Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Size: px
Start display at page:

Download "Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1"

Transcription

1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals Sample means vary in value and form a sampling distribution in which not all samples result in x-values equal to the population mean µ. We should not expect to obtain a sample mean x (based on a specific sample that is exactly equal to the population mean µ. However, we can expect the point estimate to be fairly close in value to the population mean for a sufficiently large sample size (sampling distribution becomes approximately normal for large sample size. Recall rule: 95% of all observations from a normal distribution will fall within ± 2 standard deviation. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 If the sample size n is large enough, the sampling distribution of the sample means is approximately normal. Our point estimate x will hardly be equal to the population mean µ, but most likely ( 95% of all times fall within 2 standard deviations about the population mean µ. This interval (µ 2 n ; µ + 2 n Using this concept, we can construct so-called confidence intervals: We know that x follows a normal distribution with mean µ and standard deviation / n, i.e., x N (µ, n Therefore, we can anticipate approximately 95% of all random samples of size n from some population with unknown µ and known to produce sample means x that fall between µ 2 n and µ + 2 n is based on the rule. We know from Chapter 1, that the actual z-score corresponding to the middle 95% is z = so more precisely we have (µ 1.96 n ; µ n We are going to use z = 1.96 in the future when constructing a 95% confidence interval. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

2 Example: ACT scores N (µ, 5.9, let s take samples of size n = 76 It can be shown that this concept can be reversed in the following sense: approximately 95% of all samples of size 76 will produce sample means between Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Definition of a Confidence Interval Confidence Intervals (short: CI A confidence interval for the unknown population mean µ is an interval (or range of plausible values for µ. It is constructed such that with a chosen degree (or level of confidence C, the value of the unknown population mean will be captured inside the interval. For each confidence interval we have a confidence level C: C provides information on how much confidence we can have in the method used to construct the CI C usual choices are: 90%, 95%, and 99% C can be interpreted as the rate of success for the method used to construct CI in the long run Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

3 A level C confidence interval for population mean µ For a sufficiently large sample size n (CLT can apply so x follows a normal distribution or a population that is already normally distributed, the general formula for a level C confidence interval for the population mean µ when is known is given by ( x z n ; x + z i.e. in short notation ( x ± z n n The desired level of confidence C determines which critical value z is used. The three most commonly used confidence levels, 90%, 95%, and 99% use critical values 1.645, 1.96, and respectively. Use Table A to find z. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Example: 99% level of confidence A 99% confidence interval is constructed such that in the long run it is successful in capturing the true unknown population mean 99% of all times. Finding the critical value z for a level C confidence interval: More precisely we have that C = (1 α 100% The relevant number is called α, measuring the difference between the desired level of confidence and certainty (i.e. 100%. Example: Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Example: A random sample of size n = 25 from last semester s heights data yielded a sample mean of x = We know the population standard deviation is = Find a 90% confidence interval for the unknown population mean µ Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

4 What about a 95% confidence interval? Why settle for a 90% CI or 95% CI when we can construct 99% CIs? The higher level of confidence comes with a price tag: The resulting interval is wider than the 90% or 95% confidence interval: 99% CI = z = Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 = ± }{{} = ( , Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 The width of any confidence interval is given by In the previous 3 examples, the width of the corresponding CIs was 90%: Handout on simulated confidence intervals 95%: 99%: Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

5 Chapter 6.1 Interpretation of Confidence Intervals Chapter 6.1 Interpretation of Confidence Intervals Interpretation of Confidence Intervals Referring to the handout on the 100 simulated confidence intervals we can take a away the following facts: 1 We can be C% confident that the falls in the constructed level C confidence interval, i.e. between the lower and upper CI bound for a specific calculated example. Be careful: Before we take a sample from a population we can say there is a C% chance, (e.g. 95% chance, that our confidence interval will include the population parameter µ if we plan on constructing C% confidence intervals, (e.g. 95% CIs. 2 If we would take repeated samples, approximately C% of all samples taken will include the in the long run. 3 The interpretation of a CI is always in terms of the unknown population mean µ and never in terms of the sample mean x. The sample mean x, the center of every CI, will always be included in the CI by default. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Once we have taken the sample, this decision is made. Our interval either does contain µ or it does not. We just don t know it. There is not a C% chance anymore, all we can say is that we are C% confident, (e.g. 95% confident. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 We saw that the two properties of a high level of confidence and but a narrow (precise CI work against each other. The higher the level of confidence the wider the confidence interval and therefore the less precision we have estimating the unknown µ. remedy: If we need a certain level of confidence, but also a specific precision, we can increase the sample size n if n goes up x = n will go down! we get a narrower interval with more precision: margin of error m = z n is also referred to as the so-called margin of error changing one of the three components z, or n in the margin of error will have the following impact on the width of the confidence interval 1 level of confidence C = (1 α 100% will change z Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

6 2 sample size n will change standard deviation x sample size calculations If we want both a high level of confidence and a small margin of error (i.e. narrow confidence interval we need to take a sample of size 3 population standard deviation ( z 2 n m n rarely corresponds to an integer number, so we always need round up to the next largest integer. Why next largest? If we would round down, the corresponding confidence interval would not have the desired margin of error any longer, but a slightly larger one! Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Chapter 6.1 Assumptions for Confidence Intervals Example: What sample size should be used to estimate the mean age of workers in a large factory within 1 year at a 95% level of confidence if the standard deviation for the variable age is known to be 3.5? Necessary Assumptions for Constructing CIs 1 the sampling distribution of x has to follow at least approximately a distribution, i.e. either sample size is for the to apply if the population we sample from does not follow a normal distribution, or the population we sample from follows a normal distribution. 2 The sample taken has to be a sample. Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25 Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

7 worksheets Stat 226 (Spring 2009, Section A Introduction to Business Statistics I Section / 25

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate.

Chapter 7. Confidence Intervals and Sample Sizes. Definition. Definition. Definition. Definition. Confidence Interval : CI. Point Estimate. Chapter 7 Confidence Intervals and Sample Sizes 7. Estimating a Proportion p 7.3 Estimating a Mean µ (σ known) 7.4 Estimating a Mean µ (σ unknown) 7.5 Estimating a Standard Deviation σ In a recent poll,

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

Lecture 9 - Sampling Distributions and the CLT

Lecture 9 - Sampling Distributions and the CLT Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel September 23, 2015 1 Variability of Estimates Activity Sampling distributions - via simulation Sampling distributions - via CLT

More information

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics

μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics μ: ESTIMATES, CONFIDENCE INTERVALS, AND TESTS Business Statistics CONTENTS Estimating parameters The sampling distribution Confidence intervals for μ Hypothesis tests for μ The t-distribution Comparison

More information

Statistics Class 15 3/21/2012

Statistics Class 15 3/21/2012 Statistics Class 15 3/21/2012 Quiz 1. Cans of regular Pepsi are labeled to indicate that they contain 12 oz. Data Set 17 in Appendix B lists measured amounts for a sample of Pepsi cans. The same statistics

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel February 6, 2015 http:// pewresearch.org/ pubs/ 2191/ young-adults-workers-labor-market-pay-careers-advancement-recession Sta102/BME102

More information

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE 19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

More information

Statistical Methods in Practice STAT/MATH 3379

Statistical Methods in Practice STAT/MATH 3379 Statistical Methods in Practice STAT/MATH 3379 Dr. A. B. W. Manage Associate Professor of Mathematics & Statistics Department of Mathematics & Statistics Sam Houston State University Overview 6.1 Discrete

More information

1 Inferential Statistic

1 Inferential Statistic 1 Inferential Statistic Population versus Sample, parameter versus statistic A population is the set of all individuals the researcher intends to learn about. A sample is a subset of the population and

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

Homework: (Due Wed) Chapter 10: #5, 22, 42

Homework: (Due Wed) Chapter 10: #5, 22, 42 Announcements: Discussion today is review for midterm, no credit. You may attend more than one discussion section. Bring 2 sheets of notes and calculator to midterm. We will provide Scantron form. Homework:

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Confidence Intervals for Large Sample Proportions

Confidence Intervals for Large Sample Proportions Confidence Intervals for Large Sample Proportions Dr Tom Ilvento Department of Food and Resource Economics Overview Confidence Intervals C.I. We will start with large sample C.I. for proportions, using

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

Estimation Y 3. Confidence intervals I, Feb 11,

Estimation Y 3. Confidence intervals I, Feb 11, Estimation Example: Cholesterol levels of heart-attack patients Data: Observational study at a Pennsylvania medical center blood cholesterol levels patients treated for heart attacks measurements 2, 4,

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Confidence Intervals for the Difference Between Two Means with Tolerance Probability

Confidence Intervals for the Difference Between Two Means with Tolerance Probability Chapter 47 Confidence Intervals for the Difference Between Two Means with Tolerance Probability Introduction This procedure calculates the sample size necessary to achieve a specified distance from the

More information

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5)

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) Fall 2011 Lecture 10 (Fall 2011) Estimation Lecture 10 1 / 23 Review: Sampling Distributions Sample

More information

Expected Value of a Random Variable

Expected Value of a Random Variable Knowledge Article: Probability and Statistics Expected Value of a Random Variable Expected Value of a Discrete Random Variable You're familiar with a simple mean, or average, of a set. The mean value of

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

Confidence Intervals. σ unknown, small samples The t-statistic /22

Confidence Intervals. σ unknown, small samples The t-statistic /22 Confidence Intervals σ unknown, small samples The t-statistic 1 /22 Homework Read Sec 7-3. Discussion Question pg 365 Do Ex 7-3 1-4, 6, 9, 12, 14, 15, 17 2/22 Objective find the confidence interval for

More information

The Normal Distribution

The Normal Distribution Stat 6 Introduction to Business Statistics I Spring 009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:300:50 a.m. Chapter, Section.3 The Normal Distribution Density Curves So far we

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions

Key Objectives. Module 2: The Logic of Statistical Inference. Z-scores. SGSB Workshop: Using Statistical Data to Make Decisions SGSB Workshop: Using Statistical Data to Make Decisions Module 2: The Logic of Statistical Inference Dr. Tom Ilvento January 2006 Dr. Mugdim Pašić Key Objectives Understand the logic of statistical inference

More information

Sampling Distributions and the Central Limit Theorem

Sampling Distributions and the Central Limit Theorem Sampling Distributions and the Central Limit Theorem February 18 Data distributions and sampling distributions So far, we have discussed the distribution of data (i.e. of random variables in our sample,

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

Section 7-2 Estimating a Population Proportion

Section 7-2 Estimating a Population Proportion Section 7- Estimating a Population Proportion 1 Key Concept In this section we present methods for using a sample proportion to estimate the value of a population proportion. The sample proportion is the

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan

Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion. Instructor: Elvan Ceyhan 1 Chapter 7.2: Large-Sample Confidence Intervals for a Population Mean and Proportion Instructor: Elvan Ceyhan Outline of this chapter: Large-Sample Interval for µ Confidence Intervals for Population Proportion

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Let s make our own sampling! If we use a random sample (a survey) or if we randomly assign treatments to subjects (an experiment) we can come up with proper, unbiased conclusions

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 6 Normal Probability Distributions 6-1 Overview 6-2 The Standard Normal Distribution

More information

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals

Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Week 2 Quantitative Analysis of Financial Markets Hypothesis Testing and Confidence Intervals Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg :

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://wwwstattamuedu/~suhasini/teachinghtml Suhasini Subba Rao Review of previous lecture The main idea in the previous lecture is that the sample

More information

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed.

As you draw random samples of size n, as n increases, the sample means tend to be normally distributed. The Central Limit Theorem The central limit theorem (clt for short) is one of the most powerful and useful ideas in all of statistics. The clt says that if we collect samples of size n with a "large enough

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 13 (MWF) Designing the experiment: Margin of Error Suhasini Subba Rao Terminology: The population

More information

Math 160 Professor Busken Chapter 5 Worksheets

Math 160 Professor Busken Chapter 5 Worksheets Math 160 Professor Busken Chapter 5 Worksheets Name: 1. Find the expected value. Suppose you play a Pick 4 Lotto where you pay 50 to select a sequence of four digits, such as 2118. If you select the same

More information

Math 124: Module 8 (Normal Distribution) Normally Distributed Random Variables. Solving Normal Problems with Technology

Math 124: Module 8 (Normal Distribution) Normally Distributed Random Variables. Solving Normal Problems with Technology ( ( What we will do today ly Rom Stard ( David Meredith Department of Mathematics San Francisco State University October 6, 2009 ly Rom Stard 1 ly Rom 2 3 Stard 4 ( ( Rom ly Rom Stard A variable is a characteristic

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 7 Estimation: Single Population Copyright 010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 7-1 Confidence Intervals Contents of this chapter: Confidence

More information

Confidence Intervals for One-Sample Specificity

Confidence Intervals for One-Sample Specificity Chapter 7 Confidence Intervals for One-Sample Specificity Introduction This procedures calculates the (whole table) sample size necessary for a single-sample specificity confidence interval, based on a

More information

Descriptive Statistics (Devore Chapter One)

Descriptive Statistics (Devore Chapter One) Descriptive Statistics (Devore Chapter One) 1016-345-01 Probability and Statistics for Engineers Winter 2010-2011 Contents 0 Perspective 1 1 Pictorial and Tabular Descriptions of Data 2 1.1 Stem-and-Leaf

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION In Inferential Statistic, ESTIMATION (i) (ii) is called the True Population Mean and is called the True Population Proportion. You must also remember that are not the only population parameters. There

More information

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38

5-1 pg ,4,5, EOO,39,47,50,53, pg ,5,9,13,17,19,21,22,25,30,31,32, pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-1 pg. 242 3,4,5, 17-37 EOO,39,47,50,53,56 5-2 pg. 249 9,10,13,14,17,18 5-3 pg. 257 1,5,9,13,17,19,21,22,25,30,31,32,34 5-4 pg.269 1,29,13,16,17,19,20,25,26,28,31,33,38 5-5 pg. 281 5-14,16,19,21,22,25,26,30

More information

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether.

Distribution. Lecture 34 Section Fri, Oct 31, Hampden-Sydney College. Student s t Distribution. Robb T. Koether. Lecture 34 Section 10.2 Hampden-Sydney College Fri, Oct 31, 2008 Outline 1 2 3 4 5 6 7 8 Exercise 10.4, page 633. A psychologist is studying the distribution of IQ scores of girls at an alternative high

More information

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY

LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY LESSON 7 INTERVAL ESTIMATION SAMIE L.S. LY 1 THIS WEEK S PLAN Part I: Theory + Practice ( Interval Estimation ) Part II: Theory + Practice ( Interval Estimation ) z-based Confidence Intervals for a Population

More information

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1

Contents. 1 Introduction. Math 321 Chapter 5 Confidence Intervals. 1 Introduction 1 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/11-11:17:37) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 2 2.2 Unknown

More information

Lecture 6: Chapter 6

Lecture 6: Chapter 6 Lecture 6: Chapter 6 C C Moxley UAB Mathematics 3 October 16 6.1 Continuous Probability Distributions Last week, we discussed the binomial probability distribution, which was discrete. 6.1 Continuous Probability

More information

Bin(20,.5) and N(10,5) distributions

Bin(20,.5) and N(10,5) distributions STAT 600 Design of Experiments for Research Workers Lab 5 { Due Thursday, November 18 Example Weight Loss In a dietary study, 14 of 0 subjects lost weight. If weight is assumed to uctuate up or down by

More information

Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls

Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls 1 Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls 2 Section 4.4.2: Capture-Recapture method revisited 3 Let s use statistical inference to get a

More information

Midterm Exam III Review

Midterm Exam III Review Midterm Exam III Review Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Midterm Exam III Review 1 / 25 Permutations and Combinations ORDER In order to count the number of possible ways

More information

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High

AP Stats Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High AP Stats Review Mrs. Daniel Alonzo & Tracy Mourning Sr. High sdaniel@dadeschools.net Agenda 1. AP Stats Exam Overview 2. AP FRQ Scoring & FRQ: 2016 #1 3. Distributions Review 4. FRQ: 2015 #6 5. Distribution

More information

Lecture 16: Estimating Parameters (Confidence Interval Estimates of the Mean)

Lecture 16: Estimating Parameters (Confidence Interval Estimates of the Mean) Statistics 16_est_parameters.pdf Michael Hallstone, Ph.D. hallston@hawaii.edu Lecture 16: Estimating Parameters (Confidence Interval Estimates of the Mean) Some Common Sense Assumptions for Interval Estimates

More information

Every data set has an average and a standard deviation, given by the following formulas,

Every data set has an average and a standard deviation, given by the following formulas, Discrete Data Sets A data set is any collection of data. For example, the set of test scores on the class s first test would comprise a data set. If we collect a sample from the population we are interested

More information

Learning Objectives for Ch. 7

Learning Objectives for Ch. 7 Chapter 7: Point and Interval Estimation Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 7 Obtaining a point estimate of a population parameter

More information

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS

CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS CHAPTER 7 INTRODUCTION TO SAMPLING DISTRIBUTIONS Note: This section uses session window commands instead of menu choices CENTRAL LIMIT THEOREM (SECTION 7.2 OF UNDERSTANDABLE STATISTICS) The Central Limit

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 14 (MWF) The t-distribution Suhasini Subba Rao Review of previous lecture Often the precision

More information

5.1 Mean, Median, & Mode

5.1 Mean, Median, & Mode 5.1 Mean, Median, & Mode definitions Mean: Median: Mode: Example 1 The Blue Jays score these amounts of runs in their last 9 games: 4, 7, 2, 4, 10, 5, 6, 7, 7 Find the mean, median, and mode: Example 2

More information

Simple Random Sampling. Sampling Distribution

Simple Random Sampling. Sampling Distribution STAT 503 Sampling Distribution and Statistical Estimation 1 Simple Random Sampling Simple random sampling selects with equal chance from (available) members of population. The resulting sample is a simple

More information

University of California, Los Angeles Department of Statistics. Normal distribution

University of California, Los Angeles Department of Statistics. Normal distribution University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Normal distribution The normal distribution is the most important distribution. It describes

More information

1. Variability in estimates and CLT

1. Variability in estimates and CLT Unit3: Foundationsforinference 1. Variability in estimates and CLT Sta 101 - Fall 2015 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_f15

More information

* Point estimate for P is: x n

* Point estimate for P is: x n Estimation and Confidence Interval Estimation and Confidence Interval: Single Mean: To find the confidence intervals for a single mean: 1- X ± ( Z 1 σ n σ known S - X ± (t 1,n 1 n σ unknown Estimation

More information

6.1, 7.1 Estimating with confidence (CIS: Chapter 10)

6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Objectives 6.1, 7.1 Estimating with confidence (CIS: Chapter 10) Statistical confidence (CIS gives a good explanation of a 95% CI) Confidence intervals Choosing the sample size t distributions One-sample

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions

Examples: Random Variables. Discrete and Continuous Random Variables. Probability Distributions Random Variables Examples: Random variable a variable (typically represented by x) that takes a numerical value by chance. Number of boys in a randomly selected family with three children. Possible values:

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Lecture 2. Probability Distributions Theophanis Tsandilas

Lecture 2. Probability Distributions Theophanis Tsandilas Lecture 2 Probability Distributions Theophanis Tsandilas Comment on measures of dispersion Why do common measures of dispersion (variance and standard deviation) use sums of squares: nx (x i ˆµ) 2 i=1

More information

Chapter 4: Estimation

Chapter 4: Estimation Slide 4.1 Chapter 4: Estimation Estimation is the process of using sample data to draw inferences about the population Sample information x, s Inferences Population parameters µ,σ Slide 4. Point and interval

More information

Chapter 7 Sampling Distributions and Point Estimation of Parameters

Chapter 7 Sampling Distributions and Point Estimation of Parameters Chapter 7 Sampling Distributions and Point Estimation of Parameters Part 1: Sampling Distributions, the Central Limit Theorem, Point Estimation & Estimators Sections 7-1 to 7-2 1 / 25 Statistical Inferences

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

STAB22 section 1.3 and Chapter 1 exercises

STAB22 section 1.3 and Chapter 1 exercises STAB22 section 1.3 and Chapter 1 exercises 1.101 Go up and down two times the standard deviation from the mean. So 95% of scores will be between 572 (2)(51) = 470 and 572 + (2)(51) = 674. 1.102 Same idea

More information

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

AP Stats. Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High

AP Stats. Review. Mrs. Daniel Alonzo & Tracy Mourning Sr. High AP Stats Review Mrs. Daniel Alonzo & Tracy Mourning Sr. High sdaniel@dadeschools.net Agenda 1. AP Stats Exam Overview 2. AP FRQ Scoring & FRQ: 2016 #1 3. Distributions Review 4. FRQ: 2015 #6 5. Distribution

More information

Chapter 6. The Normal Probability Distributions

Chapter 6. The Normal Probability Distributions Chapter 6 The Normal Probability Distributions 1 Chapter 6 Overview Introduction 6-1 Normal Probability Distributions 6-2 The Standard Normal Distribution 6-3 Applications of the Normal Distribution 6-5

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet...

Review of commonly missed questions on the online quiz. Lecture 7: Random variables] Expected value and standard deviation. Let s bet... Recap Review of commonly missed questions on the online quiz Lecture 7: ] Statistics 101 Mine Çetinkaya-Rundel OpenIntro quiz 2: questions 4 and 5 September 20, 2011 Statistics 101 (Mine Çetinkaya-Rundel)

More information

Event A Value. Value. Choice

Event A Value. Value. Choice Solutions.. No. t least, not if the decision tree and influence diagram each represent the same problem (identical details and definitions). Decision trees and influence diagrams are called isomorphic,

More information

CHAPTER 5 SAMPLING DISTRIBUTIONS

CHAPTER 5 SAMPLING DISTRIBUTIONS CHAPTER 5 SAMPLING DISTRIBUTIONS Sampling Variability. We will visualize our data as a random sample from the population with unknown parameter μ. Our sample mean Ȳ is intended to estimate population mean

More information

1 Introduction 1. 3 Confidence interval for proportion p 6

1 Introduction 1. 3 Confidence interval for proportion p 6 Math 321 Chapter 5 Confidence Intervals (draft version 2019/04/15-13:41:02) Contents 1 Introduction 1 2 Confidence interval for mean µ 2 2.1 Known variance................................. 3 2.2 Unknown

More information

Section Distributions of Random Variables

Section Distributions of Random Variables Section 8.1 - Distributions of Random Variables Definition: A random variable is a rule that assigns a number to each outcome of an experiment. Example 1: Suppose we toss a coin three times. Then we could

More information

1. Confidence Intervals (cont.)

1. Confidence Intervals (cont.) Math 1125-Introductory Statistics Lecture 23 11/1/06 1. Confidence Intervals (cont.) Let s review. We re in a situation, where we don t know µ, but we have a number from a normal population, either an

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

A) The first quartile B) The Median C) The third quartile D) None of the previous. 2. [3] If P (A) =.8, P (B) =.7, and P (A B) =.

A) The first quartile B) The Median C) The third quartile D) None of the previous. 2. [3] If P (A) =.8, P (B) =.7, and P (A B) =. Review for stat2507 Final (December 2008) Part I: Multiple Choice questions (on 39%): Please circle only one choice. 1. [3] Which one of the following summary measures is affected most by outliers A) The

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2018 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Chapter Seven: Confidence Intervals and Sample Size

Chapter Seven: Confidence Intervals and Sample Size Chapter Seven: Confidence Intervals and Sample Size A point estimate is: The best point estimate of the population mean µ is the sample mean X. Three Properties of a Good Estimator 1. Unbiased 2. Consistent

More information

Tuesday, Week 10. Announcements:

Tuesday, Week 10. Announcements: Tuesday, Week 10 Announcements: Thursday, October 25, 2 nd midterm in class, covering Chapters 6-8 (Confidence intervals). Charissa Mikoski, the TA for our class, will be administering the exam (I will

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2019 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information