x + 2 + x 5 x + 2 + x I added the numerator plus the numerator and the denominator

More information

HFCC Math Lab Beginning Algebra -19. In this handout we will discuss one method of factoring a general trinomial, that is an

HFCC Math Lab Beginning Algebra -19. In this handout we will discuss one method of factoring a general trinomial, that is an HFCC Math Lab Beginning Algebra -19 FACTORING TRINOMIALS a + b+ c ( a In this handout we will discuss one method of factoring a general trinomial, that is an epression of the form a + b+ c where a, b,

More information

Chapter 2 Algebra Part 1

Chapter 2 Algebra Part 1 Chapter 2 Algebra Part 1 Section 2.1 Expansion (Revision) In Mathematics EXPANSION really means MULTIPLY. For example 3(2x + 4) can be expanded by multiplying them out. Remember: There is an invisible

More information

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School Arithmetic Mathematics Help Sheet The University of Sydney Business School Common Arithmetic Symbols is not equal to is approximately equal to is identically equal to infinity, which is a non-finite number

More information

Completing the Square. A trinomial that is the square of a binomial. x Square half the coefficient of x. AA65.pdf.

Completing the Square. A trinomial that is the square of a binomial. x Square half the coefficient of x. AA65.pdf. AA65.pdf 6.5 Completing the Square 1. Converting from vertex form to standard form involves expanding the square of the binomial, distributing a, and then isolating y. What method does converting from

More information

Section 7.4 Additional Factoring Techniques

Section 7.4 Additional Factoring Techniques Section 7.4 Additional Factoring Techniques Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Factor trinomials when a = 1. Multiplying binomials

More information

ACCUPLACER Elementary Algebra Assessment Preparation Guide

ACCUPLACER Elementary Algebra Assessment Preparation Guide ACCUPLACER Elementary Algebra Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Algebra Module A33 Factoring - 2 Copyright This publication The Northern Alberta Institute of Technology 2002. All Rights Reserved. LAST REVISED November, 2008 Factoring - 2 Statement of Prerequisite

More information

Lesson 7.1: Factoring a GCF

Lesson 7.1: Factoring a GCF Name Lesson 7.1: Factoring a GCF Date Algebra I Factoring expressions is one of the gateway skills that is necessary for much of what we do in algebra for the rest of the course. The word factor has two

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

5.06 Rationalizing Denominators

5.06 Rationalizing Denominators .0 Rationalizing Denominators There is a tradition in mathematics of eliminating the radicals from the denominators (or numerators) of fractions. The process is called rationalizing the denominator (or

More information

Prerequisites. Introduction CHAPTER OUTLINE

Prerequisites. Introduction CHAPTER OUTLINE Prerequisites 1 Figure 1 Credit: Andreas Kambanls CHAPTER OUTLINE 1.1 Real Numbers: Algebra Essentials 1.2 Exponents and Scientific Notation 1.3 Radicals and Rational Expressions 1.4 Polynomials 1.5 Factoring

More information

Grade 8 Exponents and Powers

Grade 8 Exponents and Powers ID : ae-8-exponents-and-powers [] Grade 8 Exponents and Powers For more such worksheets visit wwwedugaincom Answer the questions ()? (2) Simplify (a -2 + b -2 ) - (3) Simplify 32-3/5 (4) Find value of

More information

Algebra 7-4 Study Guide: Factoring (pp & 487) Page 1! of 11!

Algebra 7-4 Study Guide: Factoring (pp & 487) Page 1! of 11! Page 1! of 11! Attendance Problems. Find each product. 1.(x 2)(2x + 7) 2. (3y + 4)(2y + 9) 3. (3n 5)(n 7) Factor each trinomial. 4. x 2 +4x 32 5. z 2 + 15z + 36 6. h 2 17h + 72 I can factor quadratic trinomials

More information

Unit 8: Quadratic Expressions (Polynomials)

Unit 8: Quadratic Expressions (Polynomials) Name: Period: Algebra 1 Unit 8: Quadratic Expressions (Polynomials) Note Packet Date Topic/Assignment HW Page Due Date 8-A Naming Polynomials and Combining Like Terms 8-B Adding and Subtracting Polynomials

More information

1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of. r 2 4r 45

1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of. r 2 4r 45 Warm Up 1. Which pair of factors of 8 has a sum of 9? 1 and 8 2. Which pair of factors of 30 has a sum of 17? 2 and 15 Multiply. 3. (x +2)(x +3) x 2 + 5x + 6 4. (r + 5)(r 9) r 2 4r 45 Objective Factor

More information

Addition and Subtraction of Rational Expressions 5.3

Addition and Subtraction of Rational Expressions 5.3 Addition and Subtraction of Rational Epressions 5.3 This section is concerned with addition and subtraction of rational epressions. In the first part of this section, we will look at addition of epressions

More information

Chapter 10. Rational Numbers

Chapter 10. Rational Numbers Chapter 0 Rational Numbers The Histor of Chess 0. Rational Epressions 0. Multipling Rational Epressions 0.3 Dividing Rational Epressions 0. Dividing Polnomials 0.5 Addition and Subtraction of Rational

More information

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product

The two meanings of Factor 1. Factor (verb) : To rewrite an algebraic expression as an equivalent product At the end of Packet #1we worked on multiplying monomials, binomials, and trinomials. What we have to learn now is how to go backwards and do what is called factoring. The two meanings of Factor 1. Factor

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

Adding and Subtracting Fractions

Adding and Subtracting Fractions Adding and Subtracting Fractions Adding Fractions with Like Denominators In order to add fractions the denominators must be the same If the denominators of the fractions are the same we follow these two

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6)

(8m 2 5m + 2) - (-10m 2 +7m 6) (8m 2 5m + 2) + (+10m 2-7m + 6) Adding Polynomials Adding & Subtracting Polynomials (Combining Like Terms) Subtracting Polynomials (if your nd polynomial is inside a set of parentheses). (x 8x + ) + (-x -x 7) FIRST, Identify the like

More information

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼ 3 cups cups cup Fractions are a form of division. When I ask what is 3/ I am asking How big will each part be if I break 3 into equal parts? The answer is. This a fraction. A fraction is part of a whole.

More information

Brackets and Factorising

Brackets and Factorising Brackets and Factorising Based on the quiz you have just done, give yourself a target: A1: I must learn to expand single brackets, such as 3(x + 5) A2: I must learn to expand double brackets, such as (x

More information

Math 154 :: Elementary Algebra

Math 154 :: Elementary Algebra Math 1 :: Elementar Algebra Section.1 Exponents Section. Negative Exponents Section. Polnomials Section. Addition and Subtraction of Polnomials Section. Multiplication of Polnomials Section. Division of

More information

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3)

Factoring completely is factoring a product down to a product of prime factors. 24 (2)(12) (2)(2)(6) (2)(2)(2)(3) Factoring Contents Introduction... 2 Factoring Polynomials... 4 Greatest Common Factor... 4 Factoring by Grouping... 5 Factoring a Trinomial with a Table... 5 Factoring a Trinomial with a Leading Coefficient

More information

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200

-5y 4 10y 3 7y 2 y 5: where y = -3-5(-3) 4 10(-3) 3 7(-3) 2 (-3) 5: Simplify -5(81) 10(-27) 7(9) (-3) 5: Evaluate = -200 Polynomials: Objective Evaluate, add, subtract, multiply, and divide polynomials Definition: A Term is numbers or a product of numbers and/or variables. For example, 5x, 2y 2, -8, ab 4 c 2, etc. are all

More information

MTH 110-College Algebra

MTH 110-College Algebra MTH 110-College Algebra Chapter R-Basic Concepts of Algebra R.1 I. Real Number System Please indicate if each of these numbers is a W (Whole number), R (Real number), Z (Integer), I (Irrational number),

More information

Step one is identifying the GCF, and step two is dividing it out.

Step one is identifying the GCF, and step two is dividing it out. Throughout this course we will be looking at how to undo different operations in algebra. When covering exponents we showed how ( 3) 3 = 27, then when covering radicals we saw how to get back to the original

More information

Special Binomial Products

Special Binomial Products Lesson 11-6 Lesson 11-6 Special Binomial Products Vocabulary perfect square trinomials difference of squares BIG IDEA The square of a binomial a + b is the expression (a + b) 2 and can be found by multiplying

More information

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping

Factoring. Difference of Two Perfect Squares (DOTS) Greatest Common Factor (GCF) Factoring Completely Trinomials. Factor Trinomials by Grouping Unit 6 Name Factoring Day 1 Difference of Two Perfect Squares (DOTS) Day Greatest Common Factor (GCF) Day 3 Factoring Completely Binomials Day 4 QUIZ Day 5 Factor by Grouping Day 6 Factor Trinomials by

More information

Pre-Algebra, Unit 7: Percents Notes

Pre-Algebra, Unit 7: Percents Notes Pre-Algebra, Unit 7: Percents Notes Percents are special fractions whose denominators are 100. The number in front of the percent symbol (%) is the numerator. The denominator is not written, but understood

More information

University of Phoenix Material

University of Phoenix Material 1 University of Phoenix Material Factoring and Radical Expressions The goal of this week is to introduce the algebraic concept of factoring polynomials and simplifying radical expressions. Think of factoring

More information

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each.

Unit 8: Polynomials Chapter Test. Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. Unit 8: Polynomials Chapter Test Part 1: Identify each of the following as: Monomial, binomial, or trinomial. Then give the degree of each. 1. 9x 2 2 2. 3 3. 2x 2 + 3x + 1 4. 9y -1 Part 2: Simplify each

More information

x f(x) D.N.E

x f(x) D.N.E Limits Consider the function f(x) x2 x. This function is not defined for x, but if we examine the value of f for numbers close to, we can observe something interesting: x 0 0.5 0.9 0.999.00..5 2 f(x).5.9.999

More information

Final Exam Review - MAT 0028

Final Exam Review - MAT 0028 Final Exam Review - MAT 0028 All questions on the final exam are multiple choice. You will be graded on your letter choices only - no partial credit will be awarded. To maximize the benefit of this review,

More information

2.01 Products of Polynomials

2.01 Products of Polynomials 2.01 Products of Polynomials Recall from previous lessons that when algebraic expressions are added (or subtracted) they are called terms, while expressions that are multiplied are called factors. An algebraic

More information

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Name Period Day Date Assignment (Due the next class meeting) Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

More information

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product.

Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Ch. 8 Polynomial Factoring Sec. 1 Factoring is the process of changing a polynomial expression that is essentially a sum into an expression that is essentially a product. Factoring polynomials is not much

More information

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12.

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12. Chapter 3: Factors and Products 3.1 Factors and Multiples of Whole Numbers In this chapter we will look at the topic of factors and products. In previous years, we examined these with only numbers, whereas

More information

Name For those going into. Algebra 1 Honors. School years that begin with an ODD year: do the odds

Name For those going into. Algebra 1 Honors. School years that begin with an ODD year: do the odds Name For those going into LESSON 2.1 Study Guide For use with pages 64 70 Algebra 1 Honors GOAL: Graph and compare positive and negative numbers Date Natural numbers are the numbers 1,2,3, Natural numbers

More information

Chapter 6.1: Introduction to parabolas and solving equations by factoring

Chapter 6.1: Introduction to parabolas and solving equations by factoring Chapter 6 Solving Quadratic Equations and Factoring Chapter 6.1: Introduction to parabolas and solving equations by factoring If you push a pen off a table, how does it fall? Does it fall like this? Or

More information

D This process could be written backwards and still be a true equation. = A D + B D C D

D This process could be written backwards and still be a true equation. = A D + B D C D Section 4 2: Dividing Polynomials Dividing Polynomials if the denominator is a monomial. We add and subtract fractions with a common denominator using the following rule. If there is a common denominator

More information

Week 19 Algebra 2 Assignment:

Week 19 Algebra 2 Assignment: Week 9 Algebra Assignment: Day : pp. 66-67 #- odd, omit #, 7 Day : pp. 66-67 #- even, omit #8 Day : pp. 7-7 #- odd Day 4: pp. 7-7 #-4 even Day : pp. 77-79 #- odd, 7 Notes on Assignment: Pages 66-67: General

More information

Learning Plan 3 Chapter 3

Learning Plan 3 Chapter 3 Learning Plan 3 Chapter 3 Questions 1 and 2 (page 82) To convert a decimal into a percent, you must move the decimal point two places to the right. 0.72 = 72% 5.46 = 546% 3.0842 = 308.42% Question 3 Write

More information

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial.

TERMINOLOGY 4.1. READING ASSIGNMENT 4.2 Sections 5.4, 6.1 through 6.5. Binomial. Factor (verb) GCF. Monomial. Polynomial. Section 4. Factoring Polynomials TERMINOLOGY 4.1 Prerequisite Terms: Binomial Factor (verb) GCF Monomial Polynomial Trinomial READING ASSIGNMENT 4. Sections 5.4, 6.1 through 6.5 160 READING AND SELF-DISCOVERY

More information

5.1 Exponents and Scientific Notation

5.1 Exponents and Scientific Notation 5.1 Exponents and Scientific Notation Definition of an exponent a r = Example: Expand and simplify a) 3 4 b) ( 1 / 4 ) 2 c) (0.05) 3 d) (-3) 2 Difference between (-a) r (-a) r = and a r a r = Note: The

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

Name Class Date. Adding and Subtracting Polynomials

Name Class Date. Adding and Subtracting Polynomials 8-1 Reteaching Adding and Subtracting Polynomials You can add and subtract polynomials by lining up like terms and then adding or subtracting each part separately. What is the simplified form of (3x 4x

More information

Math 1201 Unit 3 Factors and Products Final Review. Multiple Choice. 1. Factor the binomial. a. c. b. d. 2. Factor the binomial. a. c. b. d.

Math 1201 Unit 3 Factors and Products Final Review. Multiple Choice. 1. Factor the binomial. a. c. b. d. 2. Factor the binomial. a. c. b. d. Multiple Choice 1. Factor the binomial. 2. Factor the binomial. 3. Factor the trinomial. 4. Factor the trinomial. 5. Factor the trinomial. 6. Factor the trinomial. 7. Factor the binomial. 8. Simplify the

More information

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping

Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping Copyright 01 Pearson Education, Inc. Mini-Lecture 6.1 The Greatest Common Factor and Factoring by Grouping 1. Find the greatest common factor of a list of integers.. Find the greatest common factor of

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

FACTORING HANDOUT. A General Factoring Strategy

FACTORING HANDOUT. A General Factoring Strategy This Factoring Packet was made possible by a GRCC Faculty Excellence grant by Neesha Patel and Adrienne Palmer. FACTORING HANDOUT A General Factoring Strategy It is important to be able to recognize the

More information

Slide 1 / 128. Polynomials

Slide 1 / 128. Polynomials Slide 1 / 128 Polynomials Slide 2 / 128 Table of Contents Factors and GCF Factoring out GCF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

How can we factor polynomials?

How can we factor polynomials? How can we factor polynomials? Factoring refers to writing something as a product. Factoring completely means that all of the factors are relatively prime (they have a GCF of 1). Methods of factoring:

More information

1 RATIONAL NUMBERS. Exercise Q.1. Using appropriate properties find: Ans. (i) (by commutativity)

1 RATIONAL NUMBERS. Exercise Q.1. Using appropriate properties find: Ans. (i) (by commutativity) RATIONAL NUMBERS Exercise. Q.. Using appropriate properties find: 3 3 (i) + 3 3 3 (ii) + 7 4 Ans. (i) 3 3 + 3 3 3 + 3 3 + 3 3 + + 3 3 4 + + 3 + 3 + + + 4 (by commutativity) (by distributivity) (ii) 3 3

More information

Section 13-1: The Distributive Property and Common Factors

Section 13-1: The Distributive Property and Common Factors Section 13-1: The Distributive Property and Common Factors Factor: 4y 18z 4y 18z 6(4y 3z) Identify the largest factor that is common to both terms. 6 Write the epression as a product by dividing each term

More information

Multiply the binomials. Add the middle terms. 2x 2 7x 6. Rewrite the middle term as 2x 2 a sum or difference of terms. 12x 321x 22

Multiply the binomials. Add the middle terms. 2x 2 7x 6. Rewrite the middle term as 2x 2 a sum or difference of terms. 12x 321x 22 Section 5.5 Factoring Trinomials 349 Factoring Trinomials 1. Factoring Trinomials: AC-Method In Section 5.4, we learned how to factor out the greatest common factor from a polynomial and how to factor

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

Algebra/Geometry Blend Unit #5: Factoring and Quadratic Functions Lesson 2: Factoring Trinomials. What does factoring really mean?

Algebra/Geometry Blend Unit #5: Factoring and Quadratic Functions Lesson 2: Factoring Trinomials. What does factoring really mean? Algebra/Geometry Blend Unit #5: Factoring and Quadratic Functions Lesson 2: Factoring Trinomials Name Period Date [page 1] Before you embark on your next factoring adventure, it is important to ask yourself

More information

Multiplying Polynomials

Multiplying Polynomials 14 Multiplying Polynomials This chapter will present problems for you to solve in the multiplication of polynomials. Specifically, you will practice solving problems multiplying a monomial (one term) and

More information

Section R.4 Review of Factoring. Factoring Out the Greatest Common Factor

Section R.4 Review of Factoring. Factoring Out the Greatest Common Factor 1 Section R.4 Review of Factoring Objective #1: Factoring Out the Greatest Common Factor The Greatest Common Factor (GCF) is the largest factor that can divide into the terms of an expression evenly with

More information

Downloaded from

Downloaded from 9. Algebraic Expressions and Identities Q 1 Using identity (x - a) (x + a) = x 2 a 2 find 6 2 5 2. Q 2 Find the product of (7x 4y) and (3x - 7y). Q 3 Using suitable identity find (a + 3)(a + 2). Q 4 Using

More information

Chapter 4 Factoring and Quadratic Equations

Chapter 4 Factoring and Quadratic Equations Chapter 4 Factoring and Quadratic Equations Lesson 1: Factoring by GCF, DOTS, and Case I Lesson : Factoring by Grouping & Case II Lesson 3: Factoring by Sum and Difference of Perfect Cubes Lesson 4: Solving

More information

Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456

Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456 Is the following a perfect cube? (use prime factorization to show if it is or isn't) 3456 Oct 2 1:50 PM 1 Have you used algebra tiles before? X 2 X 2 X X X Oct 3 10:47 AM 2 Factor x 2 + 3x + 2 X 2 X X

More information

Factor Trinomials When the Coefficient of the Second-Degree Term is 1 (Objective #1)

Factor Trinomials When the Coefficient of the Second-Degree Term is 1 (Objective #1) Factoring Trinomials (5.2) Factor Trinomials When the Coefficient of the Second-Degree Term is 1 EXAMPLE #1: Factor the trinomials. = = Factor Trinomials When the Coefficient of the Second-Degree Term

More information

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps.

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps. Math 121 (Lesieutre); 4.3; September 6, 2017 The steps for graphing a rational function: 1. Factor the numerator and denominator, and write the function in lowest terms. 2. Set the numerator equal to zero

More information

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

8-4 Factoring ax 2 + bx + c. (3x + 2)(2x + 5) = 6x x + 10

8-4 Factoring ax 2 + bx + c. (3x + 2)(2x + 5) = 6x x + 10 When you multiply (3x + 2)(2x + 5), the coefficient of the x 2 -term is the product of the coefficients of the x-terms. Also, the constant term in the trinomial is the product of the constants in the binomials.

More information

Section R.5 Review of Factoring. Factoring Out the Greatest Common Factor

Section R.5 Review of Factoring. Factoring Out the Greatest Common Factor 1 Section R.5 Review of Factoring Objective #1: Factoring Out the Greatest Common Factor The Greatest Common Factor (GCF) is the largest factor that can divide into the terms of an expression evenly with

More information

Decomposing Rational Expressions Into Partial Fractions

Decomposing Rational Expressions Into Partial Fractions Decomposing Rational Expressions Into Partial Fractions Say we are ked to add x to 4. The first step would be to write the two fractions in equivalent forms with the same denominators. Thus we write: x

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 7: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

Special Factoring Rules

Special Factoring Rules Special Factoring Rules Part of this worksheet deals with factoring the special products covered in Chapter 4, and part of it covers factoring some new special products. If you can identify these special

More information

1. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS

1. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS Percent 7. FRACTIONAL AND DECIMAL EQUIVALENTS OF PERCENTS Percent means out of 00. If you understand this concept, it then becomes very easy to change a percent to an equivalent decimal or fraction. %

More information

Dividing Polynomials

Dividing Polynomials OpenStax-CNX module: m49348 1 Dividing Polynomials OpenStax OpenStax Precalculus This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you

More information

Developmental Math An Open Program Unit 12 Factoring First Edition

Developmental Math An Open Program Unit 12 Factoring First Edition Developmental Math An Open Program Unit 12 Factoring First Edition Lesson 1 Introduction to Factoring TOPICS 12.1.1 Greatest Common Factor 1 Find the greatest common factor (GCF) of monomials. 2 Factor

More information