d n U i dx n dx n δ n U i

Size: px
Start display at page:

Download "d n U i dx n dx n δ n U i"

Transcription

1 Last time Taylor s series on equally spaced nodes Forward difference d n U i d n n U i h n + 0 h Backward difference d n U i d n n U i h n + 0 h Centered difference d n U i d n δ n U i or 2 h n + 0 h2 for odd n Requires n + points and in general n U i = n- U i ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3

2 For greater accuracy one must add points Uncentered: n + m points for dn U i d n i + 0 h m Centered: n+(m-) points for dn U i d n i + 0 h m m must be even For unequal spacing the centered approimation looses its meaning and accuracy is reduced to uncentered approimations Alternative to Taylor Series : Polynomial Fit h αh i - i i + Approimate U via U = a 2 + b + c 3 unknowns (a, b, c) require 3 equations ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 2

3 U i- = ah 2 +b-h +c U i = c U i+ =a(αh) 2 +b(αh) + c h 2 -h 0 0 (αh) 2 αh a b c = U i- U i U i+ Solve for a, b, c, a b c = α U i- -U i +U i+ -U i / α 2 +α h 2 α 2 U i- -U i +U i+ -U i / α 2 +α h U i du d = 2a + b d 2 U d 2 = 2a d 2 U d 2 = 2U i+ - + α U i + αu i- αα + h 2 i.e. The same as truncated Taylor Series ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 3

4 Loss of the leading error term is significant. By retaining the leading error in a Taylor Series one is continually reminded of the accuracy of the approimations and the origin of the formulation, (i.e. PDE) is more easily retained. Alternate use of Error Term d U i ~ U i - d h h d 2 U i + 0 h 2 2 d 2 2 U i h + 0 h 2 du i d U i h - h 2 2 U i h h + 0 h2 U i h - 2 U i 2h +0h2 [ U i+ -U i - 2 U i+2-2u i+ +U i ] h + 0h ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 4

5 du i d -U i+2 +4U i+ 3U i 2h +0h 2 i.e. The same as if derived directly from Taylor Series Difference Formulas for Cross-Derivatives a.) 2-D Taylor Series : U( +, y+ y) = U + + y U + + y U y 2! y, y, y, y + + y Uy, + + hot... 3! y 3 2 Where y + y + 2 y 2 2 y y y etc. ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 5

6 Procedure as in -D case: write Taylor series for all points in terms of U,, y, at point where 2 U y is wanted; mi together to get desired accuracy. b.) Easier: Operate on -D formulas. U U U U = y y 2 y 2 j+ j j+ j 2 U U U j+ U j 2 y 2 y i+ i U U y j i Intuitive ; What is leading error? ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 6

7 From -D: 2 3 U U j+ U j ( y) U + 3 y 2 y 6 y U U j+ U j ( y) U U j+ U j ( y) U 3 3 y y 6 y 2 y 6 y U j+ U j U j+ U j 3 U j+ U j 2 y 2 y U i+ i ( ) 2 y ( y) U 3 3 y y U j+ U j U j+ U j 2 y 2 y U i+ i ( ) U ( y) U 3 3 y y 6 y So the leading error terms are symmetrical. ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 7

8 Consider an Elliptic PDE (Poisson s Eqn.) U = 0 U=f 2 U = g y U = 0 y U = a "Shadow Nodes" A B C PDE : U U U 2U + U U 2U + U g y h k 2 2 i+, j i, j i, j i, j+ i, j i, j + = ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 8

9 Define = h2 k h 2 h 2 h 2 k 2-2 k 2 k 2 = g Computational Molecule gh 2 = -2 + Valid at all interior nodes ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 9

10 U Boundary A : = 0 U - U h = = gh 2 i.e. U = U Boundary B : = gh 2 ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 0

11 Boundary C : U -U h = a U = U + ah = - ah + gh 2 Top Row (nodes 9-2) -2 + = f + gh 2 ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3

12 Corners : e. node = - ah + gh 2 Basic Rule : Type I Boundary : Do not use the PDE Type II, III : Use PDE plus BC, together The node spacing adjacent to the Type II boundaries are spaced at a /2 format. This is NOT required. It IS accurate, however, the unknown values (u) on the boundary are not calculated. This may be a disadvantage. Similarly, if the geometry does not lend itself to this spacing conveniently - do not use it. The alternate strategy is to place nodes directly on the boundary. If nodes are on the boundary then the shadow node contributions do not usually move to the diagonal. ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 2

13 U 2 4 U 2 U 3 6 = U 2 Forcing + BC's ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 3

14 For = : (h = k) -4 = G Solution Strategies gh 2 Direct: - Eact algebraic solution in finite # of steps - Non-repetitive - Complicated coding - Eploit sparse / banded structure - Node numbering : dictates the banded structure - LU Decomposition popular - Preserves bandwidth - Back Substitution step easy relative to decomposition numerous solutions to the same matri can be gotten cheaply. ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 4

15 Iterative: - Eact algebraic solution only after # of steps - Monotonously repetitive - Coding simple; proceed directly from molecule - Eploit sparseness; banded structure irrelevant - Retain double subscripts U ij - Node numbering important: - Dictates order in which iterations proceed - Can determine convergence properties - Point versus "Block" or "Line" methods: Matri Inversion (usually 3-Diag) ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 5

16 y, j -4 = gh 2 = G, i U i+, j + U i-, j + U i, j+ + U i, j- - 4U i, j = G Jacobi : Solve for U i, j U n+ i,j = 4 U i+, j + U i-, j + U i, j+ + U i, j- - G n - Easy - Need 2 arrays U n,u n+ - Iteration independent of node # s / order of calculation Gauss - Seidel : Use latest info within Jacobi U n+ i,j = 4 U n i+, j + U n+ n i-, j + U i, j+ + U n+ i, j- - G ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 6

17 - Easy - Only one array - Ordering makes difference! S.O.R. : Accelerate / Dampen the Gauss - Seidel : U n+ i,j Gauss - Seidel estimate for U n+ i,j n+ U i,j = ωu n+ n i,j + - ω U i,j = n Ui,j + ω U n+ n i,j - U i,j U = ω [ U + U + U + U G ] + ( ω ) U 4 n+ n n+ n n+ n i, j i+, j i, j i, j+ i, j i, j where 0 < ω < 2 ME 525 (Sullivan) - Finite Difference Calculus Cont. - Lecture 3 7

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS School of Mathematics 2013 OUTLINE Review 1 REVIEW Last time Today s Lecture OUTLINE Review 1 REVIEW Last time Today s Lecture 2 DISCRETISING THE PROBLEM Finite-difference approximations

More information

Numerical Methods for PDEs : Video 8: Finite Difference February Expressions 7, 2015 & Error 1 / Part 12

Numerical Methods for PDEs : Video 8: Finite Difference February Expressions 7, 2015 & Error 1 / Part 12 22.520 Numerical Methods for PDEs : Video 8: Finite Difference Expressions & Error Part II (Theory) February 7, 2015 22.520 Numerical Methods for PDEs : Video 8: Finite Difference February Expressions

More information

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems

Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems NLA p.1/13 Direct Methods for linear systems Ax = b basic point: easy to solve triangular systems... 0 0 0 etc. a n 1,n 1 x n 1 = b n 1 a n 1,n x n solve a n,n x n = b n then back substitution: takes n

More information

Computational Finance Finite Difference Methods

Computational Finance Finite Difference Methods Explicit finite difference method Computational Finance Finite Difference Methods School of Mathematics 2018 Today s Lecture We now introduce the final numerical scheme which is related to the PDE solution.

More information

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004 HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR D PARABOLIC EQUATIONS by Ahmet İzmirlioğlu BS, University of Pittsburgh, 24 Submitted to the Graduate Faculty of Art and Sciences in partial fulfillment of

More information

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) =

Partial Fractions. A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = Partial Fractions A rational function is a fraction in which both the numerator and denominator are polynomials. For example, f ( x) = 4, g( x) = 3 x 2 x + 5, and h( x) = x + 26 x 2 are rational functions.

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 )

The Intermediate Value Theorem states that if a function g is continuous, then for any number M satisfying. g(x 1 ) M g(x 2 ) APPM/MATH 450 Problem Set 5 s This assignment is due by 4pm on Friday, October 25th. You may either turn it in to me in class or in the box outside my office door (ECOT 235). Minimal credit will be given

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

32.4. Parabolic PDEs. Introduction. Prerequisites. Learning Outcomes

32.4. Parabolic PDEs. Introduction. Prerequisites. Learning Outcomes Parabolic PDEs 32.4 Introduction Second-order partial differential equations (PDEs) may be classified as parabolic, hyperbolic or elliptic. Parabolic and hyperbolic PDEs often model time dependent processes

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017

Short-time-to-expiry expansion for a digital European put option under the CEV model. November 1, 2017 Short-time-to-expiry expansion for a digital European put option under the CEV model November 1, 2017 Abstract In this paper I present a short-time-to-expiry asymptotic series expansion for a digital European

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates 16 2.1 Definitions.................................... 16 2.1.1 Rate of Return..............................

More information

escript basics Lutz Gross School of Earth Sciences The University of Queensland 1/46 13/03/13

escript basics Lutz Gross School of Earth Sciences The University of Queensland 1/46 13/03/13 escript basics Lutz Gross School of Earth Sciences The University of Queensland l.gross@uq.edu.au 1/46 13/03/13 escript Sponsors AuScope National Collaborative Research Infrastructure Strategy Australian

More information

A local RBF method based on a finite collocation approach

A local RBF method based on a finite collocation approach Boundary Elements and Other Mesh Reduction Methods XXXVIII 73 A local RBF method based on a finite collocation approach D. Stevens & H. Power Department of Mechanical Materials and Manufacturing Engineering,

More information

Finite Element Method

Finite Element Method In Finite Difference Methods: the solution domain is divided into a grid of discrete points or nodes the PDE is then written for each node and its derivatives replaced by finite-divided differences In

More information

About Weak Form Modeling

About Weak Form Modeling Weak Form Modeling About Weak Form Modeling Do not be misled by the term weak; the weak form is very powerful and flexible. The term weak form is borrowed from mathematics. The distinguishing characteristics

More information

Partitioned Analysis of Coupled Systems

Partitioned Analysis of Coupled Systems Partitioned Analysis of Coupled Systems Hermann G. Matthies, Rainer Niekamp, Jan Steindorf Technische Universität Braunschweig Brunswick, Germany wire@tu-bs.de http://www.wire.tu-bs.de Coupled Problems

More information

Increasing Returns and Economic Geography

Increasing Returns and Economic Geography Increasing Returns and Economic Geography Department of Economics HKUST April 25, 2018 Increasing Returns and Economic Geography 1 / 31 Introduction: From Krugman (1979) to Krugman (1991) The award of

More information

Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation

Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation Simon S. Clift and Peter A. Forsyth Original: December 5, 2005 Revised: January 31, 2007 Abstract Under the assumption that two

More information

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE.

1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. 1 Parameterization of Binomial Models and Derivation of the Black-Scholes PDE. Previously we treated binomial models as a pure theoretical toy model for our complete economy. We turn to the issue of how

More information

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations

CS476/676 Mar 6, Today s Topics. American Option: early exercise curve. PDE overview. Discretizations. Finite difference approximations CS476/676 Mar 6, 2019 1 Today s Topics American Option: early exercise curve PDE overview Discretizations Finite difference approximations CS476/676 Mar 6, 2019 2 American Option American Option: PDE Complementarity

More information

Market Risk Analysis Volume I

Market Risk Analysis Volume I Market Risk Analysis Volume I Quantitative Methods in Finance Carol Alexander John Wiley & Sons, Ltd List of Figures List of Tables List of Examples Foreword Preface to Volume I xiii xvi xvii xix xxiii

More information

Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview

Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview IOSR Journal of Engineering (IOSRJEN) ISSN (e): 5-3, ISSN (p): 78-879 Vol. 5, Issue 8 (August. 5), V3 PP 45-5 www.iosrjen.org Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview

More information

Numerical Methods For American Option Pricing. Peng Liu. June 2008

Numerical Methods For American Option Pricing. Peng Liu. June 2008 Numerical Methods For American Option Pricing Peng Liu June 2008 Abstract An analytic solution does not exist for evaluating the American put option. Usually, the value is obtained by applying numerical

More information

ELEMENTS OF MATRIX MATHEMATICS

ELEMENTS OF MATRIX MATHEMATICS QRMC07 9/7/0 4:45 PM Page 5 CHAPTER SEVEN ELEMENTS OF MATRIX MATHEMATICS 7. AN INTRODUCTION TO MATRICES Investors frequently encounter situations involving numerous potential outcomes, many discrete periods

More information

Financial derivatives exam Winter term 2014/2015

Financial derivatives exam Winter term 2014/2015 Financial derivatives exam Winter term 2014/2015 Problem 1: [max. 13 points] Determine whether the following assertions are true or false. Write your answers, without explanations. Grading: correct answer

More information

ADVANCED ASSET PRICING THEORY

ADVANCED ASSET PRICING THEORY Series in Quantitative Finance -Vol. 2 ADVANCED ASSET PRICING THEORY Chenghu Ma Fudan University, China Imperial College Press Contents List of Figures Preface Background Organization and Content Readership

More information

Implementing Models in Quantitative Finance: Methods and Cases

Implementing Models in Quantitative Finance: Methods and Cases Gianluca Fusai Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases vl Springer Contents Introduction xv Parti Methods 1 Static Monte Carlo 3 1.1 Motivation and Issues 3 1.1.1

More information

Ch 5. Several Numerical Methods

Ch 5. Several Numerical Methods Ch 5 Several Numerical Methods I Monte Carlo Simulation for Multiple Variables II Confidence Interval and Variance Reduction III Solving Systems of Linear Equations IV Finite Difference Method ( 有限差分法

More information

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT)

Risk Neutral Pricing Black-Scholes Formula Lecture 19. Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Pricing Black-Scholes Formula Lecture 19 Dr. Vasily Strela (Morgan Stanley and MIT) Risk Neutral Valuation: Two-Horse Race Example One horse has 20% chance to win another has 80% chance $10000

More information

Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation

Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation Xiang Yang, Rajat Mittal Department of Mechanical Engineering, Johns Hopkins University, MD, 21218 Abstract

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Taylor Series & Binomial Series

Taylor Series & Binomial Series Taylor Series & Binomial Series Calculus II Josh Engwer TTU 09 April 2014 Josh Engwer (TTU) Taylor Series & Binomial Series 09 April 2014 1 / 20 Continuity & Differentiability of a Function (Notation)

More information

Exact shape-reconstruction by one-step linearization in EIT

Exact shape-reconstruction by one-step linearization in EIT Exact shape-reconstruction by one-step linearization in EIT Bastian von Harrach harrach@ma.tum.de Department of Mathematics - M1, Technische Universität München, Germany Joint work with Jin Keun Seo, Yonsei

More information

PDE Project Course 4. An Introduction to DOLFIN and Puffin

PDE Project Course 4. An Introduction to DOLFIN and Puffin PDE Project Course 4. An Introduction to DOLFIN and Puffin Anders Logg logg@math.chalmers.se Department of Computational Mathematics PDE Project Course 03/04 p. 1 Lecture plan DOLFIN Overview Input / output

More information

INTEREST RATES AND FX MODELS

INTEREST RATES AND FX MODELS INTEREST RATES AND FX MODELS 4. Convexity Andrew Lesniewski Courant Institute of Mathematics New York University New York February 24, 2011 2 Interest Rates & FX Models Contents 1 Convexity corrections

More information

Introduction to Numerical PDEs

Introduction to Numerical PDEs Introduction to Numerical PDEs Varun Shankar February 16, 2016 1 Introduction In this chapter, we will introduce a general classification scheme for linear second-order PDEs, and discuss when they have

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

Lecture 3: Factor models in modern portfolio choice

Lecture 3: Factor models in modern portfolio choice Lecture 3: Factor models in modern portfolio choice Prof. Massimo Guidolin Portfolio Management Spring 2016 Overview The inputs of portfolio problems Using the single index model Multi-index models Portfolio

More information

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation

NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation NUMERICAL MATHEMATICS & COMPUTING, 7 Ed. 4.3 Estimating Derivatives and Richardson Extrapolation Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole www.engage.com www.ma.utexas.edu/cna/nmc7

More information

If Tom's utility function is given by U(F, S) = FS, graph the indifference curves that correspond to 1, 2, 3, and 4 utils, respectively.

If Tom's utility function is given by U(F, S) = FS, graph the indifference curves that correspond to 1, 2, 3, and 4 utils, respectively. CHAPTER 3 APPENDIX THE UTILITY FUNCTION APPROACH TO THE CONSUMER BUDGETING PROBLEM The Utility-Function Approach to Consumer Choice Finding the highest attainable indifference curve on a budget constraint

More information

Notes on Intertemporal Optimization

Notes on Intertemporal Optimization Notes on Intertemporal Optimization Econ 204A - Henning Bohn * Most of modern macroeconomics involves models of agents that optimize over time. he basic ideas and tools are the same as in microeconomics,

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Hints on Some of the Exercises

Hints on Some of the Exercises Hints on Some of the Exercises of the book R. Seydel: Tools for Computational Finance. Springer, 00/004/006/009/01. Preparatory Remarks: Some of the hints suggest ideas that may simplify solving the exercises

More information

Amath 546/Econ 589 Univariate GARCH Models

Amath 546/Econ 589 Univariate GARCH Models Amath 546/Econ 589 Univariate GARCH Models Eric Zivot April 24, 2013 Lecture Outline Conditional vs. Unconditional Risk Measures Empirical regularities of asset returns Engle s ARCH model Testing for ARCH

More information

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE.

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. 7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. Accuracy requirements

More information

Advanced Numerical Methods

Advanced Numerical Methods Advanced Numerical Methods Solution to Homework One Course instructor: Prof. Y.K. Kwok. When the asset pays continuous dividend yield at the rate q the expected rate of return of the asset is r q under

More information

Improved radial basis function methods for multi-dimensional option pricing

Improved radial basis function methods for multi-dimensional option pricing Improved radial basis function methods for multi-dimensional option pricing Ulrika Pettersson a;, Elisabeth Larsson a;2;λ, Gunnar Marcusson b and Jonas Persson a; a Address: Department of Information Technology,

More information

Lecture 4 - Finite differences methods for PDEs

Lecture 4 - Finite differences methods for PDEs Finite diff. Lecture 4 - Finite differences methods for PDEs Lina von Sydow Finite differences, Lina von Sydow, (1 : 18) Finite difference methods Finite diff. Black-Scholes equation @v @t + 1 2 2 s 2

More information

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Applied Mathematics Volume 1, Article ID 796814, 1 pages doi:11155/1/796814 Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Zhongdi

More information

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10.

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10. e-pg Pathshala Subject : Computer Science Paper: Machine Learning Module: Decision Theory and Bayesian Decision Theory Module No: CS/ML/0 Quadrant I e-text Welcome to the e-pg Pathshala Lecture Series

More information

Lecture 4: Divide and Conquer

Lecture 4: Divide and Conquer Lecture 4: Divide and Conquer Divide and Conquer Merge sort is an example of a divide-and-conquer algorithm Recall the three steps (at each level to solve a divideand-conquer problem recursively Divide

More information

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712 Prof. Peck Fall 016 Department of Economics The Ohio State University Final Exam Questions and Answers Econ 871 1. (35 points) The following economy has one consumer, two firms, and four goods. Goods 1

More information

Valuing American Options by Simulation

Valuing American Options by Simulation Valuing American Options by Simulation Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2008 Valuing American Options Course material Slides Longstaff, F. A. and Schwartz,

More information

Elastic demand solution methods

Elastic demand solution methods solution methods CE 392C October 6, 2016 REVIEW We ve added another consistency relationship: Route choices No vehicle left behind Link performance functions Shortest path OD matrix Travel times Demand

More information

True_ The Lagrangian method is one way to solve constrained maximization problems.

True_ The Lagrangian method is one way to solve constrained maximization problems. LECTURE 4: CONSTRAINED OPTIMIZATION ANSWERS AND SOLUTIONS Answers to True/False Questions True_ The Lagrangian method is one way to solve constrained maximization problems. False_ The substitution method

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates and Present Value Analysis 16 2.1 Definitions.................................... 16 2.1.1 Rate of

More information

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL

A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) Vol. 33 (2013) 103-115 A NOTE ON NUMERICAL SOLUTION OF A LINEAR BLACK-SCHOLES MODEL Md. Kazi Salah Uddin 1*, Mostak Ahmed 2 and Samir Kumar Bhowmik 1,3 1

More information

5 Numerical Solution of Linear Systems

5 Numerical Solution of Linear Systems 5 Numerical Solution of Linear Systems In this chapter we present several methods for solving linear systems of the form Ax = b. HereA is a (m m) matrix and both x and b are m-dimensional vectors. Our

More information

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs

Online Appendix Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared. A. Proofs Online Appendi Optimal Time-Consistent Government Debt Maturity D. Debortoli, R. Nunes, P. Yared A. Proofs Proof of Proposition 1 The necessity of these conditions is proved in the tet. To prove sufficiency,

More information

Monte Carlo Simulations in the Teaching Process

Monte Carlo Simulations in the Teaching Process Monte Carlo Simulations in the Teaching Process Blanka Šedivá Department of Mathematics, Faculty of Applied Sciences University of West Bohemia, Plzeň, Czech Republic CADGME 2018 Conference on Digital

More information

Trust Region Methods for Unconstrained Optimisation

Trust Region Methods for Unconstrained Optimisation Trust Region Methods for Unconstrained Optimisation Lecture 9, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Trust

More information

PDE Project Course 1. Adaptive finite element methods

PDE Project Course 1. Adaptive finite element methods PDE Project Course 1. Adaptive finite element methods Anders Logg logg@math.chalmers.se Department of Computational Mathematics PDE Project Course 03/04 p. 1 Lecture plan Introduction to FEM FEM for Poisson

More information

AEM Computational Fluid Dynamics Instructor: Dr. M. A. R. Sharif

AEM Computational Fluid Dynamics Instructor: Dr. M. A. R. Sharif AEM 620 - Computational Fluid Dynamics Instructor: Dr. M. A. R. Sharif Numerical Solution Techniques for 1-D Parabolic Partial Differential Equations: Transient Flow Problem by Parshant Dhand September

More information

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks

Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Optimal Policies for Distributed Data Aggregation in Wireless Sensor Networks Hussein Abouzeid Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute abouzeid@ecse.rpi.edu

More information

Geometric tools for the valuation of performance-dependent options

Geometric tools for the valuation of performance-dependent options Computational Finance and its Applications II 161 Geometric tools for the valuation of performance-dependent options T. Gerstner & M. Holtz Institut für Numerische Simulation, Universität Bonn, Germany

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 The Consumer Problem Consider an agent choosing her consumption of goods 1 and 2 for a given budget. This is the workhorse of microeconomic theory. (Notice

More information

Intermediate Algebra Chapter 4 (4.1, 4.2, 4.3, 4.4) Practice for the Exam

Intermediate Algebra Chapter 4 (4.1, 4.2, 4.3, 4.4) Practice for the Exam MAT 1033C -- Martin-Gay Intermediate Algebra Chapter 4 (4.1, 4.2, 4.3, 4.4) Practice for the Eam Name Date Day/Time: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 3, Mikhail Zaslavsky 3 University of Michigan, Ann

More information

Richardson Extrapolation Techniques for the Pricing of American-style Options

Richardson Extrapolation Techniques for the Pricing of American-style Options Richardson Extrapolation Techniques for the Pricing of American-style Options June 1, 2005 Abstract Richardson Extrapolation Techniques for the Pricing of American-style Options In this paper we re-examine

More information

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes

Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Introduction to Probability Theory and Stochastic Processes for Finance Lecture Notes Fabio Trojani Department of Economics, University of St. Gallen, Switzerland Correspondence address: Fabio Trojani,

More information

Lecture 6 Dynamic games with imperfect information

Lecture 6 Dynamic games with imperfect information Lecture 6 Dynamic games with imperfect information Backward Induction in dynamic games of imperfect information We start at the end of the trees first find the Nash equilibrium (NE) of the last subgame

More information

Problem Set 4 Answers

Problem Set 4 Answers Business 3594 John H. Cochrane Problem Set 4 Answers ) a) In the end, we re looking for ( ) ( ) + This suggests writing the portfolio as an investment in the riskless asset, then investing in the risky

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

3/1/2016. Intermediate Microeconomics W3211. Lecture 4: Solving the Consumer s Problem. The Story So Far. Today s Aims. Solving the Consumer s Problem

3/1/2016. Intermediate Microeconomics W3211. Lecture 4: Solving the Consumer s Problem. The Story So Far. Today s Aims. Solving the Consumer s Problem 1 Intermediate Microeconomics W3211 Lecture 4: Introduction Columbia University, Spring 2016 Mark Dean: mark.dean@columbia.edu 2 The Story So Far. 3 Today s Aims 4 We have now (exhaustively) described

More information

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.

FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015. FDPE Microeconomics 3 Spring 2017 Pauli Murto TA: Tsz-Ning Wong (These solution hints are based on Julia Salmi s solution hints for Spring 2015.) Hints for Problem Set 2 1. Consider a zero-sum game, where

More information

A MATRIX APPROACH TO SUPPORT DEPARTMENT RECIPROCAL COST ALLOCATIONS

A MATRIX APPROACH TO SUPPORT DEPARTMENT RECIPROCAL COST ALLOCATIONS A MATRIX APPROACH TO SUPPORT DEPARTMENT RECIPROCAL COST ALLOCATIONS Dennis Togo, University of New Mexico, Anderson School of Management, Albuquerque, NM 87131, 505 277 7106, togo@unm.edu ABSTRACT The

More information

American Options; an American delayed- Exercise model and the free boundary. Business Analytics Paper. Nadra Abdalla

American Options; an American delayed- Exercise model and the free boundary. Business Analytics Paper. Nadra Abdalla American Options; an American delayed- Exercise model and the free boundary Business Analytics Paper Nadra Abdalla [Geef tekst op] Pagina 1 Business Analytics Paper VU University Amsterdam Faculty of Sciences

More information

Tries to understand the prices or values of claims to uncertain payments.

Tries to understand the prices or values of claims to uncertain payments. Asset pricing Tries to understand the prices or values of claims to uncertain payments. If stocks have an average real return of about 8%, then 2% may be due to interest rates and the remaining 6% is a

More information

4: Single Cash Flows and Equivalence

4: Single Cash Flows and Equivalence 4.1 Single Cash Flows and Equivalence Basic Concepts 28 4: Single Cash Flows and Equivalence This chapter explains basic concepts of project economics by examining single cash flows. This means that each

More information

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski

9/16/ (1) Review of Factoring trinomials. (2) Develop the graphic significance of factors/roots. Math 2 Honors - Santowski (1) Review of Factoring trinomials (2) Develop the graphic significance of factors/roots (3) Solving Eqn (algebra/graphic connection) 1 2 To expand means to write a product of expressions as a sum or difference

More information

Optimal Securitization via Impulse Control

Optimal Securitization via Impulse Control Optimal Securitization via Impulse Control Rüdiger Frey (joint work with Roland C. Seydel) Mathematisches Institut Universität Leipzig and MPI MIS Leipzig Bachelier Finance Society, June 21 (1) Optimal

More information

Write legibly. Unreadable answers are worthless.

Write legibly. Unreadable answers are worthless. MMF 2021 Final Exam 1 December 2016. This is a closed-book exam: no books, no notes, no calculators, no phones, no tablets, no computers (of any kind) allowed. Do NOT turn this page over until you are

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 2, Mikhail Zaslavsky 2 University of Michigan, Ann

More information

COPYRIGHTED MATERIAL. Time Value of Money Toolbox CHAPTER 1 INTRODUCTION CASH FLOWS

COPYRIGHTED MATERIAL. Time Value of Money Toolbox CHAPTER 1 INTRODUCTION CASH FLOWS E1C01 12/08/2009 Page 1 CHAPTER 1 Time Value of Money Toolbox INTRODUCTION One of the most important tools used in corporate finance is present value mathematics. These techniques are used to evaluate

More information

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions

The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions The Agent-Environment Interface Goals, Rewards, Returns The Markov Property The Markov Decision Process Value Functions Optimal Value Functions Optimality and Approximation Finite MDP: {S, A, R, p, γ}

More information

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford.

Tangent Lévy Models. Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford. Tangent Lévy Models Sergey Nadtochiy (joint work with René Carmona) Oxford-Man Institute of Quantitative Finance University of Oxford June 24, 2010 6th World Congress of the Bachelier Finance Society Sergey

More information

Extensions to the Black Scholes Model

Extensions to the Black Scholes Model Lecture 16 Extensions to the Black Scholes Model 16.1 Dividends Dividend is a sum of money paid regularly (typically annually) by a company to its shareholders out of its profits (or reserves). In this

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

LECTURE 2: MULTIPERIOD MODELS AND TREES

LECTURE 2: MULTIPERIOD MODELS AND TREES LECTURE 2: MULTIPERIOD MODELS AND TREES 1. Introduction One-period models, which were the subject of Lecture 1, are of limited usefulness in the pricing and hedging of derivative securities. In real-world

More information

Value of Flexibility in Managing R&D Projects Revisited

Value of Flexibility in Managing R&D Projects Revisited Value of Flexibility in Managing R&D Projects Revisited Leonardo P. Santiago & Pirooz Vakili November 2004 Abstract In this paper we consider the question of whether an increase in uncertainty increases

More information

Stochastic modelling of electricity markets Pricing Forwards and Swaps

Stochastic modelling of electricity markets Pricing Forwards and Swaps Stochastic modelling of electricity markets Pricing Forwards and Swaps Jhonny Gonzalez School of Mathematics The University of Manchester Magical books project August 23, 2012 Clip for this slide Pricing

More information

Arbitrages and pricing of stock options

Arbitrages and pricing of stock options Arbitrages and pricing of stock options Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Lecture 22. Survey Sampling: an Overview

Lecture 22. Survey Sampling: an Overview Math 408 - Mathematical Statistics Lecture 22. Survey Sampling: an Overview March 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 22 March 25, 2013 1 / 16 Survey Sampling: What and Why In surveys sampling

More information

Package multiassetoptions

Package multiassetoptions Package multiassetoptions February 20, 2015 Type Package Title Finite Difference Method for Multi-Asset Option Valuation Version 0.1-1 Date 2015-01-31 Author Maintainer Michael Eichenberger

More information

Derivation of the Price of Bond in the Recovery of Market Value Model

Derivation of the Price of Bond in the Recovery of Market Value Model Derivation of the Price of Bond in the Recovery of Market Value Model By YanFei Gao Department of Mathematics & Statistics, McMaster University Apr. 2 th, 25 1 Recovery models For the analysis of reduced-form

More information