Section 8.2: Monte Carlo Estimation

Size: px
Start display at page:

Download "Section 8.2: Monte Carlo Estimation"

Transcription

1 Section 8.2: Monte Carlo Estimation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 1/ 19

2 Section 8.2: Monte Carlo Estimation Example Program craps was run once with n = 100 replications Got 56 wins and 44 losses (initial seed 12345) The true probability of winning Craps is Our point estimate of 0.56 is not accurate Using interval estimation, 56 wins in 100 tries corresponds to a 95% confidence interval estimate of 0.56 ± 0.10 Two important points: The 0.56 ± 0.10 interval estimate is correct in the sense that it contains the true probability of winning The interval is too wide indicating that more than 100 replications should have been used Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 2/ 19

3 Interval Estimation for Probability In Monte Carlo Simulation, x 1, x 2,..., x n is a random sample of size n Each x i is either 0 ( loss ) or 1 ( win ) The sample mean (probability point estimate) is x = 1 n n x i = i=1 the number of 1 s n The sample standard deviation is ( ) s = 1 n x 2 n i x 2 = x x 2 = x(1 x) i=1 Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 3/ 19

4 Interval Estimation for Probability (2) From Alg , for large n, the interval estimate for µ is x ± t x(1 x) n 1 where t = idfstudent(n 1,1 α/2) When Monte Carlo simulation is used to estimate a probability, the sample size is always large (in practice) Consistent with Section 8.1, if n is sufficiently large and if α = 0.05 t = t = idfnormal(0.0,1.0,0.975) = With negligible error the 95% confidence interval estimate can be written as x ± 2 x(1 x)/n Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 4/ 19

5 Algorithm Conventionally, ˆp (instead of x) denotes the point estimate of an unknown probability p Algorithm To estimate the unknown probability p of an event A by Monte Carlo simulation, replicate n times to obtain ˆp = the number of occurrences of event A n as the point estimate of p = Pr(A). We are 95% confident that p lies somewhere in the interval ˆp(1 ˆp) ˆp ± 2 n Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 5/ 19

6 Example Program craps was run 200 times with n = 100 For each run, a 95% confidence interval estimate was computed Each estimate is illustrated above as vertical lines (the left-most interval is 0.56 ± 0.10 from Example 8.2.1) The horizontal line corresponds to p % (191 of 200) of the intervals include p Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 6/ 19

7 Approximate Interval Estimation If ˆp is close to 0.5, ˆp(1 ˆp) is also close to 0.5. So, the 95% confidence interval estimate reduces to approximately ˆp ± 1 n The approximate interval estimate is easy to remember, conservative and illustrates the curse of n 100 replications are needed to estimate p to within ± replications are needed to estimate p to within ± replications are needed to estimate p to within ±0.001 To achieve 1 more decimal digit of precision, be prepared to do 100 times more work! Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 7/ 19

8 Example For a random sample of size 100, n = 10 If ˆp = 0.56, the 95% confidence interval estimate is approximately 0.56 ± 0.10 Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 8/ 19

9 Example 8.2.4: Specified Precision For Monte Carlo simulation, want to know a priori how many replications n are needed to achieve a specified precision ±w Using 95% confidence, solve w = 2 ˆp(1 ˆp)/n for n: 4ˆp(1 ˆp) n = A small run (100 replications) can be used to get a preliminary value for ˆp, use above equation to determine n w 2 For example, ˆp = 0.2 and w = 0.01, 4(0.2)(0.8) n = (0.01) 2 = 6400 instead of replications suggested previously Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 9/ 19

10 Algorithm Algorithm Given a specified interval half-width w and level of confidence 1 α, the algorithm computes the probability interval estimate ˆp ± w t = idfnormal(0.0, 1.0, 1 - α / 2); n = 1; x = Generate(); /* returns 0 or 1*/ ˆp = x; while ((n < 40) or (t * sqrt(ˆp * (1-ˆp)) > w*sqrt(n)){ n++; x = Generate(); /* return 0 or 1*/ ˆp = ˆp + (x - ˆp)/n } return n, ˆp Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 10/ 19

11 Monte Carlo Integration Use Monte Carlo simulation to estimate the value of I = b a g(x)dx Limited practical value: use trapezoid rule or Simpson s rule instead Let X be Uniform(a,b); pdf of X is f (x) = 1/(b a) Use function g( ) to define random variable Y = (b a)g(x) The expected value of Y is E[Y ] = b a (b a)g(x)f (x)dx = b a g(x)dx = I Modify Alg to determine interval estimate Î ± w for I Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 11/ 19

12 Algorithm Algorithm Given w, 1 α, compute interval estimate Î ± w for I = R b a g(x)dx t = idfnormal(0.0, 1.0, 1 - α/2); n = 1; x = Uniform(a, b); /*modify as appropriate*/ y = (b - a) * g(x); /*modify as appropriate*/ ȳ = y; v = 0.0; while((t*sqrt(v/n) > w*sqrt(n-1))or(n <40)){ n++; x = Uniform(a, b); /*modify as appropriate*/ y = (b - a)* g(x); /*modify as appropriate*/ d = y - ȳ; v = v + d * d * (n - 1) / n; ȳ = ȳ + d / n; } return n, ȳ; /* ȳ is Î */ Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 12/ 19

13 Example Algorithm was used to evaluate I = 1 2π 4 3 exp( x 2 /2)dx with w = 0.01 and α = 0.05, using g(x) = exp( x2 /2) 2π n = replications produced Î ± w = ± 0.01 We are 0.95% confident that < I < and it is consistent with the correct value of I = Φ(4) Φ( 3) function evaluations were required to achieve precision ±0.01 Trapezoid rule: 30 function evaluations achieve precision ±0.0001; Monte Carlo integration would require about function evaluations to do the same Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 13/ 19

14 Importance Sampling In Example 8.2.5, the slow convergence is due to the use of Uniform(a,b) random variates That is, it is wasteful to repeatedly sample and sum g(x) for values of x where g(x) = 0 The integration process should concentrate on sampling and summing g(x) for values of x where g(x) is large Generalization of Algorithm 8.2.3: use general random variable X with pdf f (x) > 0 defined for all possible values x X Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 14/ 19

15 Importance Sampling (2) Define new random variable The expected value of Y is E[Y ] = b a Y = g(x)/f (X) g(x) b f (x) f (x)dx = g(x)dx = I a An interval estimate Î ± w for I = E[Y ] can be calculated by using a modified version of Algorithm to determine an interval estimate for E[Y ] The key feature is a clever choice of X or the pdf f ( ) Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 15/ 19

16 Example Evaluate the integral I = 4 0 exp( x 2 /2)dx Example uses Uniform(0,4) for X, converges slowly If X is an Exponential(1) random variate truncated to X = (0, 4), better convergence should be achieved The pdf of X is f (x) = exp( x) F(4) where F(4) = 1 exp( 4) is the cdf of an un-truncated Exponential(1) random variable Algorithm 8.2.3, with indicated assignments modified accordingly, can be used to compute an interval estimate for I Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 16/ 19

17 Time-Averaged Statistics The time-averaged number in a single-server service node is l = 1 τ τ 0 l(t)dt where l(t) is the number in the service node at time t and the average is over the interval 0 < t < τ Section 2.1 claimed: if we were to observe(sample) the number in the service node at many different times chosen at random between 0 and τ and then calculate the arithmetic average of all these observations, the result should be close to l The next example clarifies this statement Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 17/ 19

18 Example Let T be Uniform(0,τ) and define new random variable L = l(t) By definition, the pdf of T is f (t) = 1/τ for 0 < t < τ The expected value of L is E[L] = τ 0 l(t)f (t)dt = 1 τ τ 0 l(t)dt = l The observation times t 1,t 2,,t n be generated as an n-point random variate sample of T l(t 1 ),l(t 2 ),,l(t n ) is a random sample of L and the mean is an (unbiased) point estimate of E[L] = l ; If the sample size is large, the sample mean should be close to l Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 18/ 19

19 Random Sampling The random times t i at which the l(t i ) samples are taken can be generated by the same algorithm used to generate a stationary Poisson arrival process Algorithm to generate n random sample times (in sorted order) with an average inter-sample time of δ Random Sampling t 0 = 0; for (i = 0; i < n; i++) t i+1 = t i + Exponential(δ); return t 1, t 2,..., t n ; Discrete-Event Simulation: A First Course Section 8.2: Monte Carlo Estimation 19/ 19

Hand and Spreadsheet Simulations

Hand and Spreadsheet Simulations 1 / 34 Hand and Spreadsheet Simulations Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 9/8/16 2 / 34 Outline 1 Stepping Through a Differential Equation 2 Monte

More information

Section 7.1: Continuous Random Variables

Section 7.1: Continuous Random Variables Section 71: Continuous Random Variables Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 71: Continuous Random Variables

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

Section 3.1: Discrete Event Simulation

Section 3.1: Discrete Event Simulation Section 3.1: Discrete Event Simulation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 3.1: Discrete Event Simulation

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

MATH 3200 Exam 3 Dr. Syring

MATH 3200 Exam 3 Dr. Syring . Suppose n eligible voters are polled (randomly sampled) from a population of size N. The poll asks voters whether they support or do not support increasing local taxes to fund public parks. Let M be

More information

Probability. An intro for calculus students P= Figure 1: A normal integral

Probability. An intro for calculus students P= Figure 1: A normal integral Probability An intro for calculus students.8.6.4.2 P=.87 2 3 4 Figure : A normal integral Suppose we flip a coin 2 times; what is the probability that we get more than 2 heads? Suppose we roll a six-sided

More information

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions.

UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. UQ, STAT2201, 2017, Lectures 3 and 4 Unit 3 Probability Distributions. Random Variables 2 A random variable X is a numerical (integer, real, complex, vector etc.) summary of the outcome of the random experiment.

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

χ 2 distributions and confidence intervals for population variance

χ 2 distributions and confidence intervals for population variance χ 2 distributions and confidence intervals for population variance Let Z be a standard Normal random variable, i.e., Z N(0, 1). Define Y = Z 2. Y is a non-negative random variable. Its distribution is

More information

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties

Posterior Inference. , where should we start? Consider the following computational procedure: 1. draw samples. 2. convert. 3. compute properties Posterior Inference Example. Consider a binomial model where we have a posterior distribution for the probability term, θ. Suppose we want to make inferences about the log-odds γ = log ( θ 1 θ), where

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

Random Variables Handout. Xavier Vilà

Random Variables Handout. Xavier Vilà Random Variables Handout Xavier Vilà Course 2004-2005 1 Discrete Random Variables. 1.1 Introduction 1.1.1 Definition of Random Variable A random variable X is a function that maps each possible outcome

More information

5.3 Interval Estimation

5.3 Interval Estimation 5.3 Interval Estimation Ulrich Hoensch Wednesday, March 13, 2013 Confidence Intervals Definition Let θ be an (unknown) population parameter. A confidence interval with confidence level C is an interval

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Statistical estimation

Statistical estimation Statistical estimation Statistical modelling: theory and practice Gilles Guillot gigu@dtu.dk September 3, 2013 Gilles Guillot (gigu@dtu.dk) Estimation September 3, 2013 1 / 27 1 Introductory example 2

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 10: Continuous RV Families. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 10: Continuous RV Families Prof. Vince Calhoun 1 Reading This class: Section 4.4-4.5 Next class: Section 4.6-4.7 2 Homework 3.9, 3.49, 4.5,

More information

Exam M Fall 2005 PRELIMINARY ANSWER KEY

Exam M Fall 2005 PRELIMINARY ANSWER KEY Exam M Fall 005 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 C 1 E C B 3 C 3 E 4 D 4 E 5 C 5 C 6 B 6 E 7 A 7 E 8 D 8 D 9 B 9 A 10 A 30 D 11 A 31 A 1 A 3 A 13 D 33 B 14 C 34 C 15 A 35 A

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Chapter 2 Uncertainty Analysis and Sampling Techniques

Chapter 2 Uncertainty Analysis and Sampling Techniques Chapter 2 Uncertainty Analysis and Sampling Techniques The probabilistic or stochastic modeling (Fig. 2.) iterative loop in the stochastic optimization procedure (Fig..4 in Chap. ) involves:. Specifying

More information

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance

Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Estimating parameters 5.3 Confidence Intervals 5.4 Sample Variance Prof. Tesler Math 186 Winter 2017 Prof. Tesler Ch. 5: Confidence Intervals, Sample Variance Math 186 / Winter 2017 1 / 29 Estimating parameters

More information

Multilevel quasi-monte Carlo path simulation

Multilevel quasi-monte Carlo path simulation Multilevel quasi-monte Carlo path simulation Michael B. Giles and Ben J. Waterhouse Lluís Antoni Jiménez Rugama January 22, 2014 Index 1 Introduction to MLMC Stochastic model Multilevel Monte Carlo Milstein

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Generating Random Variables and Stochastic Processes Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4 Random Variables & Probability. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random variable =

More information

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017

Tutorial 11: Limit Theorems. Baoxiang Wang & Yihan Zhang bxwang, April 10, 2017 Tutorial 11: Limit Theorems Baoxiang Wang & Yihan Zhang bxwang, yhzhang@cse.cuhk.edu.hk April 10, 2017 1 Outline The Central Limit Theorem (CLT) Normal Approximation Based on CLT De Moivre-Laplace Approximation

More information

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی

درس هفتم یادگیري ماشین. (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی یادگیري ماشین توزیع هاي نمونه و تخمین نقطه اي پارامترها Sampling Distributions and Point Estimation of Parameter (Machine Learning) دانشگاه فردوسی مشهد دانشکده مهندسی رضا منصفی درس هفتم 1 Outline Introduction

More information

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section is presented the steps to perform the simulation of the main stochastic processes used in real options applications,

More information

10. Monte Carlo Methods

10. Monte Carlo Methods 10. Monte Carlo Methods 1. Introduction. Monte Carlo simulation is an important tool in computational finance. It may be used to evaluate portfolio management rules, to price options, to simulate hedging

More information

Confidence Intervals for the Difference Between Two Means with Tolerance Probability

Confidence Intervals for the Difference Between Two Means with Tolerance Probability Chapter 47 Confidence Intervals for the Difference Between Two Means with Tolerance Probability Introduction This procedure calculates the sample size necessary to achieve a specified distance from the

More information

Simple Random Sampling. Sampling Distribution

Simple Random Sampling. Sampling Distribution STAT 503 Sampling Distribution and Statistical Estimation 1 Simple Random Sampling Simple random sampling selects with equal chance from (available) members of population. The resulting sample is a simple

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012

IEOR 3106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 16, 2012 IEOR 306: Introduction to Operations Research: Stochastic Models SOLUTIONS to Final Exam, Sunday, December 6, 202 Four problems, each with multiple parts. Maximum score 00 (+3 bonus) = 3. You need to show

More information

Heuristics in Rostering for Call Centres

Heuristics in Rostering for Call Centres Heuristics in Rostering for Call Centres Shane G. Henderson, Andrew J. Mason Department of Engineering Science University of Auckland Auckland, New Zealand sg.henderson@auckland.ac.nz, a.mason@auckland.ac.nz

More information

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence

continuous rv Note for a legitimate pdf, we have f (x) 0 and f (x)dx = 1. For a continuous rv, P(X = c) = c f (x)dx = 0, hence continuous rv Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a b, P(a X b) = b a f (x)dx.

More information

6. Continous Distributions

6. Continous Distributions 6. Continous Distributions Chris Piech and Mehran Sahami May 17 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS19 this meant that our RVs could only take

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

TABLE OF CONTENTS - VOLUME 2

TABLE OF CONTENTS - VOLUME 2 TABLE OF CONTENTS - VOLUME 2 CREDIBILITY SECTION 1 - LIMITED FLUCTUATION CREDIBILITY PROBLEM SET 1 SECTION 2 - BAYESIAN ESTIMATION, DISCRETE PRIOR PROBLEM SET 2 SECTION 3 - BAYESIAN CREDIBILITY, DISCRETE

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

BIO5312 Biostatistics Lecture 5: Estimations

BIO5312 Biostatistics Lecture 5: Estimations BIO5312 Biostatistics Lecture 5: Estimations Yujin Chung September 27th, 2016 Fall 2016 Yujin Chung Lec5: Estimations Fall 2016 1/34 Recap Yujin Chung Lec5: Estimations Fall 2016 2/34 Today s lecture and

More information

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates

CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates CHAPTER 8. Confidence Interval Estimation Point and Interval Estimates A point estimate is a single number, a confidence interval provides additional information about the variability of the estimate Lower

More information

Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11)

Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11) Jeremy Tejada ISE 441 - Introduction to Simulation Learning Outcomes: Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11) 1. Students will be able to list and define the different components

More information

15 : Approximate Inference: Monte Carlo Methods

15 : Approximate Inference: Monte Carlo Methods 10-708: Probabilistic Graphical Models 10-708, Spring 2016 15 : Approximate Inference: Monte Carlo Methods Lecturer: Eric P. Xing Scribes: Binxuan Huang, Yotam Hechtlinger, Fuchen Liu 1 Introduction to

More information

Estimation Y 3. Confidence intervals I, Feb 11,

Estimation Y 3. Confidence intervals I, Feb 11, Estimation Example: Cholesterol levels of heart-attack patients Data: Observational study at a Pennsylvania medical center blood cholesterol levels patients treated for heart attacks measurements 2, 4,

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Further Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Outline

More information

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5

Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Math489/889 Stochastic Processes and Advanced Mathematical Finance Homework 5 Steve Dunbar Due Fri, October 9, 7. Calculate the m.g.f. of the random variable with uniform distribution on [, ] and then

More information

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2

Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Numerical Simulation of Stochastic Differential Equations: Lecture 2, Part 2 Des Higham Department of Mathematics University of Strathclyde Montreal, Feb. 2006 p.1/17 Lecture 2, Part 2: Mean Exit Times

More information

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics

Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Technische Universiteit Delft Faculteit Elektrotechniek, Wiskunde en Informatica Delft Institute of Applied Mathematics Het nauwkeurig bepalen van de verlieskans van een portfolio van risicovolle leningen

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions

Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions Lecture 5: Fundamentals of Statistical Analysis and Distributions Derived from Normal Distributions ELE 525: Random Processes in Information Systems Hisashi Kobayashi Department of Electrical Engineering

More information

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes.

A probability distribution shows the possible outcomes of an experiment and the probability of each of these outcomes. Introduction In the previous chapter we discussed the basic concepts of probability and described how the rules of addition and multiplication were used to compute probabilities. In this chapter we expand

More information

Confidence Intervals Introduction

Confidence Intervals Introduction Confidence Intervals Introduction A point estimate provides no information about the precision and reliability of estimation. For example, the sample mean X is a point estimate of the population mean μ

More information

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same.

Chapter 14 : Statistical Inference 1. Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Chapter 14 : Statistical Inference 1 Chapter 14 : Introduction to Statistical Inference Note : Here the 4-th and 5-th editions of the text have different chapters, but the material is the same. Data x

More information

Conditional Density Method in the Computation of the Delta with Application to Power Market

Conditional Density Method in the Computation of the Delta with Application to Power Market Conditional Density Method in the Computation of the Delta with Application to Power Market Asma Khedher Centre of Mathematics for Applications Department of Mathematics University of Oslo A joint work

More information

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm

An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm An Experimental Study of the Behaviour of the Proxel-Based Simulation Algorithm Sanja Lazarova-Molnar, Graham Horton Otto-von-Guericke-Universität Magdeburg Abstract The paradigm of the proxel ("probability

More information

Random Tree Method. Monte Carlo Methods in Financial Engineering

Random Tree Method. Monte Carlo Methods in Financial Engineering Random Tree Method Monte Carlo Methods in Financial Engineering What is it for? solve full optimal stopping problem & estimate value of the American option simulate paths of underlying Markov chain produces

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Chapter 4 Continuous Random Variables and Probability Distributions Part 2: More on Continuous Random Variables Section 4.5 Continuous Uniform Distribution Section 4.6 Normal Distribution 1 / 28 One more

More information

Monte Carlo Simulations in the Teaching Process

Monte Carlo Simulations in the Teaching Process Monte Carlo Simulations in the Teaching Process Blanka Šedivá Department of Mathematics, Faculty of Applied Sciences University of West Bohemia, Plzeň, Czech Republic CADGME 2018 Conference on Digital

More information

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling

Lecture outline. Monte Carlo Methods for Uncertainty Quantification. Importance Sampling. Importance Sampling Lecture outline Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification Lecture 2: Variance reduction

More information

Statistics 13 Elementary Statistics

Statistics 13 Elementary Statistics Statistics 13 Elementary Statistics Summer Session I 2012 Lecture Notes 5: Estimation with Confidence intervals 1 Our goal is to estimate the value of an unknown population parameter, such as a population

More information

Experience with the Weighted Bootstrap in Testing for Unobserved Heterogeneity in Exponential and Weibull Duration Models

Experience with the Weighted Bootstrap in Testing for Unobserved Heterogeneity in Exponential and Weibull Duration Models Experience with the Weighted Bootstrap in Testing for Unobserved Heterogeneity in Exponential and Weibull Duration Models Jin Seo Cho, Ta Ul Cheong, Halbert White Abstract We study the properties of the

More information

Fast and accurate pricing of discretely monitored barrier options by numerical path integration

Fast and accurate pricing of discretely monitored barrier options by numerical path integration Comput Econ (27 3:143 151 DOI 1.17/s1614-7-991-5 Fast and accurate pricing of discretely monitored barrier options by numerical path integration Christian Skaug Arvid Naess Received: 23 December 25 / Accepted:

More information

Non-informative Priors Multiparameter Models

Non-informative Priors Multiparameter Models Non-informative Priors Multiparameter Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Prior Types Informative vs Non-informative There has been a desire for a prior distributions that

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems

Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Actuarial Mathematics and Statistics Statistics 5 Part 2: Statistical Inference Tutorial Problems Spring 2005 1. Which of the following statements relate to probabilities that can be interpreted as frequencies?

More information

The Vasicek Distribution

The Vasicek Distribution The Vasicek Distribution Dirk Tasche Lloyds TSB Bank Corporate Markets Rating Systems dirk.tasche@gmx.net Bristol / London, August 2008 The opinions expressed in this presentation are those of the author

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel

Point Estimators. STATISTICS Lecture no. 10. Department of Econometrics FEM UO Brno office 69a, tel STATISTICS Lecture no. 10 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 8. 12. 2009 Introduction Suppose that we manufacture lightbulbs and we want to state

More information

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi

Chapter 4: Commonly Used Distributions. Statistics for Engineers and Scientists Fourth Edition William Navidi Chapter 4: Commonly Used Distributions Statistics for Engineers and Scientists Fourth Edition William Navidi 2014 by Education. This is proprietary material solely for authorized instructor use. Not authorized

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1

Chapter 6.1 Confidence Intervals. Stat 226 Introduction to Business Statistics I. Chapter 6, Section 6.1 Stat 226 Introduction to Business Statistics I Spring 2009 Professor: Dr. Petrutza Caragea Section A Tuesdays and Thursdays 9:30-10:50 a.m. Chapter 6, Section 6.1 Confidence Intervals Confidence Intervals

More information

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014

Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 NTNU Page 1 of 5 Institutt for fysikk Contact during the exam: Professor Ingve Simonsen Exam in TFY4275/FY8907 CLASSICAL TRANSPORT THEORY Feb 14, 2014 Allowed help: Alternativ D All written material This

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes

Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes Importance sampling and Monte Carlo-based calibration for time-changed Lévy processes Stefan Kassberger Thomas Liebmann BFS 2010 1 Motivation 2 Time-changed Lévy-models and Esscher transforms 3 Applications

More information

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions

Probability Theory and Simulation Methods. April 9th, Lecture 20: Special distributions April 9th, 2018 Lecture 20: Special distributions Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters 4, 6: Random variables Week 9 Chapter

More information

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL: Fax: Monte Carlo methods

FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: URL:   Fax: Monte Carlo methods INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 88 63 URL: www.math.auc.dk Fax: 98 15 81 29 E-mail: jm@math.aau.dk Monte Carlo methods Monte Carlo methods

More information

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by Financial Modeling with Crystal Ball and Excel, Second Edition By John Charnes Copyright 2012 by John Charnes APPENDIX C Variance Reduction Techniques As we saw in Chapter 12, one of the many uses of Monte

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Lecture 4: Model-Free Prediction

Lecture 4: Model-Free Prediction Lecture 4: Model-Free Prediction David Silver Outline 1 Introduction 2 Monte-Carlo Learning 3 Temporal-Difference Learning 4 TD(λ) Introduction Model-Free Reinforcement Learning Last lecture: Planning

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

A lower bound on seller revenue in single buyer monopoly auctions

A lower bound on seller revenue in single buyer monopoly auctions A lower bound on seller revenue in single buyer monopoly auctions Omer Tamuz October 7, 213 Abstract We consider a monopoly seller who optimally auctions a single object to a single potential buyer, with

More information

Deriving the Black-Scholes Equation and Basic Mathematical Finance

Deriving the Black-Scholes Equation and Basic Mathematical Finance Deriving the Black-Scholes Equation and Basic Mathematical Finance Nikita Filippov June, 7 Introduction In the 97 s Fischer Black and Myron Scholes published a model which would attempt to tackle the issue

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 1.010 Uncertainty in Engineering Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Application Example 18

More information

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 16. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 16 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 7. - 7.3 Lecture Chapter 8.1-8. Review Chapter 6. Problem Solving

More information

Lattice Model of System Evolution. Outline

Lattice Model of System Evolution. Outline Lattice Model of System Evolution Richard de Neufville Professor of Engineering Systems and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Lattice Model Slide 1 of 32

More information

Appendix A. Selecting and Using Probability Distributions. In this appendix

Appendix A. Selecting and Using Probability Distributions. In this appendix Appendix A Selecting and Using Probability Distributions In this appendix Understanding probability distributions Selecting a probability distribution Using basic distributions Using continuous distributions

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Introduction to Sequential Monte Carlo Methods

Introduction to Sequential Monte Carlo Methods Introduction to Sequential Monte Carlo Methods Arnaud Doucet NCSU, October 2008 Arnaud Doucet () Introduction to SMC NCSU, October 2008 1 / 36 Preliminary Remarks Sequential Monte Carlo (SMC) are a set

More information