The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )

Size: px
Start display at page:

Download "The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )"

Transcription

1 APPM/MATH 450 Problem Set 5 s This assignment is due by 4pm on Friday, October 25th. You may either turn it in to me in class or in the box outside my office door (ECOT 235). Minimal credit will be given for incomplete solutions or solutions that do not provide details on how the solution is found. For problems that require you to implement a method, you may use code from our textbook website faires/numerical-analysis/programs/, although they may require some modification. For your own personal understanding of the methods involved, it is highly recommended that you attempt your own implementations. 1. Consider the derivation of the second-order accurate Centered Difference Formula using Taylor Expansion. If we re very particular about the handling of the error terms we might obtain the following formula f (x) = f(x + h) f(x h) h2 12 [f (ξ 1 ) + f (ξ 2 )] where ξ 1 (x, x + h), ξ 2 (x h, x) Assuming that f is continuous, use a common theorem from calculus to show that we are justified in writing the formula with a simplified error term as f (x) = f(x + h) f(x h) h2 f (ξ) where ξ (x h, x + h) We need to show that there exists some ξ (x h, x + h) such that 1 2 [f (ξ 1 ) + f (ξ 2 )] = f (ξ) The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying g(x 1 ) M g(x 2 ) there exists a c in [x 1, x 2 ] such that g(c) = M. Here, we notice that [f (ξ 1 ) + f (ξ 2 )] /2 is the average of f (x 1 ) and f (x 2 ). Thus, if we (without loss of generality) assume that f (ξ 1 ) f (ξ 2 ), then we have f (ξ 1 ) 1 2 [f (ξ 1 ) + f (ξ 2 )] f (ξ 2 ) Then, by the Intermediate Value Theorem, we have that there must exist a ξ in [ξ 1, ξ 2 ] such that 1 2 [f (ξ 1 ) + f (ξ 2 )] = f (ξ) Finally, since ξ 1 (x h, x) and ξ 2 (x, x + h), we have that ξ (x h, x + h)

2 2. The following second-order accurate Backward Difference Formula formula was discussed in class f (x n ) f(x n ) 4f(x n h) + 3f(x n ). (a) Derive the formula and its corresponding truncation error using Taylor Expansion. We begin by expanding f(x n h) and f(x n ) about x n. We have f(x n h) = f(x n ) hf (x n ) + h2 2 f (x n ) h3 f (ξ) (1) f(x n ) = f(x n ) f (x n ) + 2 f (x n ) 4h3 3 f (ξ) (2) We notice that if we take 4 times the first equation and subtract the second equation the O ( h 2) terms will cancel out. Solving for f (x n ) we have 4f(x n 2) f(x n ) = 3f(x n ) f (x n ) f (ξ) f (x n ) = f(x n ) 4f(x n h) + 3f(x n ) + h2 3 f (ξ) for some ξ (x n, x n + ) (b) Derive the formula and its corresponding truncation error using Lagrange interpolation. Since this is a 3-point formula, we interpolate f on the nodes located at (x n ), (x n h), and x n, which we now relabel as x n 2, x n 1 and x n, respectively. The interpolating polynomial at these nodes, along with its error term, is give by f(x) = n j=n 2 L 2,j (x) f(x j ) + f (ξ(x)) (x x n 2 ) (x x n 1 ) (x x n ) Taking the derivative we have f (x) = n j=n 2 L 2,j(x) f(x j ) + d [ f ] (ξ(x)) (x x n 2 ) (x x n 1 ) (x x n ) dx The first term will give us the finite difference approximation and the second term will give us the error. Let s deal with the approximation first. We need to compute the derivatives of the Lagrange basis functions. We have L 2,n 2 (x) = L 2,n 1 (x) = (x x n 1 ) (x x n ) (x n 2 x n 1 ) (x n 2 x n ) (x x n 2 ) (x x n ) (x n 1 x n 2 ) (x n 1 x n ) L 2,n (x) = (x x n 2) (x x n 1 ) (x n x n 2 ) (x n x n 1 ) L 2,n 2(x) = (x x n 1) + (x x n ) (x n 2 x n 1 ) (x n 2 x n ) L 2,n 1(x) = (x x n 2) + (x x n ) (x n 1 x n 2 ) (x n 1 x n ) L 2,n(x) = (x x n 2) + (x x n 1 ) (x n x n 2 ) (x n x n 1 )

3 Recalling the definitions of x n 1 and x n 2 in terms of h, and evaluating the basis functions at x n we have L 2,n 2(x n ) = h ( h) ( ) = 1 L 2,n 1(x n ) = (h) ( h) = 2 h L 2,n(x n ) = + h () (h) = 3 Then the approximation term becomes n j=n 2 L 2,j(x n ) f(x j ) = f(x n 2) 2f(x n 1) h + 3f(x n) = f(x n ) 4f(x n h) + 3f(x n ) Now for the error term. We differentiate using the product rule [ d f ] (ξ(x)) (x x n 2 ) (x x n 1 ) (x x n ) = d dx dx + f (ξ(x)) [ f (ξ(x)) ] (x x n 2 ) (x x n 1 ) (x x n ) [(x x n 1 ) (x x n ) + (x x n 2 ) (x x n ) + (x x n 2 ) (x x n 1 )] Plugging in x = x n and letting ξ = ξ(x n ) we see that the first term is zero, and the second term is f (ξ) [ () (h)] = h2 3 f (ξ) Note that this is identical to the results of the Taylor Expansion derivation in part (a).

4 3. (a) Using Taylor Expansion, derive the following four-point Forward Difference approximation to the second derivative along with the corresponding truncation error: f (x 0 ) 2f(x 0) 5f(x 0 + h) + 4f(x 0 + ) f(x 0 + 3h) h 2 Expanding the three relevant terms in the formula using Taylor Expansion, we have f(x 0 + h) = f(x 0 ) + hf (x 0 ) + h2 2 f (x 0 ) + h3 f (x) + h4 24 f (ξ) (3) f(x 0 + ) = f(x 0 ) + f (x 0 ) + f (x 0 ) + 4h3 3 f (x) f (ξ) (4) f(x 0 + 3h) = f(x 0 ) + 3hf (x 0 ) + 9h2 2 f (x 0 ) + 9h3 2 f (x) + 27h4 8 f (ξ) (5) Then 2f(x 0 ) 5f(x 0 + h) + 4f(x 0 + ) f(x 0 + 3h) = h 2 f (x 0 ) h4 f (ξ) Dividing by h 2 and solving for f (x 0 ) gives f (x 0 ) = 2f(x 0) 5f(x 0 + h) + 4f(x 0 + ) f(x 0 + 3h) h h2 f (ξ) Notice that the error term is O ( h 2), so the given difference formula is second-order accurate. (b) Using step sizes of h = 2 n for n = 1,..., 8, verify numerically that the given approximation has second-order accuracy by approximating f (1) for f(x) = 1/x. Clearly explain your method of verification and include all relevant numerical results. To verify that the method is second-order accurate we will approximate f (1) for step sizes that decrease by a factor of 2 and look at the ratios of the error. Since the method is second-order we expect that reducing the step size by 2 should result in a decrease in the error by a factor of 4. Thus, we should have e n 1 e n 4 or e n e n We have the following table h f (1) e n e n 1 /e n e n /e n

5 4. In this problem you will use Richardson s Extrapolation to compute higher-order approximations of f (x). Let N 1 (h) be the second-order centered difference approximation N 1 (h) = f(x + h) f(x h) (a) Use Richardson s Extrapolation to derive the difference formula N 2 (h) (in terms of N 1 ) and give the corresponding order of accuracy. Let M = f (x). Upon close examination of the Taylor Expansion derivation of the centered difference approximation to f (x) we see that the only error terms that survive the subtraction have even powers (e.g. h 2,, etc). Then, we can write the approximation and it s error terms using step-size h and h/2: M = N 1 (h) + K 1 h 2 + K 2 + K 3 + () M = N 1 (h/2) + K 1 h K K (7) where the K j s are some coefficients that we could find from the Taylor Expansion, but are unimportant here. Multiplying the second expression by 4 and subtracting the first will eliminate the h 2 term, so we have Dividing through by 3 we have 3M = [4N 1 (h/2) N 1 (h)] K K M = [4N 1(h/2) N 1 (h)] 3 K 2 4 K Letting N 2 (h) = [4N 1 (h) N 1 (h)] /3 we have M = N 2 (h) K 2 4 K From this we can see that N 2 (h) approximates f (x) with fourth-order accuracy. (b) Extrapolate one more time to derive the difference formula N 3 (h) (in terms of N 2 ) and give the corresponding order of accuracy. From part (a) we see that our extrapolated difference formula N 2 (h) has an error expansion that looks like M = N 2 (h) + E 1 + K 2 + (8) M = N 2 (h/2) + E E (9) where again E 1 and E 2 are some coefficients. Multiplying the second equation by 1 and subtracting the first we have

6 15M = [1N 2 (h/2) N 2 (h)] E Dividing through by 15 and defining N 3 (h) = [1N 2 (h/2) N 2 (h)] /15 we have M = N 3 (h) E So the difference operator defined by N 3 (h) has sixth-order accuracy! (c) Compute the extrapolation table that approximates f (2) for f(x) = ln x using the difference formulas N 1 (h), N 2 (h) and N 3 (h). Use mesh sizes of h = 2 n for n = 1,...,. Make sure to display enough decimal places to accurately show the approximation. Note that the exact answer is f (2) = 1/2. The extrapolation table is as follows h N 1 N 2 N (d) Compute the absolute error in the N 3 approximation and display the relevant error ratios. Do your results agree with what you predicted in part (b)? We found in part (c) that the third extrapolation method N 3 was sixth-order accurate. This suggests that when we divide the step size h by 2 we expect the error to go down by a factor of 2 = 4. The relevant errors and error ratios are given in the following table. h e n e n 1 /e n

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole www.engage.com www.ma.utexas.edu/cna/nmc7

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

2-4 Completing the Square

2-4 Completing the Square 2-4 Completing the Square Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Write each expression as a trinomial. 1. (x 5) 2 x 2 10x + 25 2. (3x + 5) 2 9x 2 + 30x + 25 Factor each expression. 3.

More information

Taylor Series & Binomial Series

Taylor Series & Binomial Series Taylor Series & Binomial Series Calculus II Josh Engwer TTU 09 April 2014 Josh Engwer (TTU) Taylor Series & Binomial Series 09 April 2014 1 / 20 Continuity & Differentiability of a Function (Notation)

More information

MATH 104 Practice Problems for Exam 3

MATH 104 Practice Problems for Exam 3 MATH 14 Practice Problems for Exam 3 There are too many problems here for one exam, but they re good practice! For each of the following series, say whether it converges or diverges, and explain why. 1..

More information

MATH 104 Practice Problems for Exam 3

MATH 104 Practice Problems for Exam 3 MATH 4 Practice Problems for Exam 3 There are too many problems here for one exam, but they re good practice! For each of the following series, say whether it converges or diverges, and explain why.. 2.

More information

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money.

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Simple and compound interest NAME: These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Principal: initial amount you borrow;

More information

x f(x) D.N.E

x f(x) D.N.E Limits Consider the function f(x) x2 x. This function is not defined for x, but if we examine the value of f for numbers close to, we can observe something interesting: x 0 0.5 0.9 0.999.00..5 2 f(x).5.9.999

More information

Interpolation. 1 What is interpolation? 2 Why are we interested in this?

Interpolation. 1 What is interpolation? 2 Why are we interested in this? Interpolation 1 What is interpolation? For a certain function f (x we know only the values y 1 = f (x 1,,y n = f (x n For a point x different from x 1,,x n we would then like to approximate f ( x using

More information

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps.

1. f(x) = x2 + x 12 x 2 4 Let s run through the steps. Math 121 (Lesieutre); 4.3; September 6, 2017 The steps for graphing a rational function: 1. Factor the numerator and denominator, and write the function in lowest terms. 2. Set the numerator equal to zero

More information

Derivative Approximation by Finite Differences

Derivative Approximation by Finite Differences Derivative Approximation by Finite Differences David Eberly, Geometric Tools, Redmond WA 9852 https://wwwgeometrictoolscom/ This work is licensed under the Creative Commons Attribution 4 International

More information

Integrating rational functions (Sect. 8.4)

Integrating rational functions (Sect. 8.4) Integrating rational functions (Sect. 8.4) Integrating rational functions, p m(x) q n (x). Polynomial division: p m(x) The method of partial fractions. p (x) (x r )(x r 2 ) p (n )(x). (Repeated roots).

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 2: Creating and Solving Quadratic Equations in One Variable Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying polynomials working with complex numbers Introduction 2 b 2 A trinomial of the form x + bx + that can be written as

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? Question 3: How do you find the relative extrema of a function? The strategy for tracking the sign of the derivative is useful for more than determining where a function is increasing or decreasing. It

More information

Worksheet A ALGEBRA PMT

Worksheet A ALGEBRA PMT Worksheet A 1 Find the quotient obtained in dividing a (x 3 + 2x 2 x 2) by (x + 1) b (x 3 + 2x 2 9x + 2) by (x 2) c (20 + x + 3x 2 + x 3 ) by (x + 4) d (2x 3 x 2 4x + 3) by (x 1) e (6x 3 19x 2 73x + 90)

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

CS227-Scientific Computing. Lecture 6: Nonlinear Equations

CS227-Scientific Computing. Lecture 6: Nonlinear Equations CS227-Scientific Computing Lecture 6: Nonlinear Equations A Financial Problem You invest $100 a month in an interest-bearing account. You make 60 deposits, and one month after the last deposit (5 years

More information

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: 4.1 Exponential Functions Hartfield MATH 2040 Unit 4 Page 1 Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest A t P 1 r n nt Formula 2 Continuously Compounded

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13

Lecture 6: Option Pricing Using a One-step Binomial Tree. Thursday, September 12, 13 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

True_ The Lagrangian method is one way to solve constrained maximization problems.

True_ The Lagrangian method is one way to solve constrained maximization problems. LECTURE 4: CONSTRAINED OPTIMIZATION ANSWERS AND SOLUTIONS Answers to True/False Questions True_ The Lagrangian method is one way to solve constrained maximization problems. False_ The substitution method

More information

Edexcel past paper questions. Core Mathematics 4. Binomial Expansions

Edexcel past paper questions. Core Mathematics 4. Binomial Expansions Edexcel past paper questions Core Mathematics 4 Binomial Expansions Edited by: K V Kumaran Email: kvkumaran@gmail.com C4 Binomial Page Binomial Series C4 By the end of this unit you should be able to obtain

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Chapter 4 Partial Fractions

Chapter 4 Partial Fractions Chapter 4 8 Partial Fraction Chapter 4 Partial Fractions 4. Introduction: A fraction is a symbol indicating the division of integers. For example,, are fractions and are called Common 9 Fraction. The dividend

More information

MATH60082 Example Sheet 6 Explicit Finite Difference

MATH60082 Example Sheet 6 Explicit Finite Difference MATH68 Example Sheet 6 Explicit Finite Difference Dr P Johnson Initial Setup For the explicit method we shall need: All parameters for the option, such as X and S etc. The number of divisions in stock,

More information

Algebra 2 Final Exam

Algebra 2 Final Exam Algebra 2 Final Exam Name: Read the directions below. You may lose points if you do not follow these instructions. The exam consists of 30 Multiple Choice questions worth 1 point each and 5 Short Answer

More information

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee

CS 3331 Numerical Methods Lecture 2: Functions of One Variable. Cherung Lee CS 3331 Numerical Methods Lecture 2: Functions of One Variable Cherung Lee Outline Introduction Solving nonlinear equations: find x such that f(x ) = 0. Binary search methods: (Bisection, regula falsi)

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Practice Exam 1. Loss Amount Number of Losses

Practice Exam 1. Loss Amount Number of Losses Practice Exam 1 1. You are given the following data on loss sizes: An ogive is used as a model for loss sizes. Determine the fitted median. Loss Amount Number of Losses 0 1000 5 1000 5000 4 5000 10000

More information

CH 39 CREATING THE EQUATION OF A LINE

CH 39 CREATING THE EQUATION OF A LINE 9 CH 9 CREATING THE EQUATION OF A LINE Introduction S ome chapters back we played around with straight lines. We graphed a few, and we learned how to find their intercepts and slopes. Now we re ready to

More information

MLC at Boise State Polynomials Activity 3 Week #5

MLC at Boise State Polynomials Activity 3 Week #5 Polynomials Activity 3 Week #5 This activity will be discuss maximums, minimums and zeros of a quadratic function and its application to business, specifically maximizing profit, minimizing cost and break-even

More information

Topic #1: Evaluating and Simplifying Algebraic Expressions

Topic #1: Evaluating and Simplifying Algebraic Expressions John Jay College of Criminal Justice The City University of New York Department of Mathematics and Computer Science MAT 105 - College Algebra Departmental Final Examination Review Topic #1: Evaluating

More information

10 5 The Binomial Theorem

10 5 The Binomial Theorem 10 5 The Binomial Theorem Daily Outcomes: I can use Pascal's triangle to write binomial expansions I can use the Binomial Theorem to write and find the coefficients of specified terms in binomial expansions

More information

5 Error Control. 5.1 The Milne Device and Predictor-Corrector Methods

5 Error Control. 5.1 The Milne Device and Predictor-Corrector Methods 5 Error Control 5. The Milne Device and Predictor-Corrector Methods We already discussed the basic idea of the predictor-corrector approach in Section 2. In particular, there we gave the following algorithm

More information

Percentage Change and Elasticity

Percentage Change and Elasticity ucsc supplementary notes math 105a Percentage Change and Elasticity 1. Relative and percentage rates of change The derivative of a differentiable function y = fx) describes how the function changes. The

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Lecture 11 - Business and Economics Optimization Problems and Asymptotes

Lecture 11 - Business and Economics Optimization Problems and Asymptotes Lecture 11 - Business and Economics Optimization Problems and Asymptotes 11.1 More Economics Applications Price Elasticity of Demand One way economists measure the responsiveness of consumers to a change

More information

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School

Arithmetic. Mathematics Help Sheet. The University of Sydney Business School Arithmetic Mathematics Help Sheet The University of Sydney Business School Common Arithmetic Symbols is not equal to is approximately equal to is identically equal to infinity, which is a non-finite number

More information

Feb. 4 Math 2335 sec 001 Spring 2014

Feb. 4 Math 2335 sec 001 Spring 2014 Feb. 4 Math 2335 sec 001 Spring 2014 Propagated Error in Function Evaluation Let f (x) be some differentiable function. Suppose x A is an approximation to x T, and we wish to determine the function value

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday

Unit 9 Notes: Polynomials and Factoring. Unit 9 Calendar: Polynomials and Factoring. Day Date Assignment (Due the next class meeting) Monday Wednesday Name Period Unit 9 Calendar: Polynomials and Factoring Day Date Assignment (Due the next class meeting) Monday Wednesday 2/26/18 (A) 2/28/18 (B) 9.1 Worksheet Adding, Subtracting Polynomials, Multiplying

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

When Is Factoring Used?

When Is Factoring Used? When Is Factoring Used? Name: DAY 9 Date: 1. Given the function, y = x 2 complete the table and graph. x y 2 1 0 1 2 3 1. A ball is thrown vertically upward from the ground according to the graph below.

More information

Mathematics (Project Maths Phase 2)

Mathematics (Project Maths Phase 2) L.17 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2013 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks For examiner Question 1 Centre stamp 2 3

More information

Lesson 2 Practice Problems

Lesson 2 Practice Problems Name: Date: Lesson 2 Section 2.1: Combining Functions 1. Let!! = 3! + 2 and!! =!! + 4! 7. Find the following and simplify your result. a)! 4 +! 4 = b)! 3! 3 = c)! 2! 2 = d)!(!)!(!) = Page 73 2. Let!! =

More information

ANSWER: We can find consumption and saving by solving:

ANSWER: We can find consumption and saving by solving: Economics 154a, Spring 2005 Intermediate Macroeconomics Problem Set 4: Answer Key 1. Consider an economy that consists of a single consumer who lives for two time periods. The consumers income in the current

More information

Where It s Used. R. 1 Find f x. using the chain rule. d dx. Page 1 of 7

Where It s Used. R. 1 Find f x. using the chain rule. d dx. Page 1 of 7 Elasticity of Demand Learning Objectives: Find relative rates of change Find percentage rates of change Determine whether demand is elastic, inelastic, or has unit elasticity Find elasticity of demand

More information

The endowment of the island is given by. e b = 2, e c = 2c 2.

The endowment of the island is given by. e b = 2, e c = 2c 2. Economics 121b: Intermediate Microeconomics Problem Set 4 1. Edgeworth Box and Pareto Efficiency Consider the island economy with Friday and Robinson. They have agreed to share their resources and they

More information

February 2 Math 2335 sec 51 Spring 2016

February 2 Math 2335 sec 51 Spring 2016 February 2 Math 2335 sec 51 Spring 2016 Section 3.1: Root Finding, Bisection Method Many problems in the sciences, business, manufacturing, etc. can be framed in the form: Given a function f (x), find

More information

Exam 2 Review (Sections Covered: and )

Exam 2 Review (Sections Covered: and ) Exam 2 Review (Sections Covered: 4.1-4.5 and 5.1-5.6) 1. Find the derivative of the following. (a) f(x) = 1 2 x6 3x 4 + 6e x (b) A(s) = s 1/2 ln s ln(13) (c) f(x) = 5e x 8 ln x 2. Given below is the price-demand

More information

Hints on Some of the Exercises

Hints on Some of the Exercises Hints on Some of the Exercises of the book R. Seydel: Tools for Computational Finance. Springer, 00/004/006/009/01. Preparatory Remarks: Some of the hints suggest ideas that may simplify solving the exercises

More information

Economics 307: Intermediate Macroeconomic Theory A Brief Mathematical Primer

Economics 307: Intermediate Macroeconomic Theory A Brief Mathematical Primer Economics 07: Intermediate Macroeconomic Theory A Brief Mathematical Primer Calculus: Much of economics is based upon mathematical models that attempt to describe various economic relationships. You have

More information

Notation for the Derivative:

Notation for the Derivative: Notation for the Derivative: MA 15910 Lesson 13 Notes Section 4.1 (calculus part of textbook, page 196) Techniques for Finding Derivatives The derivative of a function y f ( x) may be written in any of

More information

Logarithmic and Exponential Functions

Logarithmic and Exponential Functions Asymptotes and Intercepts Logarithmic and exponential functions have asymptotes and intercepts. Consider the functions f(x) = log ax and f(x) = lnx. Both have an x-intercept at (1, 0) and a vertical asymptote

More information

Graphing Equations Chapter Test Review

Graphing Equations Chapter Test Review Graphing Equations Chapter Test Review Part 1: Calculate the slope of the following lines: (Lesson 3) Unit 2: Graphing Equations 2. Find the slope of a line that has a 3. Find the slope of the line that

More information

McGILL UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH THEORY OF INTEREST

McGILL UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH THEORY OF INTEREST McGILL UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH 329 2004 01 THEORY OF INTEREST Information for Students (Winter Term, 2003/2004) Pages 1-8 of these notes may be considered

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Spring 2017 Exam2 2017-03-08 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be used. You may

More information

Final Exam Sample Problems

Final Exam Sample Problems MATH 00 Sec. Final Exam Sample Problems Please READ this! We will have the final exam on Monday, May rd from 0:0 a.m. to 2:0 p.m.. Here are sample problems for the new materials and the problems from the

More information

Section 7.4 Additional Factoring Techniques

Section 7.4 Additional Factoring Techniques Section 7.4 Additional Factoring Techniques Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Factor trinomials when a = 1. Multiplying binomials

More information

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost. Opportunity Cost (or "Wow, I coulda had a V8!") The underlying idea is derived

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

Pre-Leaving Certificate Examination, Mathematics. Paper 1. Ordinary Level Time: 2 hours, 30 minutes. 300 marks

Pre-Leaving Certificate Examination, Mathematics. Paper 1. Ordinary Level Time: 2 hours, 30 minutes. 300 marks L.16 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2018 Mathematics Name/versio Printed: Checked: To: Updated: Paper 1 Name/versio Complete (y/ Ordinary Level Time: 2 hours, 30 minutes 300 marks

More information

Learning Plan 3 Chapter 3

Learning Plan 3 Chapter 3 Learning Plan 3 Chapter 3 Questions 1 and 2 (page 82) To convert a decimal into a percent, you must move the decimal point two places to the right. 0.72 = 72% 5.46 = 546% 3.0842 = 308.42% Question 3 Write

More information

FX Smile Modelling. 9 September September 9, 2008

FX Smile Modelling. 9 September September 9, 2008 FX Smile Modelling 9 September 008 September 9, 008 Contents 1 FX Implied Volatility 1 Interpolation.1 Parametrisation............................. Pure Interpolation.......................... Abstract

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

Unit 3: Writing Equations Chapter Review

Unit 3: Writing Equations Chapter Review Unit 3: Writing Equations Chapter Review Part 1: Writing Equations in Slope Intercept Form. (Lesson 1) 1. Write an equation that represents the line on the graph. 2. Write an equation that has a slope

More information

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers:

P.1 Algebraic Expressions, Mathematical models, and Real numbers. Exponential notation: Definitions of Sets: A B. Sets and subsets of real numbers: P.1 Algebraic Expressions, Mathematical models, and Real numbers If n is a counting number (1, 2, 3, 4,..) then Exponential notation: b n = b b b... b, where n is the Exponent or Power, and b is the base

More information

Section 6.4 Adding & Subtracting Like Fractions

Section 6.4 Adding & Subtracting Like Fractions Section 6.4 Adding & Subtracting Like Fractions ADDING ALGEBRAIC FRACTIONS As you now know, a rational expression is an algebraic fraction in which the numerator and denominator are both polynomials. Just

More information

Writing Exponential Equations Day 2

Writing Exponential Equations Day 2 Writing Exponential Equations Day 2 MGSE9 12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational,

More information

Unit 8 Notes: Solving Quadratics by Factoring Alg 1

Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Unit 8 Notes: Solving Quadratics by Factoring Alg 1 Name Period Day Date Assignment (Due the next class meeting) Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday

More information

Math 234 Spring 2013 Exam 1 Version 1 Solutions

Math 234 Spring 2013 Exam 1 Version 1 Solutions Math 234 Spring 203 Exam Version Solutions Monday, February, 203 () Find (a) lim(x 2 3x 4)/(x 2 6) x 4 (b) lim x 3 5x 2 + 4 x (c) lim x + (x2 3x + 2)/(4 3x 2 ) (a) Observe first that if we simply plug

More information

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it.

This method uses not only values of a function f(x), but also values of its derivative f'(x). If you don't know the derivative, you can't use it. Finding Roots by "Open" Methods The differences between "open" and "closed" methods The differences between "open" and "closed" methods are closed open ----------------- --------------------- uses a bounded

More information

Economics 102 Discussion Handout Week 5 Spring 2018

Economics 102 Discussion Handout Week 5 Spring 2018 Economics 102 Discussion Handout Week 5 Spring 2018 GDP: Definition and Calculations Gross Domestic Product (GDP) is the market value of all goods and services produced within a country over a given time

More information

Study Guide - Part 1

Study Guide - Part 1 Math 116 Spring 2015 Study Guide - Part 1 1. Find the slope of a line that goes through the points (1, 5) and ( 3, 13). The slope is (A) Less than -1 (B) Between -1 and 1 (C) Between 1 and 3 (D) More than

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

Study Guide and Review - Chapter 2

Study Guide and Review - Chapter 2 Divide using long division. 31. (x 3 + 8x 2 5) (x 2) So, (x 3 + 8x 2 5) (x 2) = x 2 + 10x + 20 +. 33. (2x 5 + 5x 4 5x 3 + x 2 18x + 10) (2x 1) So, (2x 5 + 5x 4 5x 3 + x 2 18x + 10) (2x 1) = x 4 + 3x 3

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 The Consumer Problem Consider an agent choosing her consumption of goods 1 and 2 for a given budget. This is the workhorse of microeconomic theory. (Notice

More information

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 12. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 12 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 6.1-6.2 Lecture Chapter 6.3-6.5 Problem Solving Session. 2

More information

1.1 Forms for fractions px + q An expression of the form (x + r) (x + s) quadratic expression which factorises) may be written as

1.1 Forms for fractions px + q An expression of the form (x + r) (x + s) quadratic expression which factorises) may be written as 1 Partial Fractions x 2 + 1 ny rational expression e.g. x (x 2 1) or x 4 x may be written () (x 3) as a sum of simpler fractions. This has uses in many areas e.g. integration or Laplace Transforms. The

More information

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x).

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x). 2 EXERCISES 27 2 Exercises Use integration by parts to compute lnx) dx 2 Compute x lnx) dx Hint: Use the substitution u = lnx) 3 Show that tan x) =/cos x) 2 and conclude that dx = arctanx) + C +x2 Note:

More information

5.6 Special Products of Polynomials

5.6 Special Products of Polynomials 5.6 Special Products of Polynomials Learning Objectives Find the square of a binomial Find the product of binomials using sum and difference formula Solve problems using special products of polynomials

More information

Interest Compounded Annually. Table 3.27 Interest Computed Annually

Interest Compounded Annually. Table 3.27 Interest Computed Annually 33 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.6 Mathematics of Finance What you ll learn about Interest Compounded Annually Interest Compounded k Times per Year Interest Compounded Continuously

More information

Numerical Solution of BSM Equation Using Some Payoff Functions

Numerical Solution of BSM Equation Using Some Payoff Functions Mathematics Today Vol.33 (June & December 017) 44-51 ISSN 0976-38, E-ISSN 455-9601 Numerical Solution of BSM Equation Using Some Payoff Functions Dhruti B. Joshi 1, Prof.(Dr.) A. K. Desai 1 Lecturer in

More information

Sandringham School Sixth Form. AS Maths. Bridging the gap

Sandringham School Sixth Form. AS Maths. Bridging the gap Sandringham School Sixth Form AS Maths Bridging the gap Section 1 - Factorising be able to factorise simple expressions be able to factorise quadratics The expression 4x + 8 can be written in factor form,

More information

Logarithmic Functions and Simple Interest

Logarithmic Functions and Simple Interest Logarithmic Functions and Simple Interest Finite Math 10 February 2017 Finite Math Logarithmic Functions and Simple Interest 10 February 2017 1 / 9 Now You Try It! Section 2.6 - Logarithmic Functions Example

More information

Real Estate Expenses. Example 1. Example 2. To calculate the initial expenses of buying a home

Real Estate Expenses. Example 1. Example 2. To calculate the initial expenses of buying a home Real Estate Expenses To calculate the initial expenses of buying a home One of the largest investments most people ever make is the purchase of a home. The major initial expense in that purchase is the

More information

Assignment 3.3, 3.4, 3.5. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 3.3, 3.4, 3.5. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 3.3, 3.4, 3.5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use Descartes' Rule of Signs to determine the possible number of positive

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

MACROECONOMICS - CLUTCH CH DERIVING THE AGGREGATE EXPENDITURES MODEL

MACROECONOMICS - CLUTCH CH DERIVING THE AGGREGATE EXPENDITURES MODEL !! www.clutchprep.com CONCEPT: AGGREGATE EXPENDITURES MODEL AND MACROECONOMIC EQUILIBRIUM Aggregate expenditures (AE) represent the total in an economy The aggregate expenditures model describes the relationship

More information

x x x1

x x x1 Mathematics for Management Science Notes 08 prepared by Professor Jenny Baglivo Graphical representations As an introduction to the calculus of two-variable functions (f(x ;x 2 )), consider two graphical

More information

Finite Element Method

Finite Element Method In Finite Difference Methods: the solution domain is divided into a grid of discrete points or nodes the PDE is then written for each node and its derivatives replaced by finite-divided differences In

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

Name Class Date. There are several important things you should remember from multiplying binomials.

Name Class Date. There are several important things you should remember from multiplying binomials. Name Class Date 7-3 Factoring x 2 + bx + c Going Deeper Essential question: How can you factor x 2 + bx + c? 1 A-SSE.1.2 ENGAGE Factoring Trinomials You know how to multiply binomials: for example, (x

More information

Computing compound interest and composition of functions

Computing compound interest and composition of functions Computing compound interest and composition of functions In today s topic we will look at using EXCEL to compute compound interest. The method we will use will also allow us to discuss composition of functions.

More information

Supplementary Material for: Belief Updating in Sequential Games of Two-Sided Incomplete Information: An Experimental Study of a Crisis Bargaining

Supplementary Material for: Belief Updating in Sequential Games of Two-Sided Incomplete Information: An Experimental Study of a Crisis Bargaining Supplementary Material for: Belief Updating in Sequential Games of Two-Sided Incomplete Information: An Experimental Study of a Crisis Bargaining Model September 30, 2010 1 Overview In these supplementary

More information

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes BOSTON UNIVERSITY SCHOOL OF MANAGEMENT Math Notes BU Note # 222-1 This note was prepared by Professor Michael Salinger and revised by Professor Shulamit Kahn. 1 I. Introduction This note discusses the

More information

d n U i dx n dx n δ n U i

d n U i dx n dx n δ n U i Last time Taylor s series on equally spaced nodes Forward difference d n U i d n n U i h n + 0 h Backward difference d n U i d n n U i h n + 0 h Centered difference d n U i d n δ n U i or 2 h n + 0 h2

More information

Writing Exponential Equations Day 2

Writing Exponential Equations Day 2 Writing Exponential Equations Day 2 MGSE9 12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational,

More information

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018 Student: Date: Instructor: Elhoussine Ghardi Course: calcmanagementspring018 Assignment: HW3spring018 1. Differentiate the following function. f (x) = f(x) = 7 4x + 9 e x. f(x) = 6 ln x + 5x 7 3. Differentiate

More information