Derivative Approximation by Finite Differences

Size: px
Start display at page:

Download "Derivative Approximation by Finite Differences"

Transcription

1 Derivative Approximation by Finite Differences David Eberly, Geometric Tools, Redmond WA This work is licensed under the Creative Commons Attribution 4 International License To view a copy of this license, visit or send a letter to Creative Commons, PO Box 866, Mountain View, CA 9442, USA Created: May 3, 2 Last Modified: September 2, 26 Contents Introduction 2 2 Derivatives of Univariate Functions 2 3 Derivatives of Bivariate Functions 7 4 Derivatives of Multivariate Functions 8

2 Introduction This document shows how to approximate derivatives of univariate functions F (x by finite differences Given a small value h >, the d-th order derivative satisfies the following equation where the integer order of error p > may be selected as desired, h d d! F (d (x i max ii min C i F (x + ih + O(h d+p ( for some choice of extreme indices i min and i max and for some choice of coefficients C i The equation becomes an approximation by throwing away the O(h d+p term The vector C (C imin,, C imax is called the template or convolution mask for the approximation Approximations for the derivatives of multivariate functions are constructed as tensor products of templates for univariate functions 2 Derivatives of Univariate Functions Recall from calculus that the following approximations are valid for the derivative of F (x A forward difference approximation is F F (x + h F (x (x + O(h (2 h a backward difference approximation is F (x and a centered difference approximation is F (x F (x F (x h h F (x + h F (x h + O(h (3 + O(h 2 (4 The approximations are obtained by throwing away the error terms indicated by the O notation The order of the error for each of these approximations is easily seen from formal expansions as Taylor series about the value x, and F (x + h F (x + hf (x + h2 2! F (x + F (x h F (x hf (x + h2 2! F (x + n n! F (n (x (5 ( n hn n! F (n (x (6 where F (n (x denotes the n-th order derivative of F Subtracting F (x from both sides of equation (5 and then dividing by h leads to the forward difference F (x (F (x+h F (x/h+o(h Subtracting F (x from both sides of equation (6 and then dividing by h leads to the backward difference F (x (F (x F (x h/h + O(h Both approximations have error O(h The centered difference is obtained by subtracting equation (6 from equation (5 and then dividing by to obtain (F (x + h F (x h/( + O(h 2 n 2

3 Higher order approximations to the first derivative can be obtained by using more Taylor series, more terms in the Taylor series, and appropriately weighting the various expansions in a sum For example, ( n F (x + F (n (x, F (x ( n (n F (n (x (7 n! n! n lead to a forward difference approximation with second order error, F (x n F (x + + 4F (x + h 3F (x to a backward difference approximation with second order error, F (x 3F (x 4F (x h + F (x and to a centered difference approximation with fourth order error, F (x F (x + + 8F (x + h 8F (x h + F (x + O(h 2 (8 + O(h 2 (9 + O(h 4 ( Higher-order derivatives can be approximated in the same way For example, a forward difference approximation to F (x is F F (x + 2F (x + h + F (x (x h 2 + O(h ( and centered difference approximations are and F (x F (x F (x + h 2F (x + F (x h h 2 + O(h 2 (2 F (x + + 6F (x + h 3F (x + 6F (x h F (x 2 + O(h 4 (3 Each of these formulas is easily verified by expanding the F (x + ih terms in a formal Taylor series and computing the weighted sums on the right-hand sides However, of greater interest is to select the order of derivative d and the order of error p and determine the weights C i for the sum in equation ( A formal Taylor series for F (x + ih is Replacing this in equation ( yields F (x + ih n i n hn n! F (n (x (4 h d d! F (d (x i max ii min C i n ( imax n ii min ( d+p imax n ii min d+p n in hn n! F (n (x + O(h d+p n! F (n (x + O(h d+p ( imax ii min n! F (n (x n! F (n (x + O(h d+p (5 Multiplying by d!/h d, the desired approximation is ( F (d (x d! d+p imax h d n ii min n! F (n (x + O(h p d! h d 3 d+p n ( imax ii min n! F (n (x (6

4 Treating the approximation in equation(5 as an equality, the only term in the sum on the right-hand side of the approximation that contains (h d /d!f (d (x occurs when n d, so the coefficient of that term must be The other terms must vanish for there to be equality, so the coefficients of those terms must be ; therefore, it is necessary that i max ii min, n d + p and n d, n d This is a set of d+p linear equations in i max i min + unknowns If we constrain the number of unknowns to be d+p, the linear system has a unique solution A forward difference approximation occurs if we set i min and i max d + p A backward difference approximation occurs if we set i max and i min (d + p A centered difference approximation occurs if we set i max i min (d + p /2 where it appears that d + p is necessarily an odd number As it turns out, p can be chosen to be even regardless of the parity of d and i max (d + p /2 Table indicates the choices for d and p, the type of approximation (forward, backward, centered, and the corresponding equation number, (7 Table Choices for the parameters for the example approximations presented previously equation d p type i min i max (2 forward (3 backward - (4 2 centered - (8 2 forward 2 (9 2 backward -2 ( 4 centered -2 2 ( 2 forward 2 (2 2 2 centered - (3 2 4 centered -2 2 Example Approximate F (3 (x with a forward difference with error O(h, so d 3 and p We need i min and i max 3 The linear system from equation (7 is C 2 3 C 4 9 C C 3 4

5 and has solution (C, C,, C 3 (, 3, 3, /6 Equation ( becomes F (3 (x F (x + 3F (x + h 3F (x + + F (x + 3h h 3 + O(h Approximate F (3 (x with a centered difference with error O(h 2, so d 3 and p 2 We need i max i min 2 The linear system from equation (7 is C 2 C C C and has solution (C 2, C, C, C, (, 2,, 2, /2 Equation ( becomes F (3 (x F (x + 2F (x h 2F (x + h + F (x O(h 2 Finally, approximate with a centered difference with error O(h 4, so d 3 and p 4 We need i max i min 3 The linear system from equation (7 is C 3 C 2 C C C C 3 and has solution (C 3, C 2, C, C, C,, C 3 (, 8, 3,, 3, 8, /48 Equation ( becomes F (3 (x F (x 3h 8F (x + 3F (x h 3F (x + h + 8F (x + F (x + 3h 8h 3 + O(h 4 Example 2 Approximate F (4 (x with a forward difference with error O(h, so d 4 and p We need 5

6 i min and i max 4 The linear system from equation (7 is C C C 3 C 4 and has solution (C, C,, C 3, C 4 (, 4, 6, 4, /24 Equation ( becomes F (4 (x F (x 4F (x + h + 6F (x + 4F (x + 3h + F (x + 4h h 4 + O(h Approximate F (4 (x with a centered difference with error O(h 2, so d 4 and p 2 We need i max i min 2 The linear system from equation (7 is C 2 C C C and has solution (C 2, C, C, C, (, 4, 6, 4, /24 Equation ( becomes F (4 (x F (x 4F (x h + 6F (x 4F (x + h + F (x + h 4 + O(h 2 Finally, approximate with a centered difference with error O(h 4, so d 4 and p 4 We need i max i min 3 The linear system from equation (7 is C 3 C 2 C C C C 3 and has solution (C 3, C 2, C, C, C,, C 3 (, 2, 39, 56, 39, 2, /44 Equation ( becomes F (4 (x F (x 3h + 2F (x 39F (x h + 56F (x 39F (x + h + 2F (x + F (x + 3h 6h 4 + O(h 4 6

7 3 Derivatives of Bivariate Functions For functions with more variables, the partial derivatives can be approximated by grouping together all of the same variables and applying the univariate approximation for that group For example, if F (x, y is our function, then some partial derivative approximations are f x (x, y f y (x, y f xx (x, y f yy (x, y f xy (x, y F (x+h,y F (x h,y F (x,y+k F (x,y k 2k F (x+h,y 2F (x,y+f (x h,y h 2 F (x,y+k 2F (x,y+f (x,y k k 2 F (x+h,y+k F (x+h,y k F (x h,y+k+f (x h,y k 4hk (8 Each of these can be verified in the limit, the x-derivatives by taking the limit as h approaches zero, the y-derivatives by taking the limit as k approaches zero, and the mixed second-order derivative by taking the limit as both h and k approach zero The derivatives F x, F y, F xx, and F yy just use the univariate approximation formulas The mixed derivative requires slightly more work The important observation is that the approximation for F xy is obtained by applying the x-derivative approximation for F x, then applying the y-derivative approximation to the previous approximation That is, f xy (x, y F (x+h,y F (x h,y F (x+h,y+k F (x h,y+k F (x+h,y k F (x h,y k 2k F (x+h,y+k F (x+h,y k F (x h,y+k+f (x h,y k 4hk (9 The approximation implied by equation ( may be written as h m m! d m dx m F (x i max ii min C (m i F (x + ih (2 The inclusion of the superscript on the C coefficients is to emphasize that those coefficients are constructed for each order m For bivariate functions, we can use the natural extension of equation (2 by applying the approximation in x first, then applying the approximation in y to that approximation, just as in our example of F xy, k n n! n h m y n m! m x m F (x, y kn n! n y n imax ii min C (m i F (x + ih, y i max ii min jmax i max ii min jmax jj min C (m i jj min C (m,n i,j C (n j F (x + ih, y + jk F (x + ih, y + jk (2 where the last equality defines C (m,n i,j C (m i C (n j (22 The coefficients for the bivariate approximation are just the tensor product of the coefficients for each of the univariate approximations 7

8 4 Derivatives of Multivariate Functions The approximation concept extends to any number of variables Let (x,, x n be those variables and let F (x,, x n be the function to approximate The approximation is ( h m m! where m x m hmn n m n! mn F (x x mn,, x n i max i i min C (m,,mn i max n i ni min n (i,,i n C (m i is a tensor product of the coefficients of the n univariate approximations C (m,,mn (i,,i n F (x + i h,, x n + i n (23 C (mn i n (24 8

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 ) APPM/MATH 450 Problem Set 5 s This assignment is due by 4pm on Friday, October 25th. You may either turn it in to me in class or in the box outside my office door (ECOT 235). Minimal credit will be given

More information

MATH60082 Example Sheet 6 Explicit Finite Difference

MATH60082 Example Sheet 6 Explicit Finite Difference MATH68 Example Sheet 6 Explicit Finite Difference Dr P Johnson Initial Setup For the explicit method we shall need: All parameters for the option, such as X and S etc. The number of divisions in stock,

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2)

(2/3) 3 ((1 7/8) 2 + 1/2) = (2/3) 3 ((8/8 7/8) 2 + 1/2) (Work from inner parentheses outward) = (2/3) 3 ((1/8) 2 + 1/2) = (8/27) (1/64 + 1/2) Exponents Problem: Show that 5. Solution: Remember, using our rules of exponents, 5 5, 5. Problems to Do: 1. Simplify each to a single fraction or number: (a) ( 1 ) 5 ( ) 5. And, since (b) + 9 + 1 5 /

More information

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA

PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA PORTFOLIO OPTIMIZATION AND EXPECTED SHORTFALL MINIMIZATION FROM HISTORICAL DATA We begin by describing the problem at hand which motivates our results. Suppose that we have n financial instruments at hand,

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

a*(variable) 2 + b*(variable) + c

a*(variable) 2 + b*(variable) + c CH. 8. Factoring polynomials of the form: a*(variable) + b*(variable) + c Factor: 6x + 11x + 4 STEP 1: Is there a GCF of all terms? NO STEP : How many terms are there? Is it of degree? YES * Is it in the

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

Unit 3: Writing Equations Chapter Review

Unit 3: Writing Equations Chapter Review Unit 3: Writing Equations Chapter Review Part 1: Writing Equations in Slope Intercept Form. (Lesson 1) 1. Write an equation that represents the line on the graph. 2. Write an equation that has a slope

More information

Integer Exponents. Examples: 5 3 = = 125, Powers You Should Know

Integer Exponents. Examples: 5 3 = = 125, Powers You Should Know Algebra of Exponents Mastery of the laws of exponents is essential to succee in Calculus. We begin with the simplest case: 200 Doug MacLean Integer Exponents Suppose n is a positive integer. Then a n is

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Slide 1 / 128. Polynomials

Slide 1 / 128. Polynomials Slide 1 / 128 Polynomials Slide 2 / 128 Table of Contents Factors and GCF Factoring out GCF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

Numerical Solution of BSM Equation Using Some Payoff Functions

Numerical Solution of BSM Equation Using Some Payoff Functions Mathematics Today Vol.33 (June & December 017) 44-51 ISSN 0976-38, E-ISSN 455-9601 Numerical Solution of BSM Equation Using Some Payoff Functions Dhruti B. Joshi 1, Prof.(Dr.) A. K. Desai 1 Lecturer in

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 4: Special Discrete Random Variable Distributions Sections 3.7 & 3.8 Geometric, Negative Binomial, Hypergeometric NOTE: The discrete

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Multiplying binomials: We have a special way of remembering how to multiply binomials called FOIL: F: first x x = x 2 (x + 7)(x + 5) O: outer x 5 = 5x I: inner 7 x = 7x x 2 + 5x +7x + 35 (then simplify)

More information

It is a measure to compare bonds (among other things).

It is a measure to compare bonds (among other things). It is a measure to compare bonds (among other things). It provides an estimate of the volatility or the sensitivity of the market value of a bond to changes in interest rates. There are two very closely

More information

Optimization Models one variable optimization and multivariable optimization

Optimization Models one variable optimization and multivariable optimization Georg-August-Universität Göttingen Optimization Models one variable optimization and multivariable optimization Wenzhong Li lwz@nju.edu.cn Feb 2011 Mathematical Optimization Problems in optimization are

More information

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx

The rth moment of a real-valued random variable X with density f(x) is. x r f(x) dx 1 Cumulants 1.1 Definition The rth moment of a real-valued random variable X with density f(x) is µ r = E(X r ) = x r f(x) dx for integer r = 0, 1,.... The value is assumed to be finite. Provided that

More information

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004 HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR D PARABOLIC EQUATIONS by Ahmet İzmirlioğlu BS, University of Pittsburgh, 24 Submitted to the Graduate Faculty of Art and Sciences in partial fulfillment of

More information

Errata for Actuarial Mathematics for Life Contingent Risks

Errata for Actuarial Mathematics for Life Contingent Risks Errata for Actuarial Mathematics for Life Contingent Risks David C M Dickson, Mary R Hardy, Howard R Waters Note: These errata refer to the first printing of Actuarial Mathematics for Life Contingent Risks.

More information

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013

SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) Syllabus for PEA (Mathematics), 2013 SYLLABUS AND SAMPLE QUESTIONS FOR MSQE (Program Code: MQEK and MQED) 2013 Syllabus for PEA (Mathematics), 2013 Algebra: Binomial Theorem, AP, GP, HP, Exponential, Logarithmic Series, Sequence, Permutations

More information

5.9: The Binomial Theorem

5.9: The Binomial Theorem 5.9: The Binomial Theorem Pascal s Triangle 1. Show that zz = 1 + ii is a solution to the fourth degree polynomial equation zz 4 zz 3 + 3zz 2 4zz + 6 = 0. 2. Show that zz = 1 ii is a solution to the fourth

More information

Computational Finance Finite Difference Methods

Computational Finance Finite Difference Methods Explicit finite difference method Computational Finance Finite Difference Methods School of Mathematics 2018 Today s Lecture We now introduce the final numerical scheme which is related to the PDE solution.

More information

6.4 Solving Linear Inequalities by Using Addition and Subtraction

6.4 Solving Linear Inequalities by Using Addition and Subtraction 6.4 Solving Linear Inequalities by Using Addition and Subtraction Solving EQUATION vs. INEQUALITY EQUATION INEQUALITY To solve an inequality, we USE THE SAME STRATEGY AS FOR SOLVING AN EQUATION: ISOLATE

More information

POMDPs: Partially Observable Markov Decision Processes Advanced AI

POMDPs: Partially Observable Markov Decision Processes Advanced AI POMDPs: Partially Observable Markov Decision Processes Advanced AI Wolfram Burgard Types of Planning Problems Classical Planning State observable Action Model Deterministic, accurate MDPs observable stochastic

More information

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8)

Discrete Random Variables and Probability Distributions. Stat 4570/5570 Based on Devore s book (Ed 8) 3 Discrete Random Variables and Probability Distributions Stat 4570/5570 Based on Devore s book (Ed 8) Random Variables We can associate each single outcome of an experiment with a real number: We refer

More information

The ruin probabilities of a multidimensional perturbed risk model

The ruin probabilities of a multidimensional perturbed risk model MATHEMATICAL COMMUNICATIONS 231 Math. Commun. 18(2013, 231 239 The ruin probabilities of a multidimensional perturbed risk model Tatjana Slijepčević-Manger 1, 1 Faculty of Civil Engineering, University

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS School of Mathematics 2013 OUTLINE Review 1 REVIEW Last time Today s Lecture OUTLINE Review 1 REVIEW Last time Today s Lecture 2 DISCRETISING THE PROBLEM Finite-difference approximations

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

7.1 Simplifying Rational Expressions

7.1 Simplifying Rational Expressions 7.1 Simplifying Rational Expressions LEARNING OBJECTIVES 1. Determine the restrictions to the domain of a rational expression. 2. Simplify rational expressions. 3. Simplify expressions with opposite binomial

More information

Solution of the problem of the identified minimum for the tri-variate normal

Solution of the problem of the identified minimum for the tri-variate normal Proc. Indian Acad. Sci. (Math. Sci.) Vol., No. 4, November 0, pp. 645 660. c Indian Academy of Sciences Solution of the problem of the identified minimum for the tri-variate normal A MUKHERJEA, and M ELNAGGAR

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Sequences, Series, and Probability Part I

Sequences, Series, and Probability Part I Name Chapter 8 Sequences, Series, and Probability Part I Section 8.1 Sequences and Series Objective: In this lesson you learned how to use sequence, factorial, and summation notation to write the terms

More information

Chapter 8 Sequences, Series, and the Binomial Theorem

Chapter 8 Sequences, Series, and the Binomial Theorem Chapter 8 Sequences, Series, and the Binomial Theorem Section 1 Section 2 Section 3 Section 4 Sequences and Series Arithmetic Sequences and Partial Sums Geometric Sequences and Series The Binomial Theorem

More information

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4

P VaR0.01 (X) > 2 VaR 0.01 (X). (10 p) Problem 4 KTH Mathematics Examination in SF2980 Risk Management, December 13, 2012, 8:00 13:00. Examiner : Filip indskog, tel. 790 7217, e-mail: lindskog@kth.se Allowed technical aids and literature : a calculator,

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

Option Pricing. Chapter Discrete Time

Option Pricing. Chapter Discrete Time Chapter 7 Option Pricing 7.1 Discrete Time In the next section we will discuss the Black Scholes formula. To prepare for that, we will consider the much simpler problem of pricing options when there are

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x).

1.12 Exercises EXERCISES Use integration by parts to compute. ln(x) dx. 2. Compute 1 x ln(x) dx. Hint: Use the substitution u = ln(x). 2 EXERCISES 27 2 Exercises Use integration by parts to compute lnx) dx 2 Compute x lnx) dx Hint: Use the substitution u = lnx) 3 Show that tan x) =/cos x) 2 and conclude that dx = arctanx) + C +x2 Note:

More information

Word Expression Algebraic Expression Example. Let z first odd integer Then z 2 second consecutive odd integer z 4 third consecutive odd integer

Word Expression Algebraic Expression Example. Let z first odd integer Then z 2 second consecutive odd integer z 4 third consecutive odd integer 3.6 Applications REVIEW from Section 1.6 Five Step Word Problem Method 1) Identify a variable. 2) Write an equation. 4) State your answer. 5) Check your answer. Consecutive Integers Word Expression Algebraic

More information

A Non-Parametric Technique of Option Pricing

A Non-Parametric Technique of Option Pricing 1 A Non-Parametric Technique of Option Pricing In our quest for a proper option-pricing model, we have so far relied on making assumptions regarding the dynamics of the underlying asset (more or less realistic)

More information

Lecture 1: The Econometrics of Financial Returns

Lecture 1: The Econometrics of Financial Returns Lecture 1: The Econometrics of Financial Returns Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2016 Overview General goals of the course and definition of risk(s) Predicting asset returns:

More information

Interpolation. 1 What is interpolation? 2 Why are we interested in this?

Interpolation. 1 What is interpolation? 2 Why are we interested in this? Interpolation 1 What is interpolation? For a certain function f (x we know only the values y 1 = f (x 1,,y n = f (x n For a point x different from x 1,,x n we would then like to approximate f ( x using

More information

Project 1: Double Pendulum

Project 1: Double Pendulum Final Projects Introduction to Numerical Analysis II http://www.math.ucsb.edu/ atzberg/winter2009numericalanalysis/index.html Professor: Paul J. Atzberger Due: Friday, March 20th Turn in to TA s Mailbox:

More information

ECON Micro Foundations

ECON Micro Foundations ECON 302 - Micro Foundations Michael Bar September 13, 2016 Contents 1 Consumer s Choice 2 1.1 Preferences.................................... 2 1.2 Budget Constraint................................ 3

More information

Math 101, Basic Algebra Author: Debra Griffin

Math 101, Basic Algebra Author: Debra Griffin Math 101, Basic Algebra Author: Debra Griffin Name Chapter 5 Factoring 5.1 Greatest Common Factor 2 GCF, factoring GCF, factoring common binomial factor 5.2 Factor by Grouping 5 5.3 Factoring Trinomials

More information

Chapter 4 Variability

Chapter 4 Variability Chapter 4 Variability PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry B. Wallnau Chapter 4 Learning Outcomes 1 2 3 4 5

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

Sandringham School Sixth Form. AS Maths. Bridging the gap

Sandringham School Sixth Form. AS Maths. Bridging the gap Sandringham School Sixth Form AS Maths Bridging the gap Section 1 - Factorising be able to factorise simple expressions be able to factorise quadratics The expression 4x + 8 can be written in factor form,

More information

ONLY AVAILABLE IN ELECTRONIC FORM

ONLY AVAILABLE IN ELECTRONIC FORM OPERATIONS RESEARCH doi 10.1287/opre.1080.0610ec pp. ec1 ec42 e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 2009 INFORMS Electronic Companion Dynamic Capacity Management with Substitution by Robert

More information

The Delta Method. j =.

The Delta Method. j =. The Delta Method Often one has one or more MLEs ( 3 and their estimated, conditional sampling variancecovariance matrix. However, there is interest in some function of these estimates. The question is,

More information

Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence

Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence Jingyu Song song173@purdue.edu Michael S. Delgado delgado2@purdue.edu Paul V. Preckel preckel@purdue.edu Department of Agricultural

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

Downloaded from

Downloaded from 9. Algebraic Expressions and Identities Q 1 Using identity (x - a) (x + a) = x 2 a 2 find 6 2 5 2. Q 2 Find the product of (7x 4y) and (3x - 7y). Q 3 Using suitable identity find (a + 3)(a + 2). Q 4 Using

More information

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole www.engage.com www.ma.utexas.edu/cna/nmc7

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION In Inferential Statistic, ESTIMATION (i) (ii) is called the True Population Mean and is called the True Population Proportion. You must also remember that are not the only population parameters. There

More information

3.1 Solutions to Exercises

3.1 Solutions to Exercises .1 Solutions to Exercises 1. (a) f(x) will approach + as x approaches. (b) f(x) will still approach + as x approaches -, because any negative integer x will become positive if it is raised to an even exponent,

More information

Topic #1: Evaluating and Simplifying Algebraic Expressions

Topic #1: Evaluating and Simplifying Algebraic Expressions John Jay College of Criminal Justice The City University of New York Department of Mathematics and Computer Science MAT 105 - College Algebra Departmental Final Examination Review Topic #1: Evaluating

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

BROWNIAN MOTION Antonella Basso, Martina Nardon

BROWNIAN MOTION Antonella Basso, Martina Nardon BROWNIAN MOTION Antonella Basso, Martina Nardon basso@unive.it, mnardon@unive.it Department of Applied Mathematics University Ca Foscari Venice Brownian motion p. 1 Brownian motion Brownian motion plays

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Algebra - Final Exam Review Part Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Use intercepts and a checkpoint to graph the linear function. )

More information

ACCUPLACER Elementary Algebra Assessment Preparation Guide

ACCUPLACER Elementary Algebra Assessment Preparation Guide ACCUPLACER Elementary Algebra Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

Quantitative Techniques (Finance) 203. Derivatives for Functions with Multiple Variables

Quantitative Techniques (Finance) 203. Derivatives for Functions with Multiple Variables Quantitative Techniques (Finance) 203 Derivatives for Functions with Multiple Variables Felix Chan October 2006 1 Introduction In the previous lecture, we discussed the concept of derivative as approximation

More information

AOE 3024: Thin Walled Structures Solutions to Homework # 4

AOE 3024: Thin Walled Structures Solutions to Homework # 4 AOE 34: Thin Walled Structures Solutions to The state of stress at a point in a component is given as σ xx τ xy τ xz 4 4 [σ] = τ yx σ yy τ yz = 4 5 MPa () τ zx τ zy σ zz a) Determine the factor of safety

More information

(b) per capita consumption grows at the rate of 2%.

(b) per capita consumption grows at the rate of 2%. 1. Suppose that the level of savings varies positively with the level of income and that savings is identically equal to investment. Then the IS curve: (a) slopes positively. (b) slopes negatively. (c)

More information

MAC Learning Objectives. Learning Objectives (Cont.)

MAC Learning Objectives. Learning Objectives (Cont.) MAC 1140 Module 12 Introduction to Sequences, Counting, The Binomial Theorem, and Mathematical Induction Learning Objectives Upon completing this module, you should be able to 1. represent sequences. 2.

More information

Course information FN3142 Quantitative finance

Course information FN3142 Quantitative finance Course information 015 16 FN314 Quantitative finance This course is aimed at students interested in obtaining a thorough grounding in market finance and related empirical methods. Prerequisite If taken

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples.

Importance Sampling for Option Pricing. Steven R. Dunbar. Put Options. Monte Carlo Method. Importance. Sampling. Examples. for for January 25, 2016 1 / 26 Outline for 1 2 3 4 2 / 26 Put Option for A put option is the right to sell an asset at an established price at a certain time. The established price is the strike price,

More information

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used

More information

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals

More information

3.1 Solutions to Exercises

3.1 Solutions to Exercises .1 Solutions to Exercises 1. (a) f(x) will approach + as x approaches. (b) f(x) will still approach + as x approaches -, because any negative integer x will become positive if it is raised to an even exponent,

More information

1 The EOQ and Extensions

1 The EOQ and Extensions IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 16, 2003 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions We have explored some of

More information

Robustness, Model Uncertainty and Pricing

Robustness, Model Uncertainty and Pricing Robustness, Model Uncertainty and Pricing Antoon Pelsser 1 1 Maastricht University & Netspar Email: a.pelsser@maastrichtuniversity.nl 29 October 2010 Swissquote Conference Lausanne A. Pelsser (Maastricht

More information

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents

Polynomials. Factors and Greatest Common Factors. Slide 1 / 128. Slide 2 / 128. Slide 3 / 128. Table of Contents Slide 1 / 128 Polynomials Table of ontents Slide 2 / 128 Factors and GF Factoring out GF's Factoring Trinomials x 2 + bx + c Factoring Using Special Patterns Factoring Trinomials ax 2 + bx + c Factoring

More information

6-3 Dividing Polynomials

6-3 Dividing Polynomials Polynomials can be divided using long division just like you learned with numbers. Divide) 24 6 5 6 24-8 4-0 4 Remainder 24 6 = 5 4 6 Example : Using Long Division to Divide a Polynomial Divide using

More information

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1)

MATD 0370 ELEMENTARY ALGEBRA REVIEW FOR TEST 3 (New Material From: , , and 10.1) NOTE: In addition to the problems below, please study the handout Exercise Set 10.1 posted at http://www.austin.cc.tx.us/jbickham/handouts. 1. Simplify: 5 7 5. Simplify: ( 6ab 5 c )( a c 5 ). Simplify:

More information

3.1 Measures of Central Tendency

3.1 Measures of Central Tendency 3.1 Measures of Central Tendency n Summation Notation x i or x Sum observation on the variable that appears to the right of the summation symbol. Example 1 Suppose the variable x i is used to represent

More information

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12.

We begin, however, with the concept of prime factorization. Example: Determine the prime factorization of 12. Chapter 3: Factors and Products 3.1 Factors and Multiples of Whole Numbers In this chapter we will look at the topic of factors and products. In previous years, we examined these with only numbers, whereas

More information

Quadratic Functions. As review, we will look at the definition of a quadratic function. A quadratic function is a function f of the form

Quadratic Functions. As review, we will look at the definition of a quadratic function. A quadratic function is a function f of the form Quadratic Functions To this point, we have had some experience with quadratic equations. We know that the graph of a quadratic equation gives us a parabola. In this section, we will see how quadratic equations

More information

Math 10 Lesson 2-3 Factoring trinomials

Math 10 Lesson 2-3 Factoring trinomials I. Lesson Objectives: Math 10 Lesson 2-3 Factoring trinomials a) To see the patterns in multiplying binomials that can be used to factor trinomials into binomials. b) To factor trinomials of the form ax

More information

Discounting a mean reverting cash flow

Discounting a mean reverting cash flow Discounting a mean reverting cash flow Marius Holtan Onward Inc. 6/26/2002 1 Introduction Cash flows such as those derived from the ongoing sales of particular products are often fluctuating in a random

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

2 Exploring Univariate Data

2 Exploring Univariate Data 2 Exploring Univariate Data A good picture is worth more than a thousand words! Having the data collected we examine them to get a feel for they main messages and any surprising features, before attempting

More information

Markowitz portfolio theory

Markowitz portfolio theory Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, 2009 1 Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize

More information

Section 4.3 Objectives

Section 4.3 Objectives CHAPTER ~ Linear Equations in Two Variables Section Equation of a Line Section Objectives Write the equation of a line given its graph Write the equation of a line given its slope and y-intercept Write

More information

A New Test for Correlation on Bivariate Nonnormal Distributions

A New Test for Correlation on Bivariate Nonnormal Distributions Journal of Modern Applied Statistical Methods Volume 5 Issue Article 8 --06 A New Test for Correlation on Bivariate Nonnormal Distributions Ping Wang Great Basin College, ping.wang@gbcnv.edu Ping Sa University

More information

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar

TIME VALUE OF MONEY. Lecture Notes Week 4. Dr Wan Ahmad Wan Omar TIME VALUE OF MONEY Lecture Notes Week 4 Dr Wan Ahmad Wan Omar Lecture Notes Week 4 4. The Time Value of Money The notion on time value of money is based on the idea that money available at the present

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

GPD-POT and GEV block maxima

GPD-POT and GEV block maxima Chapter 3 GPD-POT and GEV block maxima This chapter is devoted to the relation between POT models and Block Maxima (BM). We only consider the classical frameworks where POT excesses are assumed to be GPD,

More information

1 Economical Applications

1 Economical Applications WEEK 4 Reading [SB], 3.6, pp. 58-69 1 Economical Applications 1.1 Production Function A production function y f(q) assigns to amount q of input the corresponding output y. Usually f is - increasing, that

More information

Budget Setting Strategies for the Company s Divisions

Budget Setting Strategies for the Company s Divisions Budget Setting Strategies for the Company s Divisions Menachem Berg Ruud Brekelmans Anja De Waegenaere November 14, 1997 Abstract The paper deals with the issue of budget setting to the divisions of a

More information

Engineering Economy Chapter 4 More Interest Formulas

Engineering Economy Chapter 4 More Interest Formulas Engineering Economy Chapter 4 More Interest Formulas 1. Uniform Series Factors Used to Move Money Find F, Given A (i.e., F/A) Find A, Given F (i.e., A/F) Find P, Given A (i.e., P/A) Find A, Given P (i.e.,

More information

Polynomials. Unit 10 Polynomials 2 of 2 SMART Board Notes.notebook. May 15, 2013

Polynomials. Unit 10 Polynomials 2 of 2 SMART Board Notes.notebook. May 15, 2013 Oct 19 9:41 M errick played basketball for 5 out of the 10 days for four hours each. How many hours did errick spend playing basketball? Oct 19 9:41 M Polynomials Polynomials 1 Table of ontents Factors

More information

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer

DEPARTMENT OF ECONOMICS Fall 2013 D. Romer UNIVERSITY OF CALIFORNIA Economics 202A DEPARTMENT OF ECONOMICS Fall 203 D. Romer FORCES LIMITING THE EXTENT TO WHICH SOPHISTICATED INVESTORS ARE WILLING TO MAKE TRADES THAT MOVE ASSET PRICES BACK TOWARD

More information

Institute of Actuaries of India Subject CT6 Statistical Methods

Institute of Actuaries of India Subject CT6 Statistical Methods Institute of Actuaries of India Subject CT6 Statistical Methods For 2014 Examinations Aim The aim of the Statistical Methods subject is to provide a further grounding in mathematical and statistical techniques

More information