Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls

Size: px
Start display at page:

Download "Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls"

Transcription

1 1 Today s plan: Section 4.4.2: Capture-Recapture method revisited and Section 4.4.3: Public Opinion Polls

2 2 Section 4.4.2: Capture-Recapture method revisited

3 3 Let s use statistical inference to get a better estimate of a population size.

4 4 Example Estimate the population of fish in a lake.

5 4 Example Estimate the population of fish in a lake. Catch a sample of 150 fish. Tag and release them.

6 4 Example Estimate the population of fish in a lake. Catch a sample of 150 fish. Tag and release them. A week later, catch a new sample of 100 fish. The number of tagged fish is 12.

7 4 Example Estimate the population of fish in a lake. Catch a sample of 150 fish. Tag and release them. A week later, catch a new sample of 100 fish. The number of tagged fish is 12. Get a 95% confidence level estimate of the fish population.

8 5 The second sample is a repeated two-outcome experiment, done 100 times:

9 5 The second sample is a repeated two-outcome experiment, done 100 times: Take a fish and check for a tag

10 5 The second sample is a repeated two-outcome experiment, done 100 times: Take a fish and check for a tag The two outcomes are: tagged and not tagged

11 6 The number k of successes is the number of tagged fish in the sample.

12 6 The number k of successes is the number of tagged fish in the sample. The statistic ˆp is ˆp = k n = = 0.12

13 7 With ˆp = 0.12 and n = 100 in hand, we compute: st.err (1 0.12)

14 7 With ˆp = 0.12 and n = 100 in hand, we compute: st.err (1 0.12) So what s p, with 95% confidence?

15 8 ˆp (2 σ n ) p ˆp + (2 σ n )

16 8 ˆp (2 σ n ) p ˆp + (2 σ n ) 0.12 ( ) p (

17 8 ˆp (2 σ n ) p ˆp + (2 σ n ) 0.12 ( ) p ( N 0.185

18 8 ˆp (2 σ n ) p ˆp + (2 σ n ) 0.12 ( ) p ( N N

19 8 ˆp (2 σ n ) p ˆp + (2 σ n ) 0.12 ( ) p ( N N N

20 8 ˆp (2 σ n ) p ˆp + (2 σ n ) 0.12 ( ) p ( N N N N

21 9 We can say with 95% confidence that the population is somewhere between 811 and 2,727.

22 10 This interval is very wide

23 10 This interval is very wide We can narrow the interval at the cost of reducing the confidence level.

24 10 This interval is very wide We can narrow the interval at the cost of reducing the confidence level. or increasing the sample size

25 11 With 68% confidence, we conclude the population is between 984 and 1,714.

26 11 With 68% confidence, we conclude the population is between 984 and 1,714. The original estimate 1250 (when st.err. = 0) is not the middle of the interval [811,2,727]

27 11 With 68% confidence, we conclude the population is between 984 and 1,714. The original estimate 1250 (when st.err. = 0) is not the middle of the interval [811,2,727] This is an artifact of estimating 1/N to get N.

28 12 Section 4.4.3: Public opinion polls

29 13 Example The results of a poll (of 1350 people) for a mayoral election are 648 in favor of Candidate A

30 13 Example The results of a poll (of 1350 people) for a mayoral election are 648 in favor of Candidate A 702 in favor of Candidate B

31 13 Example The results of a poll (of 1350 people) for a mayoral election are 648 in favor of Candidate A 702 in favor of Candidate B What predictions can we make about the election?

32 14 Let s begin with Candidate A. Sample size n = 1350

33 14 Let s begin with Candidate A. Sample size n = 1350 Favorable voters k = 648

34 14 Let s begin with Candidate A. Sample size n = 1350 Favorable voters k = 648 Therefore ˆp = 648 = 0.48 or %

35 14 Let s begin with Candidate A. Sample size n = 1350 Favorable voters k = 648 Therefore ˆp = 648 = 0.48 or % σ (1 0.48)

36 15 so the standard error is st.err or 1.36%

37 15 so the standard error is st.err or 1.36% Thus, the 95% confidence interval is [ , ] or [45.28%, 50.72%]

38 16 Similarly, for Candidate B: Sample size n = 1350

39 16 Similarly, for Candidate B: Sample size n = 1350 favorable voters k = 702

40 16 Similarly, for Candidate B: Sample size n = 1350 favorable voters k = 702 Therefore ˆp = 702 = 0.52 or %

41 16 Similarly, for Candidate B: Sample size n = 1350 favorable voters k = 702 Therefore ˆp = 702 = 0.52 or % σ (1 0.52)

42 17 so the standard error is st.err or 1.36%

43 17 so the standard error is st.err or 1.36% Thus, the 95% confidence interval is [ , ] or [49.28%, 54.72%]

44 18 When we draw these two intervals we clearly see they overlap. A B Overlap

45 19 So with 95% confidence, we can t say who will win.

46 19 So with 95% confidence, we can t say who will win. We call this a statistical tie, or we say the difference is not statistically significant.

47 20 Remarks: For both candidates the standard error was exactly the same.

48 20 Remarks: For both candidates the standard error was exactly the same. That is always the case when there are only two options.

49 20 Remarks: For both candidates the standard error was exactly the same. That is always the case when there are only two options. σ (1 0.48) = (1 0.52)

50 21 Even with three options, say, A, B and No preference, if not many people pick the third option then the standard error for both candidates will be almost the same.

51 21 Even with three options, say, A, B and No preference, if not many people pick the third option then the standard error for both candidates will be almost the same. In such cases we can get away with only computing one standard error.

52 22 Example Now a new poll is taken, and the numbers are: 581 in favor of Candidate A 769 in favor of Candidate B Is the difference statistically significant now?

53 23 The sample size is n = 1350, and the poll has only two options, so there is a common standard error.

54 24 For Candidate A, we have k = 581

55 24 For Candidate A, we have k = 581 so ˆp = or 43.03%. 1350

56 25 For Candidate B, we have k = 769

57 25 For Candidate B, we have k = 769 so ˆp = or 56.96%. 1350

58 26 The standard error is ( ) st.err or 1.35%

59 27 The 95% confidence interval for Candidate A is [ , ]

60 27 The 95% confidence interval for Candidate A is [ , ] or [40.33%, 45.73%]

61 28 The 95% confidence interval for Candidate B [ , ]

62 28 The 95% confidence interval for Candidate B [ , ] or [54.26%, 59.66%]

63 29 A B

64 30 Remarks: Now they don t overlap at all.

65 30 Remarks: Now they don t overlap at all. Candidate B now has a statistically significant advantage over Candidate A.

66 31 Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors.

67 31 Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors. ˆp B ˆp A 57% 43% = 14%

68 31 Another way to see whether the difference between the candidates is statistically significant is whether their levels of support in the poll differ by more than 4 standard errors. ˆp B ˆp A 57% 43% = 14% whereas 4 st.err. = % = 5.4%

69 32 Next time: Section 4.4.4: Clinical Studies

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Math 140 Introductory Statistics. Next midterm May 1

Math 140 Introductory Statistics. Next midterm May 1 Math 140 Introductory Statistics Next midterm May 1 8.1 Confidence intervals 54% of Americans approve the job the president is doing with a margin error of 3% 55% of 18-29 year olds consider themselves

More information

STAT Chapter 7: Confidence Intervals

STAT Chapter 7: Confidence Intervals STAT 515 -- Chapter 7: Confidence Intervals With a point estimate, we used a single number to estimate a parameter. We can also use a set of numbers to serve as reasonable estimates for the parameter.

More information

AP Statistics: Chapter 8, lesson 2: Estimating a population proportion

AP Statistics: Chapter 8, lesson 2: Estimating a population proportion Activity 1: Which way will the Hershey s kiss land? When you toss a Hershey Kiss, it sometimes lands flat and sometimes lands on its side. What proportion of tosses will land flat? Each group of four selects

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Homework: (Due Wed) Chapter 10: #5, 22, 42

Homework: (Due Wed) Chapter 10: #5, 22, 42 Announcements: Discussion today is review for midterm, no credit. You may attend more than one discussion section. Bring 2 sheets of notes and calculator to midterm. We will provide Scantron form. Homework:

More information

Chapter 10 Estimating Proportions with Confidence

Chapter 10 Estimating Proportions with Confidence Chapter 10 Estimating Proportions with Confidence Copyright 2011 Brooks/Cole, Cengage Learning Principle Idea: Confidence interval: an interval of estimates that is likely to capture the population value.

More information

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44

HOMEWORK: Due Mon 11/8, Chapter 9: #15, 25, 37, 44 This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Understanding Sampling Distributions: Statistics as Random Variables ANNOUNCEMENTS: Shandong Min will give the lecture on Friday. See website

More information

Oligopoly Games and Voting Games. Cournot s Model of Quantity Competition:

Oligopoly Games and Voting Games. Cournot s Model of Quantity Competition: Oligopoly Games and Voting Games Cournot s Model of Quantity Competition: Supposetherearetwofirms, producing an identical good. (In his 1838 book, Cournot thought of firms filling bottles with mineral

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

Lecture 5: Sampling Distributions

Lecture 5: Sampling Distributions Lecture 5: Sampling Distributions Taeyong Park Washington University in St. Louis February 15, 2017 Park (Wash U.) U25 PS323 Intro to Quantitative Methods February 15, 2017 1 / 23 Today... Review of normal

More information

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5)

ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) ECO220Y Estimation: Confidence Interval Estimator for Sample Proportions Readings: Chapter 11 (skip 11.5) Fall 2011 Lecture 10 (Fall 2011) Estimation Lecture 10 1 / 23 Review: Sampling Distributions Sample

More information

Chapter 9 Chapter Friday, June 4 th

Chapter 9 Chapter Friday, June 4 th Chapter 9 Chapter 10 Sections 9.1 9.5 and 10.1 10.5 Friday, June 4 th Parameter and Statisticti ti Parameter is a number that is a summary characteristic of a population Statistic, is a number that is

More information

FINAL REVIEW W/ANSWERS

FINAL REVIEW W/ANSWERS FINAL REVIEW W/ANSWERS ( 03/15/08 - Sharon Coates) Concepts to review before answering the questions: A population consists of the entire group of people or objects of interest to an investigator, while

More information

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i

Lecture 9 - Sampling Distributions and the CLT. Mean. Margin of error. Sta102/BME102. February 6, Sample mean ( X ): x i Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel February 6, 2015 http:// pewresearch.org/ pubs/ 2191/ young-adults-workers-labor-market-pay-careers-advancement-recession Sta102/BME102

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Chapter 9 & 10. Multiple Choice.

Chapter 9 & 10. Multiple Choice. Chapter 9 & 10 Review Name Multiple Choice. 1. An agricultural researcher plants 25 plots with a new variety of corn. The average yield for these plots is X = 150 bushels per acre. Assume that the yield

More information

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are

Chapter 7 presents the beginning of inferential statistics. The two major activities of inferential statistics are Chapter 7 presents the beginning of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample data to estimate values of population

More information

STA215 Confidence Intervals for Proportions

STA215 Confidence Intervals for Proportions STA215 Confidence Intervals for Proportions Al Nosedal. University of Toronto. Summer 2017 June 14, 2017 Pepsi problem A market research consultant hired by the Pepsi-Cola Co. is interested in determining

More information

Chapter 8 Answers: Section 8.1: Section 8.2:

Chapter 8 Answers: Section 8.1: Section 8.2: Chapter 8 Answers: Section 8.1: 1) A confidence interval will become narrower if the sample size is increased. 3) A confidence interval will become narrower if the confidence level is decreased. 5) There

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Review of previous lecture: Why confidence intervals? Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Suppose you want to know the

More information

Pssst! Coffee helps!

Pssst! Coffee helps! Chapter 10 Pssst! Coffee helps! Sample Size for an Interval Estimate of a Population Proportion Let E = the maximum sampling error mentioned in the precision statement. We have Solving for n we have Example:

More information

Random Sampling & Confidence Intervals

Random Sampling & Confidence Intervals +σ +σ +3σ Random Sampling & Confidence Intervals Lecture 5 0909.400.01 / 0909.400.0 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering +σ +σ +3σ This Week in P&S (and Next, and

More information

Chapter 7. Sampling Distributions and the Central Limit Theorem

Chapter 7. Sampling Distributions and the Central Limit Theorem Chapter 7. Sampling Distributions and the Central Limit Theorem 1 Introduction 2 Sampling Distributions related to the normal distribution 3 The central limit theorem 4 The normal approximation to binomial

More information

Lecture 9 - Sampling Distributions and the CLT

Lecture 9 - Sampling Distributions and the CLT Lecture 9 - Sampling Distributions and the CLT Sta102/BME102 Colin Rundel September 23, 2015 1 Variability of Estimates Activity Sampling distributions - via simulation Sampling distributions - via CLT

More information

Stats SB Notes 6.3 Completed.notebook April 03, Mar 23 5:22 PM. Chapter Outline. 6.1 Confidence Intervals for the Mean (σ Known)

Stats SB Notes 6.3 Completed.notebook April 03, Mar 23 5:22 PM. Chapter Outline. 6.1 Confidence Intervals for the Mean (σ Known) Stats SB Notes 63 Completednotebook April 03, 2017 Chapter 6 Confidence Intervals Chapter Outline 61 Confidence Intervals for the Mean (σ Known) 62 Confidence Intervals for the Mean (σ Unknown) 63 Confidence

More information

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get

This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var Stats. You will get MATH 111: REVIEW FOR FINAL EXAM SUMMARY STATISTICS Spring 2005 exam: 1(A), 2(E), 3(C), 4(D) Comments: This is very simple, just enter the sample into a list in the calculator and go to STAT CALC 1-Var

More information

University of California, Los Angeles Department of Statistics

University of California, Los Angeles Department of Statistics University of California, Los Angeles Department of Statistics Statistics 13 Instructor: Nicolas Christou The central limit theorem The distribution of the sample proportion The distribution of the sample

More information

Lecture 6: Confidence Intervals

Lecture 6: Confidence Intervals Lecture 6: Confidence Intervals Taeyong Park Washington University in St. Louis February 22, 2017 Park (Wash U.) U25 PS323 Intro to Quantitative Methods February 22, 2017 1 / 29 Today... Review of sampling

More information

3. Probability Distributions and Sampling

3. Probability Distributions and Sampling 3. Probability Distributions and Sampling 3.1 Introduction: the US Presidential Race Appendix 2 shows a page from the Gallup WWW site. As you probably know, Gallup is an opinion poll company. The page

More information

SAMPLING DISTRIBUTIONS. Chapter 7

SAMPLING DISTRIBUTIONS. Chapter 7 SAMPLING DISTRIBUTIONS Chapter 7 7.1 How Likely Are the Possible Values of a Statistic? The Sampling Distribution Statistic and Parameter Statistic numerical summary of sample data: p-hat or xbar Parameter

More information

STAT 1220 FALL 2010 Common Final Exam December 10, 2010

STAT 1220 FALL 2010 Common Final Exam December 10, 2010 STAT 1220 FALL 2010 Common Final Exam December 10, 2010 PLEASE PRINT THE FOLLOWING INFORMATION: Name: Instructor: Student ID #: Section/Time: THIS EXAM HAS TWO PARTS. PART I. Part I consists of 30 multiple

More information

We will use an example which will result in a paired t test regarding the labor force participation rate for women in the 60 s and 70 s.

We will use an example which will result in a paired t test regarding the labor force participation rate for women in the 60 s and 70 s. Now let s review methods for one quantitative variable. We will use an example which will result in a paired t test regarding the labor force participation rate for women in the 60 s and 70 s. 17 The labor

More information

MBF2263 Portfolio Management. Lecture 8: Risk and Return in Capital Markets

MBF2263 Portfolio Management. Lecture 8: Risk and Return in Capital Markets MBF2263 Portfolio Management Lecture 8: Risk and Return in Capital Markets 1. A First Look at Risk and Return We begin our look at risk and return by illustrating how the risk premium affects investor

More information

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin

Arbitrage Pricing. What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin Arbitrage Pricing What is an Equivalent Martingale Measure, and why should a bookie care? Department of Mathematics University of Texas at Austin March 27, 2010 Introduction What is Mathematical Finance?

More information

Section Sampling Distributions for Counts and Proportions

Section Sampling Distributions for Counts and Proportions Section 5.1 - Sampling Distributions for Counts and Proportions Statistics 104 Autumn 2004 Copyright c 2004 by Mark E. Irwin Distributions When dealing with inference procedures, there are two different

More information

Introduction to Statistics I

Introduction to Statistics I Introduction to Statistics I Keio University, Faculty of Economics Continuous random variables Simon Clinet (Keio University) Intro to Stats November 1, 2018 1 / 18 Definition (Continuous random variable)

More information

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4

7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 7. For the table that follows, answer the following questions: x y 1-1/4 2-1/2 3-3/4 4 - Would the correlation between x and y in the table above be positive or negative? The correlation is negative. -

More information

1 Sampling Distributions

1 Sampling Distributions 1 Sampling Distributions 1.1 Statistics and Sampling Distributions When a random sample is selected the numerical descriptive measures calculated from such a sample are called statistics. These statistics

More information

Sampling Distributions

Sampling Distributions Al Nosedal. University of Toronto. Fall 2017 October 26, 2017 1 What is a Sampling Distribution? 2 3 Sampling Distribution The sampling distribution of a statistic is the distribution of values taken by

More information

INSIGHTS WEST Survey on Surrey Municipal Issues - November 10, 2014

INSIGHTS WEST Survey on Surrey Municipal Issues - November 10, 2014 Survey on Municipal Issues - November 10, 2014 In your view, what is the most important issue facing the right now? Poverty 7% 7% 7% 5% 9% 6% Economic development 7% 7% 7% 9% 5% 8% Housing 4% 2% 5% 4%

More information

Confidence Interval and Hypothesis Testing: Exercises and Solutions

Confidence Interval and Hypothesis Testing: Exercises and Solutions Confidence Interval and Hypothesis Testing: Exercises and Solutions You can use the graphical representation of the normal distribution to solve the problems. Exercise 1: Confidence Interval A sample of

More information

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc.

Sampling Distribution Models. Copyright 2009 Pearson Education, Inc. Sampling Distribution Mols Copyright 2009 Pearson Education, Inc. Rather than showing real repeated samples, imagine what would happen if we were to actually draw many samples. The histogram we d get if

More information

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4

AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 AMS 7 Sampling Distributions, Central limit theorem, Confidence Intervals Lecture 4 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Summer 2014 1 / 26 Sampling Distributions!!!!!!

More information

Chapter Four: Introduction To Inference 1/50

Chapter Four: Introduction To Inference 1/50 Chapter Four: Introduction To Inference 1/50 4.1 Introduction 2/50 4.1 Introduction In this chapter you will learn the rationale underlying inference. You will also learn to apply certain inferential techniques.

More information

Michigan Statewide Poll Results

Michigan Statewide Poll Results Michigan Statewide Poll Results POLLING METHODOLOGY For this poll, a sample of likely households for an automated poll was chosen from the population registered to vote in the state of Michigan, and there

More information

The Ohio State University Department of Economics Second Midterm Examination Answers

The Ohio State University Department of Economics Second Midterm Examination Answers Econ 5001 Spring 2018 Prof. James Peck The Ohio State University Department of Economics Second Midterm Examination Answers Note: There were 4 versions of the test: A, B, C, and D, based on player 1 s

More information

Relationship between Correlation and Volatility. in Closely-Related Assets

Relationship between Correlation and Volatility. in Closely-Related Assets Relationship between Correlation and Volatility in Closely-Related Assets Systematic Alpha Management, LLC April 26, 2016 The purpose of this mini research paper is to address in a more quantitative fashion

More information

Section 7-2 Estimating a Population Proportion

Section 7-2 Estimating a Population Proportion Section 7- Estimating a Population Proportion 1 Key Concept In this section we present methods for using a sample proportion to estimate the value of a population proportion. The sample proportion is the

More information

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section

ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section ECO220Y Sampling Distributions of Sample Statistics: Sample Proportion Readings: Chapter 10, section 10.1-10.3 Fall 2011 Lecture 9 (Fall 2011) Sampling Distributions Lecture 9 1 / 15 Sampling Distributions

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 3: Special Discrete Random Variable Distributions Section 3.5 Discrete Uniform Section 3.6 Bernoulli and Binomial Others sections

More information

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management

THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management THE UNIVERSITY OF TEXAS AT AUSTIN Department of Information, Risk, and Operations Management BA 386T Tom Shively PROBABILITY CONCEPTS AND NORMAL DISTRIBUTIONS The fundamental idea underlying any statistical

More information

G5212: Game Theory. Mark Dean. Spring 2017

G5212: Game Theory. Mark Dean. Spring 2017 G5212: Game Theory Mark Dean Spring 2017 Why Game Theory? So far your microeconomic course has given you many tools for analyzing economic decision making What has it missed out? Sometimes, economic agents

More information

CUR 412: Game Theory and its Applications, Lecture 4

CUR 412: Game Theory and its Applications, Lecture 4 CUR 412: Game Theory and its Applications, Lecture 4 Prof. Ronaldo CARPIO March 22, 2015 Homework #1 Homework #1 will be due at the end of class today. Please check the website later today for the solutions

More information

GPCO 453: Quantitative Methods I Review: Hypothesis Testing

GPCO 453: Quantitative Methods I Review: Hypothesis Testing GPCO 453: Quantitative Methods I Review: Hypothesis Testing Shane Xinyang Xuan 1 ShaneXuan.com December 6, 2017 1 Department of Political Science, UC San Diego, 9500 Gilman Drive #0521. ShaneXuan.com 1

More information

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE

19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE 19. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which

More information

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion

Review. Preview This chapter presents the beginning of inferential statistics. October 25, S7.1 2_3 Estimating a Population Proportion MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2018 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

The Mathematics of Normality

The Mathematics of Normality MATH 110 Week 9 Chapter 17 Worksheet The Mathematics of Normality NAME Normal (bell-shaped) distributions play an important role in the world of statistics. One reason the normal distribution is important

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2019 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Elementary Statistics

Elementary Statistics Chapter 7 Estimation Goal: To become familiar with how to use Excel 2010 for Estimation of Means. There is one Stat Tool in Excel that is used with estimation of means, T.INV.2T. Open Excel and click on

More information

LIKELY VOTERS GIVE BOOKER LARGE LEAD, MOST EXPECT HIM TO WIN; LONEGAN WIDELY UNKNOWN

LIKELY VOTERS GIVE BOOKER LARGE LEAD, MOST EXPECT HIM TO WIN; LONEGAN WIDELY UNKNOWN Eagleton Institute of Politics Rutgers, The State University of New Jersey 191 Ryders Lane New Brunswick, New Jersey 08901-8557 www.eagleton.rutgers.edu eagleton@rci.rutgers.edu 732-932-9384 Fax: 732-932-6778

More information

Statistic Midterm. Spring This is a closed-book, closed-notes exam. You may use any calculator.

Statistic Midterm. Spring This is a closed-book, closed-notes exam. You may use any calculator. Statistic Midterm Spring 2018 This is a closed-book, closed-notes exam. You may use any calculator. Please answer all problems in the space provided on the exam. Read each question carefully and clearly

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size Confidence Intervals and Sample Size Chapter 6 shows us how we can use the Central Limit Theorem (CLT) to 1. estimate a population parameter (such as the mean or proportion) using a sample, and. determine

More information

Sampling & populations

Sampling & populations Sampling & populations Sample proportions Sampling distribution - small populations Sampling distribution - large populations Sampling distribution - normal distribution approximation Mean & variance of

More information

University of Hong Kong

University of Hong Kong University of Hong Kong ECON6036 Game Theory and Applications Problem Set I 1 Nash equilibrium, pure and mixed equilibrium 1. This exercise asks you to work through the characterization of all the Nash

More information

Multinomial Coefficient : A Generalization of the Binomial Coefficient

Multinomial Coefficient : A Generalization of the Binomial Coefficient Multinomial Coefficient : A Generalization of the Binomial Coefficient Example: A team plays 16 games in a season. At the end of the season, the team has 8 wins, 3 ties and 5 losses. How many different

More information

Sampling and sampling distribution

Sampling and sampling distribution Sampling and sampling distribution September 12, 2017 STAT 101 Class 5 Slide 1 Outline of Topics 1 Sampling 2 Sampling distribution of a mean 3 Sampling distribution of a proportion STAT 101 Class 5 Slide

More information

Section 0: Introduction and Review of Basic Concepts

Section 0: Introduction and Review of Basic Concepts Section 0: Introduction and Review of Basic Concepts Carlos M. Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching 1 Getting Started Syllabus

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Plan for today: Waiting times, continued Geometric distribution/pmf Negative binomial distribution/pmf

More information

An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture

An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture An Introduction to Bayesian Inference and MCMC Methods for Capture-Recapture Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Bayesian

More information

A) The first quartile B) The Median C) The third quartile D) None of the previous. 2. [3] If P (A) =.8, P (B) =.7, and P (A B) =.

A) The first quartile B) The Median C) The third quartile D) None of the previous. 2. [3] If P (A) =.8, P (B) =.7, and P (A B) =. Review for stat2507 Final (December 2008) Part I: Multiple Choice questions (on 39%): Please circle only one choice. 1. [3] Which one of the following summary measures is affected most by outliers A) The

More information

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance

3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance 3.2 Hypergeometric Distribution 3.5, 3.9 Mean and Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler 3.2 Hypergeometric Distribution Math 186 / Winter 2017 1 / 15 Sampling from an urn c() 0 10 20

More information

Section 7.2. Estimating a Population Proportion

Section 7.2. Estimating a Population Proportion Section 7.2 Estimating a Population Proportion Overview Section 7.2 Estimating a Population Proportion Section 7.3 Estimating a Population Mean Section 7.4 Estimating a Population Standard Deviation or

More information

June 11, Dynamic Programming( Weighted Interval Scheduling)

June 11, Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) June 11, 2014 Problem Statement: 1 We have a resource and many people request to use the resource for periods of time (an interval of time) 2 Each interval

More information

Back to estimators...

Back to estimators... Back to estimators... So far, we have: Identified estimators for common parameters Discussed the sampling distributions of estimators Introduced ways to judge the goodness of an estimator (bias, MSE, etc.)

More information

Chapter 8 Probability Models

Chapter 8 Probability Models Chapter 8 Probability Models We ve already used the calculator to find probabilities based on normal models. There are many more models which are useful. This chapter explores three such models. Many types

More information

MESSAGING GUIDANCE ON TRUMP & REPUBLICAN TAX CUTS As of August 10, 2017

MESSAGING GUIDANCE ON TRUMP & REPUBLICAN TAX CUTS As of August 10, 2017 MESSAGING GUIDANCE ON TRUMP & REPUBLICAN TAX CUTS As of August 10, 2017 This message guidance is based on a poll of 1,200 people who voted in the 2016 presidential election. The poll was conducted June

More information

Math 124: Module 8 (Normal Distribution) Normally Distributed Random Variables. Solving Normal Problems with Technology

Math 124: Module 8 (Normal Distribution) Normally Distributed Random Variables. Solving Normal Problems with Technology ( ( What we will do today ly Rom Stard ( David Meredith Department of Mathematics San Francisco State University October 6, 2009 ly Rom Stard 1 ly Rom 2 3 Stard 4 ( ( Rom ly Rom Stard A variable is a characteristic

More information

Preference Networks in Matching Markets

Preference Networks in Matching Markets Preference Networks in Matching Markets CSE 5339: Topics in Network Data Analysis Samir Chowdhury April 5, 2016 Market interactions between buyers and sellers form an interesting class of problems in network

More information

Chapter 6: Discrete Probability Distributions

Chapter 6: Discrete Probability Distributions 120C-Choi-Spring-2019 1 Chapter 6: Discrete Probability Distributions Section 6.1: Discrete Random Variables... p. 2 Section 6.2: The Binomial Probability Distribution... p. 10 The notes are based on Statistics:

More information

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution

Chapter 11. Data Descriptions and Probability Distributions. Section 4 Bernoulli Trials and Binomial Distribution Chapter 11 Data Descriptions and Probability Distributions Section 4 Bernoulli Trials and Binomial Distribution 1 Learning Objectives for Section 11.4 Bernoulli Trials and Binomial Distributions The student

More information

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean.

Lecture 3. Sampling distributions. Counts, Proportions, and sample mean. Lecture 3 Sampling distributions. Counts, Proportions, and sample mean. Statistical Inference: Uses data and summary statistics (mean, variances, proportions, slopes) to draw conclusions about a population

More information

Alabama Senate Poll Results Moore 48%, Jones 40%, McBride 1% (11% undecided) Generic Republican 49%, Generic Democrat 45% (6% undecided)

Alabama Senate Poll Results Moore 48%, Jones 40%, McBride 1% (11% undecided) Generic Republican 49%, Generic Democrat 45% (6% undecided) Alabama Senate Poll Results Moore 48%, Jones 40%, McBride 1% (11% undecided) Generic Republican 49%, Generic Democrat 45% (6% undecided) POLLING METHODOLOGY For this poll, a landline sample of likely households

More information

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table:

Example - Let X be the number of boys in a 4 child family. Find the probability distribution table: Chapter7 Probability Distributions and Statistics Distributions of Random Variables tthe value of the result of the probability experiment is a RANDOM VARIABLE. Example - Let X be the number of boys in

More information

Statistics, Measures of Central Tendency I

Statistics, Measures of Central Tendency I Statistics, Measures of Central Tendency I We are considering a random variable X with a probability distribution which has some parameters. We want to get an idea what these parameters are. We perfom

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Math Tech IIII, May 7

Math Tech IIII, May 7 Math Tech IIII, May 7 The Normal Probability Models Book Sections: 5.1, 5.2, & 5.3 Essential Questions: How can I use the normal distribution to compute probability? Standards: S.ID.4 Properties of the

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

Chapter 8 Statistical Intervals for a Single Sample

Chapter 8 Statistical Intervals for a Single Sample Chapter 8 Statistical Intervals for a Single Sample Part 1: Confidence intervals (CI) for population mean µ Section 8-1: CI for µ when σ 2 known & drawing from normal distribution Section 8-1.2: Sample

More information

3.5 Applying the Normal Distribution (Z-Scores)

3.5 Applying the Normal Distribution (Z-Scores) 3.5 Applying the Normal Distribution (Z-Scores) The Graph: Review of the Normal Distribution Properties: - it is symmetrical; the mean, median and mode are equal and fall at the line of symmetry - it is

More information

5.3 Statistics and Their Distributions

5.3 Statistics and Their Distributions Chapter 5 Joint Probability Distributions and Random Samples Instructor: Lingsong Zhang 1 Statistics and Their Distributions 5.3 Statistics and Their Distributions Statistics and Their Distributions Consider

More information

1. Confidence Intervals (cont.)

1. Confidence Intervals (cont.) Math 1125-Introductory Statistics Lecture 23 11/1/06 1. Confidence Intervals (cont.) Let s review. We re in a situation, where we don t know µ, but we have a number from a normal population, either an

More information

5.1 Sampling Distributions for Counts and Proportions. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102

5.1 Sampling Distributions for Counts and Proportions. Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 5.1 Sampling Distributions for Counts and Proportions Ulrich Hoensch MAT210 Rocky Mountain College Billings, MT 59102 Sampling and Population Distributions Example: Count of People with Bachelor s Degrees

More information

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation

In a binomial experiment of n trials, where p = probability of success and q = probability of failure. mean variance standard deviation Name In a binomial experiment of n trials, where p = probability of success and q = probability of failure mean variance standard deviation µ = n p σ = n p q σ = n p q Notation X ~ B(n, p) The probability

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. It is Time for Homework Again! ( ω `) Please hand in your homework. Third homework will be posted on the website,

More information