Markowitz portfolio theory

Size: px
Start display at page:

Download "Markowitz portfolio theory"

Transcription

1 Markowitz portfolio theory Farhad Amu, Marcus Millegård February 9, Introduction Optimizing a portfolio is a major area in nance. The objective is to maximize the yield and simultaneously minimize the risk. One way of optimizing a portfolio was suggested by Harry Markowitz (1927-) who published the article Portfolio selection in Journal of Finance 1952 [1]. In 1990 he received the Nobel Memorial Prize in Economic Sciences due to his contributions to portfolio theory. There have been extensions and developments made on Markowitz model and it is still a widely used model. Our purpose is to explain Markowitz portfolio theory in an understandable and correct way. In order to do so we need some background knowledge of the concepts of portfolio theory. We will also discuss an implementation of the Markowitz model called CAPM. 2 Mean variance portfolio theory Before we present a model for portfolio theory we must be able to handle the basics of probability theory, and also be familiar with the notations used in portfolio theory. This section will therefore mostly consist of denitions and explanation of the theory behind Markowitz portfolio theory. We work with a single period model and there are no tax or transaction costs. 2.1 Some important concepts in portfolio theory An investment instrument that can be bought and thereafter sold is called an asset[2]. The underlying asset could be a stock, currency, option, bond or portfolio. Suppose you purchase an asset at time zero and sell it at a xed time (T 0). We are only interested in this single period and will assume that neither tax nor transaction costs present. Let X 0 be the amount of money invested at time 0, and let X T be the amount of money you receive when you sell the asset at time T. Then the total return, R, on your investment is dened as R = X T. X 0 The rate of return,r, (sometimes referred to as return) is dened as r = X T X 0 X 0, 1

2 hence R = 1 + r. Note that to make a prot r has to be greater than zero. Suppose now that there are n dierent assets, and to each of them corresponds a total return R i, i = 1,..., n. If we spread out our invested money in these assets, we say that we form a portfolio (it is called a portfolio even if we don't invest money in all assets). We select an amount of money X 0i in asset i such that X 0i = X 0, and we restrict ourselves X 0i 0, i = 1,.., n. To make the coming notation simpler we introduce weights w i, i = 1,..., n, such that X 0i = w i X 0. Clearly the sum over all weights is equal to one. Then the amount of money generated at time T by the ith asset is R i w i X 0, and hence the total return R of the portfolio is R = R iw i X n 0 = (1 + r i)w i X 0 = X 0 X 0 Since the sum of all w i is one and R = 1 + r, we have w i + r i w i r = w i r i. 2.2 Expected value and variance of the return of a portfolio The return you get when you sell an asset r is uncertain when you buy the asset. In these cases r is a random variable. Suppose we know the mean for each of the n assets, call it r i, i = 1,..., n. Call the variance of asset i σi 2, and the covariance between asset i and j σ ij. Then the expected return of a portfolio r is simply E[r] = r = w i E[r i ] = w i r i. The variance σ 2 of the portfolio return is σ 2 = E[(r r) 2 ] = E [( n ) 2 ] w i r i w i r i = E [( n w i (r i r i ) )( n w j (r j r j ) )] j=1 = E [ w i w j (r i r i )(r j r j ) ] = w i w j σ ij. 2

3 3 The Markowitz model The fundamental problem of a portfolio can be formulated in 2 ways, either the investor wants to minimize the variance with respect to a xed expected return r or maximize the expected return given a xed variance. This is known as the Markowitz model [2]. To express it mathematically, the problem can be formulated as minimize w iw j σ ij subject to w i r i = r, w i = 1 if you are risk averse, or maximize w i r i subject to w iw j σ ij = σ 2, w i = 1. We will mainly concentrate on the rst one, the second one is rather equivalent. The solution to the Markowitz model is an optimization problem. To be able to solve it and fully understand it, we need to use Lagrange multipliers. 3.1 Lagrange multipliers Lagrange multipliers can be used to nd the extremum of a multivariate function f(x 1,..., x n ) subject to the constraint g(x 1,..., x n ) = 0, where f and g are functions with continuous rst partial derivatives on the open set containing the curve g(x 1,..., x n ) = 0, and g 0 at any point on the curve g(x 1,..., x n ) = 0 (where is the gradient) [3]. For an extremum of f to exist on g, the gradient of f must line up with the gradient of g [3]. If the two gradients are in the same direction, then one is a multiple ( λ) of the other, so f = λ g. The two vectors are equal, so all of their components are as well, giving for i = 1,..., n. f x i = λg x i The extremum is then found by solving the n + 1 equations in n + 1 unknowns λg(x 1,..., x n ) = 0, f x i + λg x i = 0, (i = 1,..., n). If there are several constraints for example if there exist 2 functions g 1 (x 1,..., x n ) = 0 and g 2 (x 1,..., x n ) = 0, the equations become f + λ g 1 + µ g 2 = 0, where µ and λ are constants. 3

4 3.2 Solution to the Markowitz model using Lagrange multipliers We can now apply the Lagrange multipliers and get a solution to the Markowitz model. Using the same notation as in section 3.1, set f(w 1,..., w n ) = w i w j σ ij, λg 1 (w 1,..., w n ) = λ ( n w i r i r ), µg 2 (w 1,..., w n ) = µ ( n w i 1 ). Note that if we want our constraints (namely w i r i = r, w i = 1) to be fullled, g 1 = g 2 = 0 as we moved the right side over to the left side. Also note that we already know σ ij, r i and r for every i, j. If we sum the functions above we get the Lagrangian L(w 1,..., w n ) = w i w j σ ij + λ ( n w i r i r ) + µ ( n w i 1 ). If we dierentiate L with respect to w 1,..., w n, set those n equations equal to zero, and also set λg 1 = µg 2 = 0, we have n + 2 equations with n + 2 unknown variables. As all the equations are linear, a solution can be found easily by using linear algebra. Figure 1: An example of a mean-variance plot. A red dot marks a possible portfolio while the blue line, called the ecient frontier, consists of the set of all portfolios, either a minimal variance with subject to a xed expected return, or a maximal expected return subject to a xed variance. 4

5 4 CAPM The capital asset pricing model (CAPM) is developed mainly by Sharpe, Lintner and Mossin, which follows from the Markowitz mean-variance portfolio theory [2]. This method is applied to investment decision problems. When one chooses to set up a portfolio the expectation of the return has to be studied carefully. The idea is to get better understanding of an asset's return and try to diversify the risk. Later on this result will be input variables in Markowitz model. The CAPM formula is usually written as r i = r f + β i (r M r f ) where β i = σ im σm 2. r i is the expected return on asset i. r f is a risk free rate. β i is a risk measure of asset i. r M is the expected market return. There are many methods to obtain a risk free asset r f. One can lend money with interest of rate or buy bond. The market return, r M, describes the market which contains the asset. For example if we purchase stocks in Ericsson then OMX is our market. We use the value of these two when calculating the β parameter. β a is relation between the asset and market return. 5 Conclusions Markowitz model to minimize risk subject to a given expected return is an optimization problem. One wants to nd the optimal amount of money w i to invest in each asset i. The model is quite simple to understand and can be solved by using Lagrange multipliers. A common way of estimating the expected return, r, is made by CAPM but there are more advanced tools and one is called Arbitrage Pricing Theory (APT). CAPM is a single factor model since one β is generated while APT has many factors. It is important to point out that the Markowitz model is just a tool. The most important part of portfolio theory is the assets and risk factors that one chooses. You have to have knowledge about your asset since there is no guarantee to prot in the model. The risk factors should be chosen carefully because of the correlation between the asset and the risk factor which is not always obvious. A correlation could exist even if the factor and asset are not in the same area of business. A lot of extensions can be made to the Markowitz model. In our example we assumed that there were no transaction costs, this is of course not the case in reality. Braun and Mitchell show a solution to the portfolio problem when the transaction costs are linear [4]. Moreover, we concentrated on the original Markowitz model on just a single period 5

6 where a portfolio is created once and then sold at a xed time T 0. Multiple periods is discussed further by Luenberger [2]. For further reading, David G Luenberger's Investment Science [2] is generally a good source. Sources on the internet should be read with care since the quality of them varies. References [1] Harry Markowitz. Portfolio selection. Journal of nance ; Vol 7; [2] David G Luenberger. Investment science. Oxford university press [3] [downloaded ]. Available: [4] [downloaded ]. Available: mitchj/papers/exact.pdf. 6

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

Mean Variance Analysis and CAPM

Mean Variance Analysis and CAPM Mean Variance Analysis and CAPM Yan Zeng Version 1.0.2, last revised on 2012-05-30. Abstract A summary of mean variance analysis in portfolio management and capital asset pricing model. 1. Mean-Variance

More information

Markowitz portfolio theory. May 4, 2017

Markowitz portfolio theory. May 4, 2017 Markowitz portfolio theory Elona Wallengren Robin S. Sigurdson May 4, 2017 1 Introduction A portfolio is the set of assets that an investor chooses to invest in. Choosing the optimal portfolio is a complex

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Lecture 5 Theory of Finance 1

Lecture 5 Theory of Finance 1 Lecture 5 Theory of Finance 1 Simon Hubbert s.hubbert@bbk.ac.uk January 24, 2007 1 Introduction In the previous lecture we derived the famous Capital Asset Pricing Model (CAPM) for expected asset returns,

More information

Predictability of Stock Returns

Predictability of Stock Returns Predictability of Stock Returns Ahmet Sekreter 1 1 Faculty of Administrative Sciences and Economics, Ishik University, Iraq Correspondence: Ahmet Sekreter, Ishik University, Iraq. Email: ahmet.sekreter@ishik.edu.iq

More information

Principles of Finance

Principles of Finance Principles of Finance Grzegorz Trojanowski Lecture 7: Arbitrage Pricing Theory Principles of Finance - Lecture 7 1 Lecture 7 material Required reading: Elton et al., Chapter 16 Supplementary reading: Luenberger,

More information

Mean Variance Portfolio Theory

Mean Variance Portfolio Theory Chapter 1 Mean Variance Portfolio Theory This book is about portfolio construction and risk analysis in the real-world context where optimization is done with constraints and penalties specified by the

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

MATH 4512 Fundamentals of Mathematical Finance

MATH 4512 Fundamentals of Mathematical Finance MATH 451 Fundamentals of Mathematical Finance Solution to Homework Three Course Instructor: Prof. Y.K. Kwok 1. The market portfolio consists of n uncorrelated assets with weight vector (x 1 x n T. Since

More information

Problem 1: Markowitz Portfolio (Risky Assets) cov([r 1, r 2, r 3 ] T ) = V =

Problem 1: Markowitz Portfolio (Risky Assets) cov([r 1, r 2, r 3 ] T ) = V = Homework II Financial Mathematics and Economics Professor: Paul J. Atzberger Due: Monday, October 3rd Please turn all homeworks into my mailbox in Amos Eaton Hall by 5:00pm. Problem 1: Markowitz Portfolio

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

An Analysis of Theories on Stock Returns

An Analysis of Theories on Stock Returns An Analysis of Theories on Stock Returns Ahmet Sekreter 1 1 Faculty of Administrative Sciences and Economics, Ishik University, Erbil, Iraq Correspondence: Ahmet Sekreter, Ishik University, Erbil, Iraq.

More information

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall 2014 Reduce the risk, one asset Let us warm up by doing an exercise. We consider an investment with σ 1 =

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

In terms of covariance the Markowitz portfolio optimisation problem is:

In terms of covariance the Markowitz portfolio optimisation problem is: Markowitz portfolio optimisation Solver To use Solver to solve the quadratic program associated with tracing out the efficient frontier (unconstrained efficient frontier UEF) in Markowitz portfolio optimisation

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School)

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) SDMR Finance (2) Olivier Brandouy University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) Outline 1 Formal Approach to QAM : concepts and notations 2 3 Portfolio risk and return

More information

The Optimization Process: An example of portfolio optimization

The Optimization Process: An example of portfolio optimization ISyE 6669: Deterministic Optimization The Optimization Process: An example of portfolio optimization Shabbir Ahmed Fall 2002 1 Introduction Optimization can be roughly defined as a quantitative approach

More information

Models of Asset Pricing

Models of Asset Pricing appendix1 to chapter 5 Models of Asset Pricing In Chapter 4, we saw that the return on an asset (such as a bond) measures how much we gain from holding that asset. When we make a decision to buy an asset,

More information

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur

Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Probability and Stochastics for finance-ii Prof. Joydeep Dutta Department of Humanities and Social Sciences Indian Institute of Technology, Kanpur Lecture - 07 Mean-Variance Portfolio Optimization (Part-II)

More information

Black-Litterman Model

Black-Litterman Model Institute of Financial and Actuarial Mathematics at Vienna University of Technology Seminar paper Black-Litterman Model by: Tetyana Polovenko Supervisor: Associate Prof. Dipl.-Ing. Dr.techn. Stefan Gerhold

More information

The Markowitz framework

The Markowitz framework IGIDR, Bombay 4 May, 2011 Goals What is a portfolio? Asset classes that define an Indian portfolio, and their markets. Inputs to portfolio optimisation: measuring returns and risk of a portfolio Optimisation

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Fall 2017 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Spring 2018 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

Financial Economics: Capital Asset Pricing Model

Financial Economics: Capital Asset Pricing Model Financial Economics: Capital Asset Pricing Model Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 66 Outline Outline MPT and the CAPM Deriving the CAPM Application of CAPM Strengths and

More information

Modern Portfolio Theory

Modern Portfolio Theory Modern Portfolio Theory History of MPT 1952 Horowitz CAPM (Capital Asset Pricing Model) 1965 Sharpe, Lintner, Mossin APT (Arbitrage Pricing Theory) 1976 Ross What is a portfolio? Italian word Portfolio

More information

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Asset Allocation and Risk Management Martin B. Haugh Department of Industrial Engineering and Operations Research Columbia University Outline Review of Mean-Variance Analysis

More information

Topic 1: Basic Concepts in Finance. Slides

Topic 1: Basic Concepts in Finance. Slides Topic 1: Basic Concepts in Finance Slides What is the Field of Finance 1. What are the most basic questions? (a) Role of time and uncertainty in decision making (b) Role of information in decision making

More information

Financial Analysis The Price of Risk. Skema Business School. Portfolio Management 1.

Financial Analysis The Price of Risk. Skema Business School. Portfolio Management 1. Financial Analysis The Price of Risk bertrand.groslambert@skema.edu Skema Business School Portfolio Management Course Outline Introduction (lecture ) Presentation of portfolio management Chap.2,3,5 Introduction

More information

Final Exam Suggested Solutions

Final Exam Suggested Solutions University of Washington Fall 003 Department of Economics Eric Zivot Economics 483 Final Exam Suggested Solutions This is a closed book and closed note exam. However, you are allowed one page of handwritten

More information

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory

Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Financial Economics: Risk Aversion and Investment Decisions, Modern Portfolio Theory Shuoxun Hellen Zhang WISE & SOE XIAMEN UNIVERSITY April, 2015 1 / 95 Outline Modern portfolio theory The backward induction,

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

Equilibrium Asset Returns

Equilibrium Asset Returns Equilibrium Asset Returns Equilibrium Asset Returns 1/ 38 Introduction We analyze the Intertemporal Capital Asset Pricing Model (ICAPM) of Robert Merton (1973). The standard single-period CAPM holds when

More information

ORF 307: Lecture 3. Linear Programming: Chapter 13, Section 1 Portfolio Optimization. Robert Vanderbei. February 13, 2016

ORF 307: Lecture 3. Linear Programming: Chapter 13, Section 1 Portfolio Optimization. Robert Vanderbei. February 13, 2016 ORF 307: Lecture 3 Linear Programming: Chapter 13, Section 1 Portfolio Optimization Robert Vanderbei February 13, 2016 Slides last edited on February 14, 2018 http://www.princeton.edu/ rvdb Portfolio Optimization:

More information

Portfolio Sharpening

Portfolio Sharpening Portfolio Sharpening Patrick Burns 21st September 2003 Abstract We explore the effective gain or loss in alpha from the point of view of the investor due to the volatility of a fund and its correlations

More information

Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory

Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory You can t see this text! Introduction to Computational Finance and Financial Econometrics Introduction to Portfolio Theory Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Introduction to Portfolio Theory

More information

Portfolio theory and risk management Homework set 2

Portfolio theory and risk management Homework set 2 Portfolio theory and risk management Homework set Filip Lindskog General information The homework set gives at most 3 points which are added to your result on the exam. You may work individually or in

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information

Optimal Portfolio Inputs: Various Methods

Optimal Portfolio Inputs: Various Methods Optimal Portfolio Inputs: Various Methods Prepared by Kevin Pei for The Fund @ Sprott Abstract: In this document, I will model and back test our portfolio with various proposed models. It goes without

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 ortfolio Allocation Mean-Variance Approach Validity of the Mean-Variance Approach Constant absolute risk aversion (CARA): u(w ) = exp(

More information

Chapter 2 Portfolio Management and the Capital Asset Pricing Model

Chapter 2 Portfolio Management and the Capital Asset Pricing Model Chapter 2 Portfolio Management and the Capital Asset Pricing Model In this chapter, we explore the issue of risk management in a portfolio of assets. The main issue is how to balance a portfolio, that

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

Risk and Return. Nicole Höhling, Introduction. Definitions. Types of risk and beta

Risk and Return. Nicole Höhling, Introduction. Definitions. Types of risk and beta Risk and Return Nicole Höhling, 2009-09-07 Introduction Every decision regarding investments is based on the relationship between risk and return. Generally the return on an investment should be as high

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 8 The portfolio selection problem The portfolio

More information

Economics 424/Applied Mathematics 540. Final Exam Solutions

Economics 424/Applied Mathematics 540. Final Exam Solutions University of Washington Summer 01 Department of Economics Eric Zivot Economics 44/Applied Mathematics 540 Final Exam Solutions I. Matrix Algebra and Portfolio Math (30 points, 5 points each) Let R i denote

More information

Application to Portfolio Theory and the Capital Asset Pricing Model

Application to Portfolio Theory and the Capital Asset Pricing Model Appendix C Application to Portfolio Theory and the Capital Asset Pricing Model Exercise Solutions C.1 The random variables X and Y are net returns with the following bivariate distribution. y x 0 1 2 3

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization

CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization CSCI 1951-G Optimization Methods in Finance Part 07: Portfolio Optimization March 9 16, 2018 1 / 19 The portfolio optimization problem How to best allocate our money to n risky assets S 1,..., S n with

More information

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010

Problem set 5. Asset pricing. Markus Roth. Chair for Macroeconomics Johannes Gutenberg Universität Mainz. Juli 5, 2010 Problem set 5 Asset pricing Markus Roth Chair for Macroeconomics Johannes Gutenberg Universität Mainz Juli 5, 200 Markus Roth (Macroeconomics 2) Problem set 5 Juli 5, 200 / 40 Contents Problem 5 of problem

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

Lecture 2: Stochastic Discount Factor

Lecture 2: Stochastic Discount Factor Lecture 2: Stochastic Discount Factor Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Stochastic Discount Factor (SDF) A stochastic discount factor is a stochastic process {M t,t+s } such that

More information

Module 6 Portfolio risk and return

Module 6 Portfolio risk and return Module 6 Portfolio risk and return Prepared by Pamela Peterson Drake, Ph.D., CFA 1. Overview Security analysts and portfolio managers are concerned about an investment s return, its risk, and whether it

More information

Capital Asset Pricing Model

Capital Asset Pricing Model Capital Asset Pricing Model 1 Introduction In this handout we develop a model that can be used to determine how an investor can choose an optimal asset portfolio in this sense: the investor will earn the

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION

INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION INTRODUCTION TO MODERN PORTFOLIO OPTIMIZATION Abstract. This is the rst part in my tutorial series- Follow me to Optimization Problems. In this tutorial, I will touch on the basic concepts of portfolio

More information

1 Introduction and Motivation Time and uncertainty are central elements in nance theory. Pricing theory, ecient market theory, portfolio selection the

1 Introduction and Motivation Time and uncertainty are central elements in nance theory. Pricing theory, ecient market theory, portfolio selection the Stochastic Programming Tutorial for Financial Decision Making The Saddle Property of Optimal Prots Karl Frauendorfer Institute of Operations Research, University of St. Gallen Holzstr. 15, 9010 St. Gallen,

More information

Portfolio Management and Optimal Execution via Convex Optimization

Portfolio Management and Optimal Execution via Convex Optimization Portfolio Management and Optimal Execution via Convex Optimization Enzo Busseti Stanford University April 9th, 2018 Problems portfolio management choose trades with optimization minimize risk, maximize

More information

PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES

PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES PORTFOLIO OPTIMIZATION: ANALYTICAL TECHNIQUES Keith Brown, Ph.D., CFA November 22 nd, 2007 Overview of the Portfolio Optimization Process The preceding analysis demonstrates that it is possible for investors

More information

Session 8: The Markowitz problem p. 1

Session 8: The Markowitz problem p. 1 Session 8: The Markowitz problem Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 8: The Markowitz problem p. 1 Portfolio optimisation Session 8: The Markowitz problem

More information

Portfolios that Contain Risky Assets 3: Markowitz Portfolios

Portfolios that Contain Risky Assets 3: Markowitz Portfolios Portfolios that Contain Risky Assets 3: Markowitz Portfolios C. David Levermore University of Maryland, College Park, MD Math 42: Mathematical Modeling March 21, 218 version c 218 Charles David Levermore

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula:

Solutions to questions in Chapter 8 except those in PS4. The minimum-variance portfolio is found by applying the formula: Solutions to questions in Chapter 8 except those in PS4 1. The parameters of the opportunity set are: E(r S ) = 20%, E(r B ) = 12%, σ S = 30%, σ B = 15%, ρ =.10 From the standard deviations and the correlation

More information

Modern Portfolio Theory -Markowitz Model

Modern Portfolio Theory -Markowitz Model Modern Portfolio Theory -Markowitz Model Rahul Kumar Project Trainee, IDRBT 3 rd year student Integrated M.Sc. Mathematics & Computing IIT Kharagpur Email: rahulkumar641@gmail.com Project guide: Dr Mahil

More information

Modelling the Sharpe ratio for investment strategies

Modelling the Sharpe ratio for investment strategies Modelling the Sharpe ratio for investment strategies Group 6 Sako Arts 0776148 Rik Coenders 0777004 Stefan Luijten 0783116 Ivo van Heck 0775551 Rik Hagelaars 0789883 Stephan van Driel 0858182 Ellen Cardinaels

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

From optimisation to asset pricing

From optimisation to asset pricing From optimisation to asset pricing IGIDR, Bombay May 10, 2011 From Harry Markowitz to William Sharpe = from portfolio optimisation to pricing risk Harry versus William Harry Markowitz helped us answer

More information

Lecture 10-12: CAPM.

Lecture 10-12: CAPM. Lecture 10-12: CAPM. I. Reading II. Market Portfolio. III. CAPM World: Assumptions. IV. Portfolio Choice in a CAPM World. V. Minimum Variance Mathematics. VI. Individual Assets in a CAPM World. VII. Intuition

More information

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011

ECON 6022B Problem Set 2 Suggested Solutions Fall 2011 ECON 60B Problem Set Suggested Solutions Fall 0 September 7, 0 Optimal Consumption with A Linear Utility Function (Optional) Similar to the example in Lecture 3, the household lives for two periods and

More information

MITOCW watch?v=ywl3pq6yc54

MITOCW watch?v=ywl3pq6yc54 MITOCW watch?v=ywl3pq6yc54 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Risk and Return and Portfolio Theory

Risk and Return and Portfolio Theory Risk and Return and Portfolio Theory Intro: Last week we learned how to calculate cash flows, now we want to learn how to discount these cash flows. This will take the next several weeks. We know discount

More information

ORF 307 Lecture 3. Chapter 13, Section 1 Portfolio Optimization

ORF 307 Lecture 3. Chapter 13, Section 1 Portfolio Optimization ORF 307 Lecture 3 Chapter 13, Section 1 Portfolio Optimization Robert Vanderbei February 14, 2012 Operations Research and Financial Engineering, Princeton University http://www.princeton.edu/ rvdb Portfolio

More information

Optimal Portfolio Selection

Optimal Portfolio Selection Optimal Portfolio Selection We have geometrically described characteristics of the optimal portfolio. Now we turn our attention to a methodology for exactly identifying the optimal portfolio given a set

More information

1 Asset Pricing: Replicating portfolios

1 Asset Pricing: Replicating portfolios Alberto Bisin Corporate Finance: Lecture Notes Class 1: Valuation updated November 17th, 2002 1 Asset Pricing: Replicating portfolios Consider an economy with two states of nature {s 1, s 2 } and with

More information

ON SOME ASPECTS OF PORTFOLIO MANAGEMENT. Mengrong Kang A THESIS

ON SOME ASPECTS OF PORTFOLIO MANAGEMENT. Mengrong Kang A THESIS ON SOME ASPECTS OF PORTFOLIO MANAGEMENT By Mengrong Kang A THESIS Submitted to Michigan State University in partial fulfillment of the requirement for the degree of Statistics-Master of Science 2013 ABSTRACT

More information

EE365: Risk Averse Control

EE365: Risk Averse Control EE365: Risk Averse Control Risk averse optimization Exponential risk aversion Risk averse control 1 Outline Risk averse optimization Exponential risk aversion Risk averse control Risk averse optimization

More information

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996:

Economics 483. Midterm Exam. 1. Consider the following monthly data for Microsoft stock over the period December 1995 through December 1996: University of Washington Summer Department of Economics Eric Zivot Economics 3 Midterm Exam This is a closed book and closed note exam. However, you are allowed one page of handwritten notes. Answer all

More information

How quantitative methods influence and shape finance industry

How quantitative methods influence and shape finance industry How quantitative methods influence and shape finance industry Marek Musiela UNSW December 2017 Non-quantitative talk about the role quantitative methods play in finance industry. Focus on investment banking,

More information

Note on Cost of Capital

Note on Cost of Capital DUKE UNIVERSITY, FUQUA SCHOOL OF BUSINESS ACCOUNTG 512F: FUNDAMENTALS OF FINANCIAL ANALYSIS Note on Cost of Capital For the course, you should concentrate on the CAPM and the weighted average cost of capital.

More information

Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios

Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios Portfolios that Contain Risky Assets Portfolio Models 3. Markowitz Portfolios C. David Levermore University of Maryland, College Park Math 42: Mathematical Modeling March 2, 26 version c 26 Charles David

More information

Efficient Frontier and Asset Allocation

Efficient Frontier and Asset Allocation Topic 4 Efficient Frontier and Asset Allocation LEARNING OUTCOMES By the end of this topic, you should be able to: 1. Explain the concept of efficient frontier and Markowitz portfolio theory; 2. Discuss

More information

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0.

CS134: Networks Spring Random Variables and Independence. 1.2 Probability Distribution Function (PDF) Number of heads Probability 2 0. CS134: Networks Spring 2017 Prof. Yaron Singer Section 0 1 Probability 1.1 Random Variables and Independence A real-valued random variable is a variable that can take each of a set of possible values in

More information

University 18 Lessons Financial Management. Unit 12: Return, Risk and Shareholder Value

University 18 Lessons Financial Management. Unit 12: Return, Risk and Shareholder Value University 18 Lessons Financial Management Unit 12: Return, Risk and Shareholder Value Risk and Return Risk and Return Security analysis is built around the idea that investors are concerned with two principal

More information

Consumption- Savings, Portfolio Choice, and Asset Pricing

Consumption- Savings, Portfolio Choice, and Asset Pricing Finance 400 A. Penati - G. Pennacchi Consumption- Savings, Portfolio Choice, and Asset Pricing I. The Consumption - Portfolio Choice Problem We have studied the portfolio choice problem of an individual

More information

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory

Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory Modeling Portfolios that Contain Risky Assets Risk and Reward III: Basic Markowitz Portfolio Theory C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 30, 2013

More information

Risk and Return. CA Final Paper 2 Strategic Financial Management Chapter 7. Dr. Amit Bagga Phd.,FCA,AICWA,Mcom.

Risk and Return. CA Final Paper 2 Strategic Financial Management Chapter 7. Dr. Amit Bagga Phd.,FCA,AICWA,Mcom. Risk and Return CA Final Paper 2 Strategic Financial Management Chapter 7 Dr. Amit Bagga Phd.,FCA,AICWA,Mcom. Learning Objectives Discuss the objectives of portfolio Management -Risk and Return Phases

More information

P1.T1. Foundations of Risk Management Zvi Bodie, Alex Kane, and Alan J. Marcus, Investments, 10th Edition Bionic Turtle FRM Study Notes

P1.T1. Foundations of Risk Management Zvi Bodie, Alex Kane, and Alan J. Marcus, Investments, 10th Edition Bionic Turtle FRM Study Notes P1.T1. Foundations of Risk Management Zvi Bodie, Alex Kane, and Alan J. Marcus, Investments, 10th Edition Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM www.bionicturtle.com BODIE, CHAPTER

More information

Leverage Aversion, Efficient Frontiers, and the Efficient Region*

Leverage Aversion, Efficient Frontiers, and the Efficient Region* Posted SSRN 08/31/01 Last Revised 10/15/01 Leverage Aversion, Efficient Frontiers, and the Efficient Region* Bruce I. Jacobs and Kenneth N. Levy * Previously entitled Leverage Aversion and Portfolio Optimality:

More information

Macroeconomics. Lecture 5: Consumption. Hernán D. Seoane. Spring, 2016 MEDEG, UC3M UC3M

Macroeconomics. Lecture 5: Consumption. Hernán D. Seoane. Spring, 2016 MEDEG, UC3M UC3M Macroeconomics MEDEG, UC3M Lecture 5: Consumption Hernán D. Seoane UC3M Spring, 2016 Introduction A key component in NIPA accounts and the households budget constraint is the consumption It represents

More information

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns

Journal of Computational and Applied Mathematics. The mean-absolute deviation portfolio selection problem with interval-valued returns Journal of Computational and Applied Mathematics 235 (2011) 4149 4157 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Multivariate Statistics Lecture Notes. Stephen Ansolabehere

Multivariate Statistics Lecture Notes. Stephen Ansolabehere Multivariate Statistics Lecture Notes Stephen Ansolabehere Spring 2004 TOPICS. The Basic Regression Model 2. Regression Model in Matrix Algebra 3. Estimation 4. Inference and Prediction 5. Logit and Probit

More information

ECON FINANCIAL ECONOMICS

ECON FINANCIAL ECONOMICS ECON 337901 FINANCIAL ECONOMICS Peter Ireland Boston College Fall 2017 These lecture notes by Peter Ireland are licensed under a Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

More information

When we model expected returns, we implicitly model expected prices

When we model expected returns, we implicitly model expected prices Week 1: Risk and Return Securities: why do we buy them? To take advantage of future cash flows (in the form of dividends or selling a security for a higher price). How much should we pay for this, considering

More information

Microeconomics of Banking: Lecture 2

Microeconomics of Banking: Lecture 2 Microeconomics of Banking: Lecture 2 Prof. Ronaldo CARPIO September 25, 2015 A Brief Look at General Equilibrium Asset Pricing Last week, we saw a general equilibrium model in which banks were irrelevant.

More information

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17

Microeconomics 3. Economics Programme, University of Copenhagen. Spring semester Lars Peter Østerdal. Week 17 Microeconomics 3 Economics Programme, University of Copenhagen Spring semester 2006 Week 17 Lars Peter Østerdal 1 Today s programme General equilibrium over time and under uncertainty (slides from week

More information